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Abstract

The global demand for energy is increasing. While the transition to renewable
energy sources is happening faster than ever, traditional energy sources such as
oil and gas still make up a large part of the energy portfolio, and will continue
to do so for many years to come. However, most new discoveries of oil and gas
are more challenging to produce, and old fields are getting depleted. Being able to
efficiently operate mature brown fields and challenging green fields will be crucial
for oil companies in the coming years. Subsea technology looks very promising, as
it enables production from fields which were previously deemed infeasible, either
because they were too deep, too remote, or in too hostile environments such as the
arctic. Some companies even envision all-subsea production and processing of oil
and gas, as this would eliminate the need for expensive topside facilities. However,
placing production and processing equipment on the seabed comes with a number
of challenges tied to reliability and automation.

Operating a subsea production and processing facility remotely and potentially au-
tonomously is more challenging than a corresponding topside facility for a number
of reasons. Firstly, due to the inaccessibility of the plant, reliability of the plant
is key. Maintenance costs can be astronomically high, since maintenance interven-
tion of a subsea installation usually involves the retrieval and replacement of entire
modules with specialized lifting ships, as well as lost production. It is therefore
extremely important to minimize the downtime of the system and to maximize the
reliability. However, this objective is in opposition with the production objective.
From a production perspective, it is often desirable to run the plant at the capac-
ity limit, which degrades the system faster. Furthermore, it is desired to use the
manipulated variables of the plant actively to reject disturbances. Subsea chokes,
however, are often not designed to be operated in this fashion, and degrade faster
if the choke opening is changed repeatedly and abruptly.

Another issue that arises when operating subsea production and processing equip-
ment is that of uncertainty. Measurements are inaccurate and scarce, due to cost
limitations. Equipment degradation models are often poor or non-existing, due to
the highly stochastic nature of degradation processes. However, if not dealt with
properly, this uncertainty renders useless any attempt at planning production and
maintenance of the plant. Such a plan is not acceptable due to the possibility of
an unexpected breakdown and maintenance intervention.

This thesis is a collection of papers produced during my PhD.
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Abstract

The papers address the problems raised above by developing strategies for integrat-
ing equipment health and reliability information into the control and production
planning. By doing so, we obtain a so-called health-aware control structure, which
achieves the control objectives without jeopardizing the equipment reliability. We
apply our ideas to industrially relevant case studies such as subsea compression,
subsea choke control, subsea separation and LNG liquefaction. In order to ensure
that the solution is optimal despite model uncertainty, we apply robust problem
formulations. Various methods are tested and compared, with the conclusion that
for most cases, a scenario-based approach gave a desired trade-off between opti-
mality of the solution and robustness against uncertainty.

We also developed a new approach to combined optimization of maintenance
scheduling and production planning. We show that for certain processes, we can
formulate the combined problem as a non-linear program (NLP) instead of a for-
mulating it as a mixed-integer program (MIP), and solve it using standard, off-the-
shelf solvers. The solution obtained this way is near globally optimal, and performs
much better than a clock- or age-based maintenance schedule, which is common in
industry today.
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Chapter 1

Introduction

1.1 Motivation

With most easy to produce oil and gas fields being exhausted, the petroleum in-
dustry has to resort to increasingly challenging fields to satisfy the global energy
demand. Water depths increase, tie-backs become longer and fields with less ideal
compositions have to be operated. Subsea processing enables fields that were previ-
ously considered infeasible. Equinor! envisions a full subsea factory where all top-
side equipment is moved to the seabed [166]. The advantages of a subsea factory are
evident: higher efficiency, increased safety, enhanced production and enablement of
fields in remote locations with harsh climate conditions. In [140], Equinor defines
the following ambitions for the subsea factory of tomorrow:

e Operate with longer distances between shore and production facilities, and
longer step-outs from wells.

e Produce from deeper wells, leading to higher pressures and increased inac-
cessibility for maintenance.

e Operate in colder environments such as in the arctic, with potentially more
viscous fluids.

e Increased recovery from older fields.

However, a plethora of challenges have to be overcome first before the subsea factory
becomes reality [140].

1.2 Main research questions

Traditional subsea installations, have very few degrees of freedom (DOF's) for con-
trol, apart from the flow rate through the Christmas tree. Optimal operation is
consequently achieved when the production rate is at its given set-point. Utilizing
novel technologies to enable the ambitions of a subsea factory, means that process-
ing equipment such as separators, pumps and compressors are put on the seabed.

IThen Statoil



1. Introduction

With these new and untested kind of equipment, more degrees of freedom (DOFs),
e.g. compressor speed, level set-points in the separator, etc., become available. Re-
strictions for subsea operation are also somewhat different than for similar topside
installations. For example, noise limits are less strict. Optimal operation becomes
non-trivial, and a systematic operating strategy is needed. This leads to the first
and main research question that is answered in this thesis:

Research question 1. How do we best utilize the novel degrees of freedom intro-
duced by advanced processing equipment such as compressors, pumps and control
valves?

e This question is the underlying theme of the thesis, and is addressed in all
chapters.

Another major concern regarding subsea processing is the reliability of the system.
Unexpected production stops result in the loss of valuable production time. Addi-
tionally, the cost of intervention in the case of a module breakdown is very high due
to the need for specialized recovery vessels and remotely operated vehicles (ROVs)
[64]. It is for these reasons that the equipment is commonly designed and operated
in such a fashion that the chance of failure becomes marginally small. However,
this can lead to a very conservative design and operation strategy. Prognostics and
health monitoring (PHM) is used to assess the health of the system. The second
research question is:

Research question 2. What is the current status of subsea PHM technology?

e This question is addressed in Chapter 2.

The idea behind the current project is that PHM can be combined with advanced
control methods to ensure reliable operation without having to operate excessively
conservatively. The goal is to ensure that the remaining useful life (RUL) of the
equipment is not exhausted before the next planned maintenance stop, whilst max-
imizing the profit. This leads to the third research question that is answered in this
thesis:

Research question 3. How can we systematically integrate PHM data into our
existing control structures to ensure that we have a control structure that adjusts
production such that equipment RUL is not exhausted prematurely?

e This question is addressed in Chapter 3 and Chapter 4.

Going one step further, one might ask if it is possible to use optimization to opti-
mize the maintenance schedule simultaneously with the production profile between
maintenance interventions. Especially if a clock-based or a periodic maintenance
schedule is used, as it is common in the petroleum industry, a lot of expenses
can be saved by potentially avoiding unnecessary maintenance stops. In theory, by
adding decision variables to our optimization problem, we can simultaneously find
the optimal schedule of maintenance interventions. However, the resulting problem



1.3. Thesis outline

becomes larger and more complex, and requires novel methods and approaches to
solve efficiently. The forth research question is:

Research question 4. Knowing that equipment will have to be maintained in the
future, what is the optimal way of operating between maintenances, and what is the
optimal schedule for maintenance of the equipment?

e This question is addressed in Chapter 7 and Appendix B.

In order to use automation and models of complex novel processing equipment, it
is important to develop methods and tools which are robust to uncertainty and
stochasticity. Since many of the unit operations required to realize a subsea fac-
tory have yet to be developed and installed in subsea conditions, operational data
is scarce or non-existent. Models will therefore have a large degree of uncertainty
associated with them. Furthermore, as sensors are expensive to install and main-
tain in subsea settings, instrumentation of the subsea plant may be lacking when
compared to a comparable topside or onshore facility. Last, but not least, the final
research question is:

Research question 5. How can we ensure that our strategy is still optimal in
the presence of uncertainty and stochasticity?

e This question is addressed in all chapters, except for Chapter 5, in which
uncertainty is not explicitly considered.

1.3 Thesis outline

The main aim of this PhD was to investigate the research questions posed above.
The chapters in this thesis are all based on conference and journal articles published
during my PhD, with exception of Chapter 2, which is based on a gap analysis
performed at the start of my PhD, and Chapter 8, which concludes the thesis. For
a full list of publications, see Section 1.5.

e Chapter 2 is based on a gap analysis performed in the early stages of my
PhD. The aim was to get an overview over the academic and industrial status
in the fields of PHM and advanced control, and thereby answering research
question 2. The gaps identified were used to formulate the other research
questions from the introduction. I revisited the gap analysis towards the end
of the PhD to supplement it with articles that have been published in the 4
years since the start of the PhD.

e Chapter 3 investigates research question 3. We developed a systematic ap-
proach for integrating reliability information into the control domain. We
applied the approach to a subsea compression station.

e Chapter 4 builds upon Chapter 3. We further developed the systematic
approach for integrating reliability information into the control domain. We
applied the approach to a LNG liquefaction plant. In this chapter, we also
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discussed the importance of proper time-scale separation for these kind of
problems. This is an important issue, since degradation processes usually
occur over months and years, whereas operational decisions are made on a
minute-to-minute basis.

¢ Chapter 5 focuses more on the time-scale separation issue. The system
studied there is an active surge controller, which stabilized operation of a
subsea compressor close to an unstable operating point. The surge phenomena
is characterized by oscillations with frequency in the range of 1Hz, whereas
the accumulated damage on the compressor does not become significant until
after some years. We therefore devised a three-layer structure to control this
system.

¢ Chapter 6 deals with a different kind of degradation, namely particle ero-
sion in production chokes. This problem was pitched by industry partners
in SUBPRO. In this chapter, we develop a controller to find the optimum
production rates to keep the erosion within acceptable limits, while simulta-
neously maximizing hydrocarbon production.

e In Chapter 7, we primarily address research question 4. We investigate how a
relatively complex system with multiple components should be operated. We
also develop a new method for optimizing maintenance intervals. Contrary
to most approaches from literature, we do not have to solve a mixed integer
program (MIP). We formulate the problem as a non-linear program (NLP),
so that we can solve it in short time without specialized solvers. We show that
the maintenance schedule from our optimization-based approach is superior
to the clock-based approach to maintenance scheduling that is predominantly
used in industry.

e In Appendix A we study the operation of a subsea compression station
under uncertainty. Two different formulations for handling uncertainty were
compared.

¢ In Appendix B, we primarily address research question 4. The paper pre-
sented in this chapter is a precursor to the paper presented in Chapter 7.
Many of the concepts later built upon in that chapter were introduced here.

Research question 1, being the most basic of all posed research questions, is ad-
dressed in all of the chapters. Since the focus of question 1 is on novel process
concepts using advanced process equipment such as compressors, most of the case
studies throughout the thesis are focusing on these kind of processes.

The gap analysis showed that model uncertainty is a fundamental limitation of
PHM systems. Discussion with SUBPRO industry partners also confirmed that
various kinds of uncertainty, whether it be measurement uncertainty, model in-
accuracy, or lacking instrumentation, is one of the biggest issues when it comes
to optimal operation of oil and gas processes. Research question 5 was therefore
deemed so important that every Chapter deals with this issue in one form or an-
other, with exception of Chapter 5.

4
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1.4 Thesis contributions

In the author’s view, the two main contributions of the thesis are

1. The application of reliability-aware operations, optimization under uncer-
tainty, and advanced process control to novel subsea case studies.

2. A new method for simultaneously optimizing production and maintenance
schedules by reformulating the problem as a non-linear problem with com-
plementarity constraints.

1.5 List of publications

Over the course of the last four and a half years, I have authored or co-authored
seven peer-reviewed papers published in the proceedings of international confer-
ences, and four journal papers. Two of these papers were based on my master’s
thesis, and are unrelated to the topic of my PhD. I also presented my work in the
form of oral or poster presentations at a number of occasions.

1.5.1 Conference papers

1. A. Verheyleweghen and J. Jédschke. Framework for combined diagnostics,
prognostics and optimal operation of a subsea gas compression system (IFAC
World Congress, Toulouse, France). IFAC-PapersOnLine. volume 50, pages
15916—15921, 2017 - Chapter 3

2. A. Verheyleweghen, J.M. Gjgby and J. Jaschke. Health-Aware Operation of
a Subsea Compression System Subject to Degradation (28th European Sym-
posium on Computer Aided Process Engineering (ESCAPE), Graz, Austria).
Computer Aided Chemical Engineering. volume 43, pages 1021—1026, 2018
- Chapter 5

3. A. Verheyleweghen and J. Jéaschke. Oil Production Optimization of Several
Wells Subject to Choke Degradation (IFAC Workshop on Automatic Control
in Offshore Oil and Gas Production (OOGP), Esbjerg, Denmark). IFAC-
PapersOnLine. volume 51(8), pages 1—6, 2018 - Chapter 6

4. A. Verheyleweghen and J. Jaschke. Robust Health-aware operation of a sub-
sea gas compression system. Proceedings of the 2017 Conference of Foun-
dations of Computer Aided Process Operations / Chemical Process Control
(FOCAPO/CPC). 2017 - Appendix A

5. A. Verheyleweghen, H. Srivastav, A. Barros and J. Jéaschke. Combined Main-
tenance and Production Optimization (European Safety and Reliability Con-
ference (ESREL), Hannover, Germany). Proceedings of the 29th European
Safety and Reliability Conference. pages 499—506, 2018 - Appendix B
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1.5.2 Journal papers

1. A. Verheyleweghen and J. Jaschke. Combined Reliability and Optimal Oper-

ation: Application to an LNG Liquefaction Plant. Journal of Process Control.
(Under review), 2020 - Chapter 4
. A. Verheyleweghen, H. Srivastav, A. Barros and J. Jaschke. A Unified Ap-

proach for Simultaneous Optimization of Production and Maintenance Sched-
ules. IEEE Transactions on Reliability. (Under review), 2020 - Chapter 7

1.5.3 Papers published during my PhD studies, but not

included in the thesis

. A. Verheyleweghen and J. Jéschke. Self-optimizing control of an LNG lique-
faction plant. Journal of Process Control. volume 74, pages 63—75, 2019

. A. Verheyleweghen and J. Jdschke. Self-optimizing control of a two-stage
refrigeration cycle (11th IFAC Symposium on Dynamics and Control of Pro-
cess Systems, Including Biosystems (DYCOPS), Trondheim, Norway).IFAC-
PapersOnLine. volume 49(7), pages 845—850, 2016
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flexible thermal power plants with lifetime enhancement under uncertainty.
Applied Energy. (Under review), 2020
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timal operation of a subsea separation system including a coalescence based
gravity separator model and a produced water treatment section. Industrial
& Engineering Chemistry Research. volume 58(10), pages 4168—4185, 2019

. C.J. Backi, D. Krishnamoorthy, A. Verheyleweghen and S. Skogestad. Com-
bined nonlinear moving horizon estimation and model predictive control ap-
plied to a compressor for anti surge control (IEEE Conference on Control
Technology and Applications (CCTA), Copenhagen, Denmark). Proceedings
of the IEEE Conference on Control Technology and Applications (CCTA).
pages 1552—1557, 2018

1.5.4 Presentations and posters (invited, or with abstract only)

1. A. Verheyleweghen. Conference presentation at Nordic process control work-

shop (NPCW), Stockholm, Sweden, 2016: ”Health-aware operation and con-
trol of a subsea gas compression station”

. A. Verheyleweghen. Presentation at the Subsea Valley Conference, Oslo, Nor-
way, 2017: ”Process control for extending component life”

. A. Verheyleweghen. Presentation at the OG21 Forum, Oslo, Norway, 2017:
”Smart production optimization”

. A. Verheyleweghen. Presentation at PhD Grand Prix, Trondheim, Norway,
2018: ”Selvkjgrende prosessanlegg: Hva kan prosessindustrien lere av Tesla
og ¢0.?” (in Norwegian)
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Chapter 2

Academic and industrial status

2.1 Academic status

This section is meant to give an overview of the academic status on the topic of
prognostics and control.

First, the general concept of condition-based maintenance is introduced in Sub-
section 2.1.1, where also the concept of prognostics and health monitoring (PHM)
is explained, and some examples of applications of PHM in literature are given.
PHM in subsea is treated explicitly in Subsection 2.1.2. Several different failure
mechanisms of various subsea equipment are covered.

Subsection 2.1.3 deals with how PHM and control can be united in one common
framework to achieve reliability-aware control and operation.

2.1.1 Condition-based maintenance

Historically, maintenance was performed when equipment broke down or perfor-
mance became unacceptably low. This run-to-failure approach is also known as
reactive/corrective maintenance. In more recent times, focus has shifted from reac-
tive to proactive maintenance. The simplest form of proactive maintenance is based
on inspecting the system at constant intervals. This policy is sometimes referred to
as clock-based or constant-interval maintenance [87]. A slightly more advanced pol-
icy is to inspect the system more frequently depending on its age and knowledge of
some underlying stochastic lifetime expectancy. This approach is typically referred
to as age-based maintenance [87]. The disadvantage of these approaches is that the
interval between maintenance is based on statistical information such as the mean
time between failures. Due to the insufficiency of the statistical information, these
approaches cannot ensure that the system will function satisfactory until the next
planned maintenance stop, even with a built-in safety margin.

So-called condition-based maintenance (CBM) has largely taken over as the stan-
dard approach in industry and aviation [80]. The advantage of CBM is that it
enables planned maintenance stops, which usually lead to significantly higher avail-
ability compared to a reactive maintenance policy.
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Figure 2.1: Overview over different approaches to maintenance. Adapted from [142,
Ch. 9]

(&) 03 T

e

-+~

Yy

S) ——=

5025 f i

i N L

& \ e

7 N <

Q 0.2 M e

5] < e

(] ~ ~< - -

Ec::é) - —— Corrective

g Clock-based

é 0.15 ¢ —— — Age-based

e e ez | == = 1deal/CBM |._

200 250 300 350 400 450 500

Maintenance frequency
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Adapted from [94, 142].

Figure 2.1 shows an overview over different approaches to maintenance. As argued
above, the maintenance approaches result in different degrees of availability, which
results in different average operation costs. Figure 2.2 shows a comparison of the
average cost per time unit for different maintenance policies for a simple example
with fixed maintenance costs and inspection costs. The average costs are calculated
based on an example from [94, 142]. It can be seen that corrective maintenance
is generally associated with the highest cost. Clock-based maintenance provides
a lower cost, unless the parameters are poorly chosen. Age-based maintenance is
always as good as, or better than, a corrective maintenance policy. Assuming we
have perfect information about the degradation state of the system, a CBM policy
will result in ideal cost.
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Figure 2.3: Prognosis of RUL. Adapted from [174, Ch. 7.5]

Prognostics and health monitoring

In order to optimize the maintenance and repair schedule of the equipment, the
condition or health of the system has to be known. Usually the condition cannot
be measured directly, but must be estimated based on measurements of other key
variables in the process. Typically, environmental parameters such as temperature,
vibration, pressure and shock, as well as operation parameters such as current,
power consumption and heat dissipation can be used to estimate the health state
of the equipment [142, Ch. 9.6]. Not only is the failure state estimated at the
current time (diagnosis), but predictions for the future (prognosis) are generated
as well. Diagnosis revolves around the detection and isolation of failures, whereas
prognosis is used to determine if the equipment can perform sufficiently until the
next scheduled maintenance stop.

Diagnosis and prognosis are commonly collectively known as prognosis and health
management (PHM) [87]. The estimation of the remaining useful life (RUL) is
central in PHM [169]. Being able to do accurate prognosis of the performance mea-
sures is an integral part of PHM systems, and consequently a substantial amount
of literature on the subject exists. See for instance review papers by Katimapula,
Jardine, Peng, Zhang and corresponding coauthors [80, 83, 133, 192]. This progno-
sis is also the main drawback of CBM compared to time-based maintenance, due
to the difficulty of finding accurate models for prognosis.

A wide variety of approaches to PHM can be found in literature. Generally, they
can be divided into one of three categories:

1. Model-based approaches
Physical model-based approaches are based on a mathematical (first princi-

11
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ples) model representation of the actual system. Deriving these models can
be a challenging task, as it requires a deep understanding of the underlying
process and failure modes. Furthermore, the model-based approach results
in inaccurate predictions if the occurring failure mode was not considered in
the model of the system. It is therefore important to consider all relevant
failure modes when deriving the model. For complex systems, the model can
thus become very large, and consequently numerically expensive to solve and
difficult to calibrate. The advantages of physics-based approaches are that
they can be very accurate if the model is good, and that the same model can
be used for different systems simply by re-parameterizing it. Model-based
approaches are sometimes also known as deep-knowledge expert systems in
industry, since they require a deep understanding of the modelled system. In
contrast, shallow-knowledge expert systems (covered under point 2) require
less insight into the underlying physics of the system [37, Ch. 12].

Faults are detected by evaluating the residuals of the difference between
the model output and the output of the actual system. Typically, a math-
ematical observer is used to estimate the health state of the system, as the
variable related to the health is not directly measurable. Approaches using
Luenberger observers or Kalman filters fall in this category. For recent appli-
cations, see for example [66, 125, 145, 193].

One important aspect which is worth addressing, is prognostics in the
presence of uncertainty. Since the RUL-prediction is usually based on incom-
plete information about the state and the model of the system, it is usually
distributed rather than a single value. This is illustrated in Figure 2.3. In
this case the maintenance threshold is defined as a percentile of the RUL
distribution. Calculating the percentile can be challenging in practice unless
the model is linear. For the general case, it is therefore necessary to calcu-
late an approximation of the RUL percentile based on Monte Carlo (MC)
simulations, linear approximations such as the first-order reliability method
(FORM) [154] or Bayesian networks [98].

. Knowledge-based approaches

Because physics-based models can be hard to derive, model-free approaches
are sometimes preferred. The class of knowledge-based approaches are char-
acterized by being very ”human-like” [133]. Expert systems (ESs) are com-
bining human reasoning and the speed of computers. ESs consist of large sets
of rules which are implemented as logic and IF-THEN commands. The rules
are based on experience and heuristics. In that way, they can be compared
to medical diagnosis, which can detect diseases without a complete model of
the human, based on common symptoms alone. ESs are sometimes also re-
ferred to as shallow-knowledge expert systems [37, Ch. 12]. The disadvantage
of ESs is that the ability to detect faults strongly depends on the quality
of the incorporated knowledge. If a certain fault is new to the expert and
consequently not incorporated into the PHM system, it cannot be detected.
Another issue is that the ES is unique to each process, and cannot easily be
adopted for other processes. Developing the ES can be a costly and time con-
suming endeavor, which is why pure ES applications are not commonly found
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in recent literature. They have found some use in industry, see for instance
[26, 32].

3. Data-driven approaches

Data driven approaches are either statistical methods or machine learning
methods based on pattern recognition. These methods are widely used and
employ a range of different techniques. For a comprehensive survey, see the
two papers by Schwabacher and Goebel [157, 158]. All techniques use his-
torical operating data to fit models of the system. Daigle argues that it
is often difficult or even impossible to obtain large sets of run-to-failure
training data, which makes data-driven approaches to PHM rather limited
in use [40]. Physics-based approaches do not rely on data, and are conse-
quently a better-suited alternative in these cases. Nonetheless, data-driven
approaches are widely used. Three commonly used methods include Bayesian
networks (BNs), hidden Markov models (HMMs), and artificial neural net-
works (ANNSs).

Bayesian networks (BNs) are acyclic networks of connected nodes [132,
Ch. 3.3]. All edges are directed and have associated probabilities of transi-
tion. BNs therefore form an extension of graph theory. BNs are widespread
in biomedicine and health-care [101], but are also common in reliability en-
gineering [91, 108]. Dynamic Bayesian networks (DBNs) applies the same
principle to time-progressing systems.

Markov models (MMs) are very similar to BNs, but differ in that the edges
are undirected, and that the graph does not have to be acyclic. It is assumed
that the nodes in MMs are Markovian, i.e. that the the state x(t) at time ¢
does only depend on the state z(t—1) at time ¢— 1. This assumption limits the
application somewhat, since real world systems are seldom Markovian [133].
BNs do not have this assumption, and are able to represent the dependencies
between nodes. Hidden Markov models (HMMs) are extensions of ordinary
MDMs where the states are not directly visible, but must be observed through
the output [138]. HMMs and MM must be trained with run-to-failure data
from experiments.

Artificial neural networks (ANNs) are networks of connected nodes in-
spired by biological neural networks. The nodes are connected in the hidden
layer such that the ANN is able to fit non-linear functions and recognize pat-
terns. ANNs are very flexible and can be used for a large number of different
applications [155]. The core feature of ANNSs is the ”training” of the network,
i.e. the assignment of edges between the nodes. Learning can be unsupervised,
meaning that the network constructs features with which the observed vari-
ables can be predicted, or unsupervised, which is essentially some form of
regression with target output values. The necessity of sufficiently large sets
of training data is often problematic. ANNs can be used for RUL prediction,
taking the age and the condition monitoring measurements as the inputs to
the network [172].

A comparison of the applicability and complexity of the three approaches is nicely
summarized by Vachtsevanos et al. [174, Ch. 6], see Figure 2.4.
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Figure 2.4: Different approaches to prognostics. Adapted from [174, Ch. 6]

At this point it should be noted that although the reader may have been led to
believe that the three methods are inherently different, it is uncommon in practice
that a PHM system relies entirely on one approach alone. Rather, a combination
of all three methods is typically used.

2.1.2 Prognostics and health monitoring in subsea

Due to the high intervention cost for subsea processes, unplanned equipment break-
down and consequent stop of production is very undesirable. As a consequence,
CBM is very applicable to subsea industry. The stringent reliability requirements
are shared by other, better established, industries such as aviation, energy or rail.
This means that some of the mature technologies from those areas can be ap-
plied subsea. Indeed, in one of the early works on the topic of subsea condition
monitoring, Friedemann et al. draw many parallels between rail and energy, and
subsea [61]. They identify several areas of subsea engineering where PHM can be
applied, such as in in-flow diagnostics, equipment monitoring and flow assurance.
They stress the need for PHM systems which not only estimate the health of single
components, but which take the entire system into consideration.

Vaidya points out the insufficiency of the classical approach of RUL estimation
based on parametric failure models [175]. She argues that the lack of real-life time-
to-failure field data is limiting the applicability of the classical approach, and that
laboratory experiments result in unsatisfactory fits due to unrealistic operating
conditions. Furthermore, the multitude of simultaneous failure mechanisms which
are acting on a component are difficult to replicate in a lab. Vaidya proposes to use
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BN to perform prognosis of subsea equipment. In a follow-up paper by Vaidya and
Rausand, the applicability of statistical models, ANN-based models, physics-based
models and Bayesian methods for prognosis is discussed [176]. They illustrate their
proposed method by applying it to a physics-based model of a subsea pump for raw
seawater injection subject to seal leakage failure. No simulation results are shown,
but the proposed method is explained in detail. They also highlight the need of
expert judgment.

Recently, Chze stresses the need for subsea CBM [39]. She describes how a large
majority of installations do not utilize all available plant data efficiently, especially
in the context of CBM. Operators are focusing on production monitoring, rather
than equipment integrity, which leads to suboptimal operation. A field case study
of a failing subsea control module is shown to illustrate the need for prognostics.
The paper by Chze shows that despite CBM being used in some installations, it
still represents a major industry gap.

For the remainder of this subsection, we will discuss several different failure modes
for some pieces of equipment commonly found in subsea production and processing,
and how their condition can be monitored.

Sand erosion in chokes and bends

The mechanisms of erosion in tight bends and tees [18, 123, 124, 131, 195], and
choke valves [43, 135] are well known. In its simplest and most commonly used
form, the model for sand erosion in pipe bends can be written as [150]

Vmax = L (21)

VPm
where V is the allowable velocity, C is a constant and p,, is the fluid density.
This is also known as the API RP 14E standard. Typical values of C are in the
range of 100 to 200 (m?3/kg)'/2, but a lower value should be used when solids are
anticipated. However, several authors are critical to API RP 14E [150]. Salama
suggests a slight alteration of the above equation for sand-ladden fluids [150]. The
maximum allowable velocity is then

D\/pm
Vinae = Y2 (2.2)
20/ W

Salama defines acceptable erosion rates to be in the order of 0.1 mm/yr for a
reservoir containing sand with an average size of 250 n [150].

For chokes, a general recommendation is to not operate at choke capacities less
than 20% of the maximum choke capacity, c,, for prolonged periods of time if the
well is producing sand [43]. Failing to do so can cause erosion wear to choke trim
components, which negatively impacts the controllability of the choke. Especially
in gas fields, erosion may be a real threat, due to the low density and viscosity
of the fluid. DNV-GL suggest that choke vendors specify the allowable operating
ranges at different sand loadings and fluid velocities, similar to Figures 4-8 in [43].
In general, however, it is difficult to establish a model which is applicable to a wide
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variety of chokes. Since the geometries are different from vendor to vendor, it is
advisable that CFD models are used to predict the erosion.

Saether studied the design of wear-resistant chokes for subsea use [148]. The ero-
sion was predicted using computational fluid dynamics. A PHM system was also
developed. Estimates of the flow coefficient ¢, were used to predict the erosion rate
using a physics-based model. Nystad et al. developed a model to assess the RUL
of choke valves subject to erosion damage using an empirical ¢,-model [121]. Gola
and Nystad further developed the model to define a PHM framework for optimal
mainenance scheduling of choke valves [65]. Due to the lack of data, they mention
that the proposed model is not generally applicable, and that more data needs to
be collected. In a later paper [122], they developed a framework based on a non-
stationary gamma process with gamma-distributed reliability constraints. Zhang
developed a hybrid prognostic approach combining ANNs for estimation of the
degradation indicator, and a gamma process to calculate the RUL [191]. Like most
other authors, Zhang also used the flow coefficient to as a degradation indicator.

Corrosion in pipes

Internal corrosion might be a problem if the field produces water. In oil and gas
streams, the main corrosive agents are carbon dioxide (COs), hydrogen sulfide
(HsS), and (free) water. A good overview of various corrosion mechanism can be
found in a recent paper by Popoola et al. [136]. For an in-depth summary of sweet
corrosion, see Kermani & Morshed [85]. Equivalently, sour corrosion is treated in
a recent work by Goodwin et al. [68]. The most common remedies against corro-
sion damage are chemical inhibitors, anodic/cathodic protection, and protective
coatings.

Caleyo et al. list several different physics-based failure pressure models to assess
the reliability of a corroded pipe [34]. Due to uncertainties in the load and resis-
tance parameters, stochastic methods were utilized to estimate the probability of
the pressure to be lower than a threshold safety pressure. Three different stochas-
tic methods were studied, namely Monte Carlo (MC) simulations, the first-order
reliability method (FORM), and the first-order second-moment (FOSM) method.
The authors write that all methods gave similar results when a linearized version
of the limit state function was used. However, for non-linear limit state functions
(as is the case in a pipe with a large number of corrosion defects), one should be
wary of the results from the FORM. The authors also observe that the models are
sensitive to the load and resistance parameters, which means that careful attention
must be paid when the pipeline safety is evaluated over a long time horizon. Caleyo
et al. found that the Shell-92 corrosion model [86] and the ASME B31G corrosion
model [76] (two of the most commonly used corrosion models) result in the highest
and lowest failure probabilities, respectively. In a study conducted by Mokhtar et
al., the results from the FORM were compared to a simple degradation analysis
based on pipe wall thickness [111]. It was found that the FORM results in a less
conservative estimate than the degradation analysis. They also claim that the re-
sults from the FORM are comparable to those found in literature. Vinod et al.
present a data-driven model for assessment of erosion-corrosion damage utilizing
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Markov models [183]. Again, FORM is utilized to perform the reliability analysis.
Recently, Ossai used data from 11 different fields to estimate pipeline corrosion
using a data-driven linear and power models [128]. Uncertainties are taken into ac-
count by formulating the model as a Brownian random walk model. The reliability
is evaluated using Monte Carlo simulations.

Due to the wide range of different corrosion mechanisms, a multitude of different
corrosion monitoring techniques exist [136, 171]. Typically, one does not rely on
just a single of the monitoring techniques, but rather a combination of several
different techniques. In addition to the above mentioned physics-based estimation
methods, a variety of different sensing technologies exist. They can be divided into
intrusive and non-intrusive methods.

One option is to periodically inspect the wall thickness on exposed locations along
the pipe. Eddy current testing is a technique where the impedance of an electrical
coil is measured [144]. The impedance of the coil changes if the coil is in the vicinity
of a metallic surface, such as a pipeline. Furthermore, any surface imperfections,
as caused by erosion or corrosion, will influence the impedance. Another option
is to use an ultrasonic thickness measuring device [36]. This method is based on
the fact that cracks bounce back acoustic waves at a different angle than the
perfect wall surface. Both of these techniques are non-intrusive. The sensor can
be permanently installed or deployed by an ROV. However, these techniques fail
to predict unexpected corrosion and subsequent failure at locations along the pipe
which are not being monitored.

There are also intrusive techniques for estimating corrosion damage. These typi-
cally have higher sensitivities than the non-intrusive techniques [137]. Weight loss
corrosion coupons are simple chunks of metal which are being placed inside the pipe
for a certain period of time. Subsequently the coupons are recovered and measured.
Based on the weight loss of the coupon, the corrosion rate can be estimated. The
disadvantage of coupons is that they do not provide real-time estimates of the cor-
rosion, since results are typically only available after a period of 90 or 180 days.
Electrical resitance (ER) probes are better in this respect because they do not
have to be physically recovered and evaluated periodically. Instead, they provide
near real-time data of the corrosion based on measurements of the resistance. To
retrieve the data, a physical connection with the probe has to be made, but the
probe itself does not have to be physically removed. ER probes are also much faster
at detecting corrosion. In as little as four days from the onset of corrosion, some
ER probes will be able to detect the change. For comparison, coupons need to be
exposed for at least 30 days to be able to detect the onset of corrosion. Coupons
are however still widely used, primarily because of their low cost [137]. Another
intrusive method is the use of so-called intelligent pigs. These pigs are autonomous
devices equipped with a variety of different sensors for detecting pipeline flaws
[173].
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Rotating equipment

The first booster pumps were installed subsea in the mid-90s [116]. Subsea compres-
sors are even more recent developments. The first subsea gas compression plant was
installed by Equinor ! on the Asgard field in 2015 [167]. The same year, Equinor
also installed the first wet gas compressor on the Gullfaks field [126]. The avail-
able literature of prognostics of subsea pumps, compressors, and other rotating
equipment is scarce, mainly because of the novelty of the research area and be-
cause companies do not share their proprietary data. Some examples of condition
monitoring for on-shore pumps and compressors are listed below.

A method for predicting the performance degradation due to fouling of a compres-
sor onboard a Naval vessel was presented by Kacprzynski & Caguiat [82]. They
developed a simplified data-driven model to predict the compressor efficiency. Due
to the lack of pressure measurements, they combined flow measurements and em-
pirical rules relating the observed pressure bleeds to the load level. The prediction
model was subsequently used to predict the optimal washing intervals.

A hybrid monitoring approach was developed by Miyoshi et al. [110]. They com-
bined phenomenological models based in part on thermodynamic head estimates
and in part on empirical compressor curves, with quality control charts.

The topic of PHM for subsea multiphase pumps was studied in detail by Liu [99].
He performs a failure mode, effects, and criticality analysis (FMECA) to identify
the critical components of the pump. It was found that the main concern regarding
the integrity of the pump was corrosion on the pump screws, followed by leakage
in the mechanical seals. Several other critical failure modes were also identified,
but due to time considerations, the thesis focused on the two most critical failure
modes. Monitoring of seals is usually performed by measuring the temperature (i.e.
the contact friction) at the seal faces, measuring the alignment of the rotor, measur-
ing the film thickness between the seals using ultrasonic techniques, or measuring
disturbances in the vibration / sound emission frequencies. Liu compares the dif-
ferent methods, and finds the two latter methods to have the greatest potential in
a PHM setting. Physics-based models and data-driven models for the prognostics
of seals are also described. Liu used a HMM to estimate the health of the pump
screws by relating the wear to the pressure difference over the pump.

Monitoring of active magnetic bearings was discussed by Gouws [69]. He differenti-
ates between external faults, including rotor impacts, rotor mass loss, base motion,
rotor deformation, overhung rotor, rotor rub, bent rotor and misalignment, and
internal faults, including power and electronics failures, transducer malfunctions,
loss of I/O board channel, bearing magnet coil failures, computer software errors,
computer hardware failures and rotor faults. He also lists how the various faults
can be detected using different monitoring techniques.

I Then Statoil
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Separators

The condition monitoring of a topside gravity separator is discussed by Houmstuen
[75]. An FMECA is performed, and he concludes that the critical failure modes
are abnormal instrument readings, external leakage and plugging. The state of
the separator can be assessed by monitoring various process variables, including
the wall thickness, the liquid level and the amount of foaming. Houmstuen lists
neutron backscatter-, passive acoustic-, ultrasonic-, gamma-, microwave- and IR-
monitoring as possible technologies for monitoring the relevant process variables.

Haugan et al. study non-intrusive methods for diagnosis of a topside three-phase
separators [72]. They conclude that gamma transmission and passive acoustic mea-
surements can be used to detect defects in the cyclone, presence of foreign particles
and clogging of the separator. However, they also note that the simplified experi-
mental setup results in unrealistic process conditions. In practice, the monitoring
might not be as straightforward.

Various equipment

e Ang et al. list most failure modes for electrical subsea equipment, includ-
ing transformers, compressors, pumps, electrical motors, control valves, valve
actuators, wet mateable connectors, power cables and switchgear [13]. They
also briefly list existing methods for condition monitoring. No models are
presented, but the paper gives a good overview of failure modes that should
be considered.

e Nguyen et al. discuss the RUL estimation of a stochastically deteriorating
actuators [119]. They assume that the actuators are deteriorating due to
random shocks with independent and identically distributed shock damage
at discrete times, giving a Poisson process. They assess the RUL using a two-
step technique based on particle filtering of the output measurements and
Monte Carlo simulations for reliability assessment. It is assumed that the
actuator degradation is proportional to the control action, meaning that the
degradation can be observed without any additional measurements. [90]

e Jaoude, El-Tawil and coworkers studied the prognostics of offshore pipelines
subject to fatigue damage [50, 79]. The damage was assumed to be caused by
crack formation due to cyclic stress, and was estimated using a physics-based
model [51].

Summary

Literature on subsea PHM focuses mainly on diagnosis and health monitoring of
the equipment. Literature about prognostics and prognostic models can also be
found, but it is less common.

2.1.3 Combining health prognostics and control

The task of this project is to combine health prognostics and control. Currently

practice is to ignore the effects of aging, fatigue and damage in the control hierarchy
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Figure 2.5: Block diagram for a system with health monitoring, but where the
operator has to adjust set-points manually, based on information from the PHM
system.

[56]. Data from PHM is only used for decision making by the operators. When the
alarm goes off, the operators use their knowledge and experience to determine
whether to adjust the set-points, schedule maintenance or whether it was a false
alarm. A simplified block diagram is shown in Figure 2.5. Here, the operator can
interact by adjusting the set-points or the controller tunings, or by overriding the
control and set the inputs directly.

The disadvantage of leaving all the decision making to the operators is that there
is delay due to the limited operator reaction time. More importantly, the decisions
made the operator may not be optimal. By closing the loop and leaving the deci-
sion making to the controller, the response time could be significantly improved.
The closed-loop system may also perform more optimally than the open-loop sys-
tem. This requires the inclusion of PHM in the calculation of the optimal control
trajectories. The reliability of the system is taken into account by introducing ad-
ditional constraints in the optimal control problem. A simplified block diagram of
the resulting system can be seen in Figure 2.6.

Fault-tolerant control

The possibility of combining control and diagnostics was first discussed in the late
70s / early 80s [38, 113, 114], mainly with application to control of airplanes. The
idea was to include a supervisory layer which adjusts the control structure based on
fault detection and identification (FDI) techniques. This way, the control structure
would still perform satisfactory despite biased sensors or faulty actuators. Recovery
of performance is only possible if the system has inherent actuator redundancies.
For example, a pilot is able to maintain pitch control by using the ailerons if the

20



2.1. Academic status

PHM
Disturbance
h(k+1i) 4 (k+1) l
c .. Uk, Yk
— =/ Optimizer Plant
G (k+1) o (k+1)
System State
model estimation
MPC T

Figure 2.6: Block diagram for a system with health monitoring, where the PHM
system has been integrated into the control system, so that it can operate au-
tonomously. The operator is no longer actively in the loop, but is only required to
supervise and monitor the total system performance.

elevator of his plane fails [97]. Chizeck and Willsky coined the term fault-tolerant
control (FTC) to describe the resulting control structure. FTC has been a focus of
research ever since. Not surprisingly, the aviation industry has been spearheading
the research on FTC. The term automated contingency management (ACM) is also
frequently used to describe FTC in the context of aviation [62, 170]. According to
NASA [117], ACM is defined as:

” Automated Contingency Management or ACM can be considered the
ultimate technological goal of a health management system. The ability
to confidently and autonomously adapt to fault conditions with the goal
of still achieving mission objectives is a significant technical challenge
that is dependent on the proper performance of several supporting tech-
nologies as well as the ACM system itself...”

7...The ACM technology in general performs a multi-objective con-
strained optimization to accommodate impending failure conditions...”

An overview of existing efforts in the field of FTC/ACM can be found in the
extensive review paper by Zhang & Jiang [194]. They list 376 references and divide
them into classes depending on design approaches and field of application. Most of
the listed references are dealing with fault-tolerant flight control systems.

Eterno et al. divide FTC systems into two classes: active and passive [57]. Passive
FTC systems are robust towards disturbances and can tolerate actuator or sensor
failures to some extent. Active FTC systems are able to detect failures and re-
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configure the control structure on-line, such that control can be recovered and the
system is able to continue operation with satisfactory performance.

e Active fault-tolerant control systems

The aim of active FTC is to detect, identify and accommodate for faults in a
system. When a fault occurs, the system either switches to a predetermined
control structure [147], or calculates a new one on-line [109]. This requires
real-time monitoring of the system. In most cases where FTC is employed,
the available time for fault recovery is limited. It is therefore important that
the fault detection, diagnosis and controller reconfiguration is quick and that
the effective delay is small.

Active FTC is sometimes described as adaptive, self-repairing, reconfig-
urable, restructurable, or self-designing [194]. According to Blanke et al.,
adaptive control has been shown to only work efficiently for linear systems
[30, Ch. 1]. In practice, this requirement is seldom met, since faulty system
often behave nonlinearly due to sudden parameter changes.

e Passive fault-tolerant control systems

Passive FTC does not require fault detection, but relies instead on built-in ro-
bustness towards expected faults. This can be achieved with multi-objective
optimization [97], quantitative feedback theory method [120], H, control
[96], and passivity-based cascade control [24], amongst other methods. Since
passive FTC does not rely on fault-detection, it does not suffer from time
delay, like active FTC. This means that the control system can react much
faster to faults, which can potentially be the difference between a catastrophic
failure and recovery. The disadvantage of passive FTC is that it is not neces-
sarily robust towards unexpected disturbances or faults. Furthermore, passive
FTC systems are sub-optimal under nominal conditions due to the trade-off
between robustness and performance [30, Ch. 1J.

In practice, a combination of passive and active FTC is used. The passive FTC
ensures stability of the faulty system while the active FTC isolates the fault and
synthesizes the appropriate post-fault control law [23].

Fault-tolerant control of subsea systems usually entails a so-called 2-out-of-3 sensor
redundancy. This means that 3 independent sensors are used to measure the state of
the system, and sensor bias or failure is accounted for by having a logic solver chose
the two remaining sensors. Hardware redundancy is also reported. McLin proposes
a system with two hot swappable subsea eletronic modules (SEMs) [106]. However,
reconfigurable control structures for subsea systems have not been reported in
literature.

Health-aware control

Escobet points out that traditional approaches to FTC only adjust the controller
when a fault has occurred, but not when the system is in a non-faulty state [56].
This is not in line with industry needs, who are more concerned with avoiding faults
altogether, argues Escobet. They propose a framework for so-called health-aware
control, in which the strengths of PHM and control are combined. By considering
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the system health in the control objective, fault-free operation can be ensured. The
proposed framework was implemented to find the optimal trade-off between system
reliability and power production of a wind turbine in [152].

A similar idea was previously discussed by Pereira et al., who propose an MPC
which includes PHM information[134]. They derive a control structure which dis-
tributes the control efforts among redundant actuators to keep the actuator degra-
dation above a safe threshold. Several simplifying assumptions are made, such as
assuming that the system is linear and that the actuator degradation is propor-
tional to the exerted effort and its first derivative.

Langeron et al. propose a framework for health-aware control of actuators subject
to stochastic actuator degradation [90]. By combining the deterministic dynamics
and the stochastic degradation, they derive a control structure which can extend
its RUL. The issue with the proposed method is that it is assumed that the dete-
rioration is measurable, which might not be the case.

In a very recent paper by Salazar et al., an MPC framework for system reliability
is presented [151]. They model the reliability of the system using a data-driven
approach with DBNs. As an example, they show how the framework can be used
to control a drinking water network subject to pump failure.

A common issue in health-aware control is that the deterioration and the control
take place on very different time scales. While control is performed on a timescale
varying from milliseconds to minutes, the deterioration of the system typically
happens on a timescale of days to years. This time horizon is too long for opti-
mization, meaning that the problem has to be split into two different layers. The
upper layer optimizes the set-points for the lower layer, while the lower layer im-
plements the control. Consequently, it makes more sense to speak of health-aware
real-time optimization (HARTO) than HAC.

Summary

No applications of health-aware control have been reported in literature for sub-
sea systems. The literature on fault-tolerant control is abundant, but mostly with
application to aviation.

2.2 Industrial status

This section gives an overview of the industrial status on the topic of prognostics
and control for subsea systems.

2.2.1 Challenges facing the subsea oil & gas industry today
Control valves

Control valves are typically designed to last approximately 1 million cycles, whereas
gate valves typically last approximately 1000 cycles [55]. The maturity of subsea
control valves is low, and only a few valves have been qualified [112, 127]. Subsea
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control valves by Mokveld are currently in use on the Ormen Lange and Asgard
fields.

Sand erosion can speed up this process significantly, choke erosion can be a large
problem on certain fields. On other fields, such as the Troll field, chokes have been
in use for over 20 years without degrading to failure [3]. The huge differences in
erosion conditions from field to field mean that different strategies must be applied
on a case-to-case basis.

Other issues that influence performance of valves and chokes are signal faults,
stiction and clogging [78]. The valve performance is determined by comparing the
actual pressure drop, valve opening and flow rate to the expected values.

Compressors

Compressors are large consumers of energy, so efficient and economical operation is
very important [78]. Performance monitoring of compressors is required to detect
decreases in efficiency, but also to detect mechanical wear, corrosion, leakage or
electrical failures. Vibration measurements can be used to detect issues with the
compressor, but performance monitoring could detect issues before they occur [78].
Compressor charts are used to relate the flow-rate and pressure ratio to the com-
pressor efficiency. Currently there exist methods to estimate the compressor head,
which can be used to calculate the efficiency. However, although the mechanisms
which cause the decrease in head are known (e.g. liquid content in the gas), they
are not easily measurable [55].

The control and safety systems of the qualification prototype of the Ormen Lange
compression station are presented in [52]. Though no CBM routine is in place
yet, some performance indicators are measured and could be used for CBM in the
future. Specifically, actuators, magnetic bearings and compressor efficiencies were
monitored. The travel time and power consumption of all actuators was measured
and used to predict the condition of the valve. An increase in travel time or power
consumption could indicate valve stiction. It is also possible to estimate the wear
of the valve using mechanistic models based on the overall travel distance of the
valve stem. Electromagnetic bearings are used to hold the shaft of the compressor in
place. If the compressor blades are subject to erosion, or the axle somehow develops
an unbalance, this can be detected from the increased power consumption of the
bearings [53]. It is also possible to monitor the compressor, pump and variable
speed drive efficiencies based on the knowledge of the power input and estimation
of the compressor work. Using pressure, temperature and flow measurements, the
compressor work can be estimated fairly accurately.

Heat exchangers

Heat exchangers are subject to fouling and particle deposition. This reduces the
heat transfer and increases the pressure drop. Models of the heat exchangers are
used to compare the actual performance to the expected performance. If the devia-
tion becomes too large, maintenance might be necessary. One issue facing industry
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is how to accurately model heat exchangers and how to quantify model uncertainty
[49].

Pumps

Similarly as for compressors, vibration measurements can be used to monitor the
health of pumps. The actual performance of the pump is measured or estimated
and compared to the predicted performance of the pump. Model uncertainty and
measurement uncertainty are again big issues in industry [49]. The consumption
of barrier fluid is also a good indicator of pump performance, as increased con-
sumption indicates a leak in the pump module. If the leak is too large, the pump
must be replaced. By monitoring the barrier fluid consumption, the RUL can be
predicted [54]. Lube oil consumption is also indicative of the health of the pump
module. Large consumption of lube oil is caused by leakage due to worn out pump
seals [53].

Typically, the wear of pumps and compressors scales cubically with the effort it

expends. This means that a pump will only last %th the time if run at twice the
power, but up to 8 times longer if run at half power [53].

Summary

The main challenges facing industry today are the lack of detailed predictive mod-
els, and the physical limitations of the equipment. The limited number of strokes
on control valves can especially pose a problem for automatic control.

2.2.2 Prognostics and health monitoring

The area of prognostics and health monitoring of subsea systems is relatively new,
in comparison with more established industries such as rail and energy. However,
industrial interest in the topic is large, due to the importance of reliable operation.
Below follows a selection of companies which offer condition monitoring solutions
of various kinds. The list is not exhaustive.

e GE/NAXYS offers solutions for condition monitoring, including vibration
analysis, speed tracking and leak detection [118].

e FMC implemented the worlds first subsea condition and performance moni-
toring system at the Gjga field in 2012 [59]. Their system includes surveilance
of sensors, multiphase flow meters, chokes and actuators, in addition to leak
detection [165]. Their FlowManager tool for flow assurance also contains tools
for monitoring erosion, corrosion and wax deposition along the pipeline [60].

e Aker provides Insight, a tool for online erosion monitoring [1]. Insight is
currently in use in the Gullfaks and Statfjord fields [12].

For many applications, tailored CBM systems have been developed. Often these
systems are proprietary and not published. Aker has shared their experience from
developing the Ormen Lange and Asgard subsea compression station in a number
of publications, see for instance [52, 53].
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2.2.3 Health-aware control

Currently, there is no systematic framework to combine condition monitoring and
optimal operation for subsea systems [55].

2.3 Gap analysis

Based on the academic status from Section 2.1 and the industrial status from
Section 2.2, the following gaps are identified.

2.3.1 Academic

There is need for further development of health-aware control. Most literature on
the field is published in the the last 6 years, and only a handful of papers have
been published.

There is also a knowledge gap when it comes to deriving first-principles models for
failure mechanism for all kinds of subsea equipment. Currently, the most common
approach to prognosis is using data-driven models. This can be a critical issue, as
there is little run-to-failure data available for subsea equipment.

2.3.2 Industrial

There is currently no systematic way of combining health monitoring and control.
This is the largest industrial gap identified.

A challenge associated with implementing health-aware control, or any automated
control for that matter, is the limited number of control moves in the lifetime
of a valve. As mentioned previously, control valves are typically designed to last 1
million moves. This can be imposed as a constraint in the optimization problem (so-
called move blocking [33]). The time scale separation between the layers two layers
in the HARTO also poses a problem. The optimal allocation of control moves over
the entire lifetime must be determined in the upper layer and added as a constraint
in the lower layer.
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Chapter 3

Framework for combined
diagnostics, prognostics and
optimal operation of a subsea gas
compression system

This chapter is from the article

e A. Verheyleweghen and J. Jaschke. Framework for combined diagnostics, prog-
nostics and optimal operation of a subsea gas compression system (IFAC World
Congress, Toulouse, France). IFAC-PapersOnLine. volume 50, pages 15916—15921,
2017

3.1 Abstract

The efficient and safe operation of subsea gas and oil production systems sets strict
requirements to equipment reliability to avoid unplanned breakdowns and costly
maintenance interventions. Because of this, condition monitoring is employed to
assess the status of the system in real-time. However, the condition of the system
is usually not considered explicitly when finding the optimal operation strategy.
Instead, operational constraints on flow rates, pressures etc., based on worst-case
scenarios, are imposed. This can lead to unnecessarily restrained operation and
significant economic losses. To avoid sub-optimal operation, we propose to integrate
diagnostics and prognostics with the optimal decision making process for operation
to obtain an operational strategy which is optimal subject to the expected system
degradation. This allows us to proactively steer the system degradation, rather than
simply reacting to it. We use the operation of a subsea gas compressor subject to
bearing degradation as a case example.
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3.2 Introduction

Subsea processing is an enabling technology for fields that were previously deemed
too remote, too deep or far away from existing infrastructure. However, several
industrial challenges arise when moving topside equipment to the seabed. One of
the potentially most prohibitive challenges is the inaccessibility of the plant for large
parts of the year, and the need for specialized intervention ships. Consequently,
unplanned shut-downs can be very costly and must be avoided as far as possible.
In order to achieve this, strict reliability constraints are imposed on design and
operation of the plant. While these safety margins provide a method to ensure
reliable operation, they might be overly restrictive. One reason for this is because
the information from the health monitoring system is often not utilized directly
in the decision making process. Instead, a ”worst-case” approach is often used to
determine production set-points.

In this paper we propose a method for integrating health monitoring, prognostics
and control to obtain an operational strategy that ensures maximum economic
profit without jeopardizing the plant reliability. In particular, we include a health
degradation model in our optimization routine, resulting in a model-predictive
control (MPC)-like framework where we impose constraints on the remaining useful
life (RUL) of the equipment.

MPC has gained increasing popularity in industry in recent years due to its ability
to deal with constrained, multivariate, and nonlinear control problems, is based on
the repeated optimization of the objective function, subject to constraints [115].
The first input of the optimized input trajectory is implemented in the plant, before
new measurements are taken and the model is re-optimized.

The concept of health-aware control has been investigated by a few authors in
recent years. The term ”health-aware control” itself was first used by [56] to de-
scribe a control structure which through the combination of prognostics and health
monitoring (PHM) and feedback control simultaneously can fulfill the control ob-
jectives and extend the component RUL. The method was applied to a conveyor
belt system, and later to wind turbines [152]. Similar ideas of combining PHM
and MPC were previously discussed by [134] and [151], with application to control
effort distribution, and pumps in drinking water networks, respectively.

3.2.1 General description of framework

In this paper we propose an integrated framework for combining diagnostics, prog-
nostics, and optimal operation using MPC. Our framework contains the following
steps:

In the following sections, we will show how these steps can be applied to the case
of a subsea compression station. Following a description of the process in Section
3.3, we cover step 1 and 2 in Section 3.4.1, step 3 in Section 3.4.2, and step 4 and
5 in Section 3.5. The results from the case study are presented in Section 3.6.
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Figure 3.1: Subsea gas compression station

3.3 Process description

Our case study is a subsea gas compression station, similar to installations on the
Asgard field and the Ormen Lange pilot. The purpose of the gas compression station
is to boost the pressure of the stream so that it is sufficiently high to overcome
the pressure drop in the transportation pipeline and arrive at the receiving facility
topside with the desired outlet pressure. A multiphase boosting pump could be
used for this purpose, but since the maturity level of the technology is limited, it
is chosen to split the well stream into its gas and liquid parts before increasing
the pressure of each individual stream. An illustration of the process is shown in
Figure 3.1.

The system consists of a well choke with which the flow of the hydrocarbons from
the reservoir can be controlled. From the reservoir, the stream enters a gas-liquid
separator, whose purpose it is to separate the gas from the oil and water. Due to
imperfect separation, liquid droplets can be carried over to the gas outlet of the
separator. The separator efficiency is modelled as a function of the gas velocity
and the average fluid density [16]. The pressure of the liquid outlet is boosted
by a pump before being recombined with the gas. Meanwhile, the pressure of the
gas outlet is increased in a compressor. The compressor is modelled as a wet-gas
compressor which can handle moderate amounts of liquid carry-over [4]. Suction
gas-volume-fractions of 0.95 to 1.0 can be tolerated at the compressor inlet.

3.4 Diagnostic and prognostic modelling

Diagnostics and prognostics form the backbone of any PHM system [74]. In order
to make meaningful decisions about future production, it is not only necessary
to know what the health state of the equipment is at the current time, but one
must also be able to predict how the condition of the equipment will develop in
the future. Diagnostics is about the detection and monitoring of faults, whereas
prognostics is about the prediction of health evolution and estimation of equipment

29



3. Framework for combined diagnostics, prognostics and optimal operation of a
subsea gas compression system

RUL.

Prognostics and diagnostics of a large system such as a gas compression station is
a challenging task, due to the high complexity and large number of components.
Condition monitoring systems should be able to detect a wide range of faults,
including everything from signal failure to external impact of foreign objects. A
variety of methods are used to monitor subsea production systems in industry. For
example, sand erosion and corrosion rates are monitored in vulnerable parts of the
pipeline, such as in bends. Erosion and corrosion rates are estimated through mea-
surements of electrical resistance or by periodic inspection of coupons. Detection
of leaks is also an important topic. Leaks are usually monitored through a com-
bination of visual surveillance, electrical resistance measurements of the seawater,
and temperature/pressure measurements of seals.

In order to limit the scope of the remainder of the paper, we make the simplifying
assumption that only the most crucial faults of the system need to be considered.
It is known that rotating machinery such as compressors and pumps are prone to
faults due to their many moving parts and mechanical complexity [74]. This means
that for the studied process, the compressor, the pump and the well choke need to
be monitored closely due to the relatively high likelihood of critical faults occurring
here.

Furthermore, in this paper, we exclude failures which cannot be influenced directly
by manipulation of the inputs. This excludes a large number of important fault
modes. Since the purpose of this paper is to combine condition monitoring and
control, we chose to neglect faults which are independent of operational decisions
for now. These kinds of faults will have to be addressed in future work.

3.4.1 Diagnostics

Vibration monitoring of rotating machinery is commonly used to assess their health.
Imbalance caused by the onset of a fault will result in a periodic force with a
characteristic periodicity and magnitude, which can be detected as vibrations. This
technique can be used to detect defects on the shaft, bearings and impeller blades.
Current subsea gas compression stations use magnetic bearings to stabilize the
impeller, but since this technology is relatively new, not many degradation models
are available in the open literature. Ball bearings, on the other hand, are widely
used for a multitude of applications, including on-shore gas compressors. We will
therefore use the case of a subsea compressor with ball bearings in this paper to
demonstrate our framework.

Ball bearings, which are commonly found in pumps and compressors, are subject
to large stresses due to their constant load and high rotational speed. At the same
time, their survival is crucial for the operation of the machine. Therefore, condition
monitoring of bearings is important to ensure high availability of the pump or
compressor. The inner workings of a ball bearing are shown in Figure 3.2.

For a full overview of bearing fault diagnostics, see e.g. [186]. To make this paper
self-contained, we give a short summary below. A surface defect on a bearing results
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Figure 3.2: Illustration of a ball bearing
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Figure 3.3: Signal path from excitation force x to measured vibrations y, via impulse
response model g.

in a periodic excitation force with characteristic frequency ffault~ The excitation
force can be described as an impulse train, and the severity of the fault can be
estimated by looking at the magnitudes of the impulses. In addition to the periodic
impulses, random vibrations (noise) act on the bearing. The sum of these periodic
impulses and the random noise is shown on the left in Figure 3.3. The resulting
force is modulated by the impulse response function of the equipment to create
the measured vibrations. This impulse response can be seen as the modulation
of the original signal from the fault location to the vibration sensor, due to e.g.
the resonance vibrations of the bearing housing. The impulse response model g
is a damped harmonic oscillator, as illustrated in the middle plot in Figure 3.3.
Finally, the measured vibrations, i.e. the modulated signal, are shown on the right
in Figure 3.3.

The fault frequency ffault is dependent on the location of the fault and the specific
geometry of the bearing, but is ultimately a function of the shaft frequency fs. Let
us first define the fundamental train frequency ff; as

fr=t ll - @b’)_ COS(¢)] - (3.1)
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In the above expression, D), is the pitch diameter, Dy is the ball diameter, and ¢ is
the contact angle. ¢ is the angle between the raceway and the ball, which is larger
than 0 for bearings with axial loads. See [186] for details.

For an inner race (IR) fault, the fault frequency is then
FIR fauit =m0 (fs = fre) - (3.2)

Similarly, for outer race (OR) and rolling element (RE) failures, the fault frequen-
cies are

JOR fautt =m0 - fri (3.3)

TRE fault = % (gﬁ) [1 - <g:> _zcos(rb)] : (3.4)

respectively, where n;, is the number of balls.

and

Furthermore, the amplitude of the excitation force is modulated by a sine wave
with characteristic periodicity depending on the transmission path and the loading
conditions of the bearing. For instance, under stationary loading an OR fault will
be without periodicity, while the amplitudes of the impulse train in an IR fault
will have periodicity fs due to the varying distance to the vibration sensor. See e.g.
[186] for a full overview of the periodic characteristics of the faults.

Knowing how the vibration signal is created, we can now take the reverse path to
recover the original fault-induced impulse train x from the vibration measurements
y by demodulating the signal. Assuming an estimate of g can be found experimen-
tally, the demodulation is performed by solving

T=Gy, (3.5)

where G is the Toeplitz convolution matrix of g.

From the estimated excitation force Z, the original fault-induced impulse train can
be recovered by removing the additive noise. A Wiener filter can be used for this
purpose if the signal-to-noise ratio is known from experiments. Alternatively, the
properties of the Wiener filter can be identified blindly by maximizing the spectral
kurtosis (fourth moment) of the output of the filter [14]. In this work, we use a
standard Wiener filter the signal-to-noise ratio assumed to be known.

3.4.2 Prognostics

A widely applied prognostic model for surface defects is Paris’ crack propagation
model [130], which states that the crack length a will develop according to

da

——— =D (AK)" :
yeres (AK)", (3.6)

where ncycies is the number of cycles, D is a material constant, AK is the range
of strain and n is an exponent. In the case of bearing faults, Paris’ law can be
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Figure 3.4: Illustration of estimated degradation model based on ”measurements”
of the crack length (which themselves are estimated from vibrational data)

reformulated as )

da P

E = CParis * (T2 . fs) = CParis * (fs) 5 (37)
by assuming that the motor torque can be used as a health indicator for gross
strain [20]. In the above equation, cpgris is a lumped parameter, T is the motor
torque and P is the motor power.

The true value of cpgyis is not known exactly, so cpgrs must be estimated from
past measurements. A moving horizon estimator is used for this purpose. The
”?measurements” utilized in this case are the estimated crack lengths based on the
past vibrational data.

Confidence limits for the parameters are obtained from the covariance matrix of
the parameter estimation [100], which in turn can be used to predict the RUL
distribution with Monte Carlo sampling. An illustration can be seen in Figure 3.4.

3.5 Optimizing economic performance subject to health
constraints

The estimated system health and the health degradation model can now be in-
tegrated in the decision making process by imposing constraints relating to the
maximum allowable degradation. The optimal control problem (OCP) can then be
solved with state-of-the art nonlinear programming (NLP) solvers such as IPOPT
[185]. Since information about the probability distribution of the parameter esti-
mates is available, this should be embedded in the optimization problem to obtain
a better solution. This gives rise to a stochastic NLP due to uncertainty in the
parameter values, which can be written as

N
Jnin Z & (X, ug, ) (3.8a)

k=1
s.t. f(Xp,up,m) <0 Vk=1.N (3.8b)
g(xk,ug,m) =0 Vk=1.N (3.8¢)

where x are the states, u are the inputs, 7 are the stochastic parameters, N is
the horizon length, ¢ is the objective function, f and g are the inequality- and
equality constraints, respectively. Since 7 is continuously distributed, finding the
analytic solution of the resulting infinite-dimensional optimization problem maybe
impossible. Listed below are three methods to deal with this.

1. The most naive approach for solving the stochastic problem is to substitute
all uncertain parameters by their expected values. The solution obtained
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Figure 3.5: Scenario tree with robust horizon N = n and prediction horizon S = 4.

through this approach is likely to be sub-optimal, or even infeasible in the
case where some constraints are active.

2. Another approach is to substitute the uncertain parameters by their worst-
case realizations. The rationale is that if the solution holds for the worst-
case scenario, it should hold for any scenario. This approach is also known
as the min-max approach in literature. While it works for many practical
applications, the min-max approach usually results in a very conservative,
possibly even infeasible, solution.

3. A third approach is to employ a scenario-based method to explicitly deal
with the parametric uncertainty. The idea stems from multistage stochastic
programming, in which the uncertainty is discretized into a finite number of
possible realizations, subject to which the optimization must be performed.
Since the possibility of future recourse is taken explicitly into consideration,
this approach is usually less conservative than the min-max approach. Due to
the repeated measurement updates and input adjustments, stochastic optimal
control problems are well suited to be solved with a scenario-based approach.

In this paper, we will use the scenario-based approach to solve the stochastic prob-
lem. The scenario-based deterministic equivalent of the stochastic OCP reads as

s N
min Zpi Z ¢ (Xi g, Wi k) (3.92)
k=1

Xi, ko Wi,k £
=1

s.t. fxig,wp) <0 Vi=1.5,k=1.N (3.9b)
9(Xip, i) =0 Vi=1..5,k=1.N (3.9¢)

s
> Aipu; =0 VE=1..N (3.9d)

i=1

where S is the number of scenarios p; is the probability associated with scenario
i and A are the non-anticipativity constraints. Figure 3.5 shows a scenario tree
corresponding to N =n and S = 4.

In order to reduce the number of scenarios, and thus the size of the OCP, it is
common to define a robust-horizon Ny pyust < N [102]. The robust horizon is defined
as the stage up until which branching occurs in the scenario tree. Since branching
represents the availability of new information in the future, shortening the robust
horizon means disregarding future state information. The justification for doing so
is that additional branching at later stages results in a much larger dimensionality
of the NLP, with little improvement in the objective function.

Creating a scenario tree which captures the true nature of the uncertainty is a
difficult task in and of itself, but is out of the scope of this paper. On one hand,
the scenario tree should as detailed as possible to be a good approximation of the
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probability distribution. On the other hand, the scenario tree should be as small as
possible due to the curse of dimensionality. We refer the interested reader to [48].
In the current work, we do as proposed by [103], which is to generate the scenario
tree by using combinations of the maximum, minimum, and the nominal uncertain
parameters, as identified in the parameter estimation step.

3.6 Results

The proposed framework for integrating diagnostics, prognostics and control was
applied to the subsea compression system. The goal is to optimize production while
making sure that the wet-gas compressor remains operational until the time sched-
uled for maintenance. In our case study, a maintenance stop is planned after 5
years after initial startup. An outer race bearing fault was simulated under sta-
tionary compressor loading. The fault was initiated at time ¢ = 0, with an initial
crack length of 0.01 mm. The degradation threshold is defined as the time when
the crack length exceeds 1mm. The ball bearing consists of 10 rolling elements,
and has a g—’b’—ratio of 5.45. The compressor runs at a nominal speed of 60 Hz, with
an operating window from 45-63 Hz. The operational objective is to maximize
the net present value (NPV) of the gas production. Additionally, excessive control
movement is penalized to avoid oscillatory or jumping solutions. The health-aware
control problem reads

S=3 N=20 m
. gas;
Join D v ) (‘m) +wAu?,k> (3.10a)
R k=1

where the discount factor » = 0.015, and the control movement penalty w > 0.
We chose w = 100, resulting in approximately twice as much weight on the gas
production term as on the control penalty term. The constraints are

Fimtig) <0 Vi=1.3, k=1..20 (3.10b)
9%k, wr) =0 Vi=1.3,k=1.20 (3.10c¢)
Uim1 k=1 = Wi=2,k=1 = W;=3 k=1 (3.10d)

The constraints f contain upper and lower bounds on the inputs u (choke opening
0 < Uchoke < 1 and compressor speed 45 < Ucompressor < 63 Hz), as well as
constraints relating to the allowable operating region, i.e. to prevent compressor
surge and compressor choke. A minimum discharge pressure of Pgischarge = 150
bar is imposed after the compressor to ensure flow through the long pipeline to the
topside, as well.

The uncertainty in the parameter cpgs in the crack propagation model, Equation
(3.7), is included in the problem formulation through the three scenarios. Each
scenario represents a discrete realization of cpgy.s, namely the 5% percentile, the
95% percentile and the expected value. A robust horizon of length N, ypust = 1
is used, making the problem effectively a two-stage problem from a stochastic
programming perspective.
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The OCP described in Equation (3.10) is solved repeatedly in a shrinking horizon
fashion. That is, the OCP is solved with the initial values for the states being the
latest state estimates from the plant. After a solution is obtained, only the inputs
corresponding to the current time step are implemented. This is also illustrated in
the flow diagram in Section 3.2.1.

Between each optimization step, the vibration measurements are added by gener-
ating an impulse train for the excitation force and adding white noise. The force
is modulated through the impulse response model of the compressor. We assume
that ¢ from Section 3.4.1 can be written as a damped sinusoid

g = exp(—At) - cos(wt) (3.11)

with decay factor A = 600 s~! and frequency w = 4 kHz, resulting in the impulse
response model shown in the middle graph in Figure 3.3. The magnitude of the
original impulse is found by the method described in Section 3.4.1. Unfortunately,
no real vibration data was available, so we used the same model for both generating
the measurements and estimating the states. However, due to the added noise,
the estimates were not perfect and the method can still be used to showcase the
approach.

The closed-loop solution of the health-aware controller with a fixed maintenance
horizon of 5 years is shown in Figure 3.6. The figure shows the evolution of the
past inputs and the states and the optimal trajectories for the three scenarios at
three different points in time, at t = 0, t = 2 and ¢t = 2.8 years.

3.7 Discussion

The success of our proposed approach hinges on the quality of the degradation
model and condition monitoring capabilities. Our approach relies on the equipment
vendors to provide models and data for performing the diagnostics and prognostics.
Since the objective of this paper is to demonstrate our framework, we have chosen
to use a relative simple degradation and diagnostics model, that we adapted to our
purposes.

From Figure 3.6, it can be seen that the predicted trajectories differ from the real
trajectories. This is due to the NPV-term in the cost function and the presence of
uncertainty. The closed-loop solution has two different operating regions, the first
from ¢t = 0 to t = 2.5 years where the compressor runs with maximum speed, and
the second from ¢t = 2.5 to t = 5 years where production has to be choked back in
order to meet the required bearing health constraint. The abrupt change between
operating regions occurs because of the NPV term. Since future production is
valued less than present production, the optimizer will attempt to keep production
at maximum as long as possible. In the second operating region, gas production
is lower in order to meet the outlet pressure constraint and the minimum health
requirement.

Overall, the results are as expected. It seems reasonable to require that the sub-
sea installation is as profitable as possible while operating, i.e. that production
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Figure 3.6: Three snapshots of the closed-loop solution at ¢t = 0, t = 2 and t =
2.8 yrs. The blue, turquoise and green scenarios are for the low, expected and
high realizations of the stochastic parameter cpqs, respectively. The maintenance
horizon is fixed at 5 years.

is at maximum. However, the fact that the production has to be throttled down
after a while indicates that the specified maintenance horizon of 5 years may have
been too long. Preferably, maintenance intervention should have been scheduled
earlier, so that maximum throughput could have been achieved the entire time.
In future work, we will consider the possibility of adapting the maintenance time
during operation to make sure that maximum throughput can be achieved. In this
case maintenance is scheduled a year in advance, and will be decided by the opti-
mizer. Nevertheless, the control structure successfully meets the constraints while
maximizing the production.
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3.8 Conclusion and future work

We presented a framework to combine diagnostics, prognostics and control of a
subsea gas compression plant subject to compressor bearing failure. By including
measurements of fault indicators and fault prognostic models in the MPC frame-
work, we can ensure that the operation is both economically optimal and safe. In
the case of bearings, vibration measurements can be used to detect- and estimate
the severity of faults. Paris’ law for crack propagation can be used to predict fault
development.

In future work, we will consider multiple failure mechanisms, not only those which
can only be influenced through input manipulation. For example, the production
strategy will look different when a seal fault has been detected and failure is em-
inent. Careful operation in order to ”save” the bearings will be suboptimal, since
intervention is required in the near future to replace the faulty seal. In similar
vein, we will look at the entire subsea plant as a whole, to ensure that operation
is optimal not only for a single unit (e.g. the compressor), but for all units in the
plant.

38



Chapter 4

Combined Reliability and Optimal
Operation: Application to an LNG
Liquefaction Plant

This chapter is from the article

e A. Verheyleweghen and J. Jaschke. Combined Reliability and Optimal Operation:
Application to an LNG Liquefaction Plant. Journal of Process Control. (Under
review), 2020

4.1 Abstract

Unplanned process shutdowns due to equipment failure are costly and time con-
suming. Therefore, conservative operational strategies are often adapted to prevent
these unplanned shutdowns from happening, which leads to suboptimal perfor-
mance and lost revenues. To reduce the operational conservatism, we propose a
framework for health-aware operation in this paper. The main idea is to reduce
the conservatism by integrating diagnosis and prognosis of critical equipment, into
process operation decisions without compromising process safety. We propose a
step by step approach for designing a control structure for health-aware operation.

As a case example, we study the operation of a cascaded LNG refrigeration plant,
where the refrigerant compressors are subject to load-induced bearing degrada-
tion. The designed control structure consists of two new decision making layers in
addition to the stabilizing control layer: a top level real-time optimization layer
where the aim is to keep bearing degradation below a threshold, and a lower level
model-predictive control layer that rejects uncertainties and disturbances. In our
approach, the constraints on the operation are updated in real-time to reflect the
current reliability state of the plant. This allows us to proactively steer the system
degradation, rather than simply reacting to it. As a result, we are able to operate
less conservatively and use our equipment to its full potential.
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4. Combined Reliability and Optimal Operation: Application to an LNG
Liquefaction Plant

4.2 Introduction

In parallel with the increase in complexity of industrial processes, the optimal
operation of these industrial processes has become more and more difficult to de-
fine. In today’s chemical plants, the decision making process regarding production,
operation and maintenance decisions is typically decentralized and left up to the
individual divisions. In particular

Clulture has slowly been replaced with a new mindset about the appropri-
ate division of labor — that ”operations personnel run the equipment”
and "maintenance personnel fix the equipment” [146]

This can lead to a slow and suboptimal decision-making process. Long-term tar-
gets and strategies are defined first, imposing conservative constraints on the plant
reliability and maintenance scheduling, which in turn impose constraints on day-
to-day production and control. Such a sequential top-to-bottom decision making
process will typically be very conservative, due to the inclusion of safety margins
and back-offs. These margins and delays are especially necessary when communica-
tion and exchange of information between the different decision-makers is poor or
non-existing. Due to the back-offs from the optimal operating point, the plant is op-
erated sub-optimally. An illustration of this decentralized decision-making process
is shown on the left in Figure 4.1.

Efforts have been made to reduce the sub-optimality stemming from decentralized
decision-making. So-called operator-driven reliability (ODR) has existed for a while
[184], and aims to blur the lines between maintenance decisions and operational de-
cisions by tasking the operators with basic maintenance tasks, thereby challenging
the operator to adopt a more ”reliability-centered operations” mindset. However,
industrial adoption of the practice has been slow. Lack of operator training and
experience, unclear goals and responsibilities, and lack of clear key performance
indicators (KPIs) is among the main reasons why ODR has not found footing in
industry [8]. We seek to address some of these issues by introducing a systematic
framework within which reliability and control decisions can be effectively made,
and we propose to use optimization and automation to lessen the operator load.

4.2.1 Summary of our proposed approach

The main aim of this paper is to provide a systematic framework for developing
decision making strategies which integrate reliability- and maintenance-based deci-
sions, control- and process optimization-based decisions. Let us first establish how
our proposed decision making strategy differs from a traditional approach.

In the traditional operation approach (Figure 4.1 left), there are two hierarchical
decision structures, which are usually decoupled from one another; one for main-
tenance decisions, and one for operational and control decisions. In this paper, we
propose to connect the maintenance decisions and the layers of the hierarchical
control structure, to obtain an integrated health-aware control system (Figure 4.1
right). The idea is that the decision layers are horizontally interconnected, such
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that the control structure has access to the equipment monitoring data and take
this information into account to make overall optimal operation decisions.

Note that to a large degree, the previously discussed conservatism can be attributed
to time scale separation. In the traditional approach (Figure 4.1 left) only the top
layers of the control and maintenance hierarchies communicate. In this setting,
conservatism is necessary because of the dynamics and the time delay in the lower
layers. Decisions and information from the control domain must first go through
the operator at the topmost level of the hierarchy before entering the reliability
and maintenance domain, or vice versa. Our proposed approach reduces this time
delay by integrating the domains horizontally, making relevant information avail-
able automatically across the domains without the need for manual intervention,
and also allowing decisions to be taken on the relevant time scale, without needing
to be propagated all the way to the top. Note that in both cases, the safety systems
are left unchanged, as safety systems are redundant and independent.
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Figure 4.1: Traditional unconnected decision making hierarchies (left) and our pro-
posed integrated approach (right). Blue arrows indicate the flow of information,
whereas red arrows indicate the flow of decisions between the different blocks.
Manual decision making levels are indicated by blocks with dashed outlines, as
opposed to automatic decision making levels, which are indicated by blocks with a
solid outline. Note that in both cases, the safety systems are left unchanged.
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To set up the interconnected health-aware structure on Figure 1 right, and to
reduce the conservatism of current industrial practice, we propose the following
systematic approach:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

42

Economic and process analysis: Define desired plant behaviour as
objectives and constraints. Objectives typically relate to the plant eco-
nomics or the plant reliability, while constraints relate to the product
quality, equipment safety or physics of the plant.

Outcome:
e Overall operational objectives and constraints
Defining sensible decision-making layers layers: Identify which

time-scales are involved, and divide the decision making problem into
suitable, hierarchical layers (see e.g. the top-down approach in [163]).

Outcome:
e Time-scale separated decision layers
e Degrees of freedom (inputs and outputs) for the layers

Developing problem-specific / fit-for-purpose models for each
of the layers: For each layer, develop fit-for-purpose models of the plant
with all important KPIs, for use in process monitoring, plant diagnostics
and prognostics.

Outcome:

e Fit-for-purpose models for each layer
Optimization problem formulation and dealing with uncertainty:
Handle inevitable model uncertainty in a systematic manner, if neces-

sary, by formulating a robust version of the decision making problem for
the layers.

Outcome:
e Optimal operation as an optimization problem for each layer
Implementation of the solution in the plant, and on line updating of

the models when necessary. The on-line implementation can be broken
down into the following sub-steps that are repeated performed

a) Data acquisition: collect measurements from the plant

b) Diagnostics: estimate current states

)
c¢) Prognostics: estimate prediction model
)

d) Optimal operation: use newest estimates to predict evolution of

health and process states

Outcome from this layer:

e Implementation strategy for each layer (online optimization (real-
time optimization, model predictive control), offline optimization
(self-optimizing control)



4.3. Development of a health-aware operations strategy

4.2.2 Previous work

Other authors have addressed the issue of combined prognostic and diagnostic
information into the decision making process. The descriptor ”health-aware” itself
was first introduced in [56] to describe a control structure which satisfies control
objectives while extending the remaining useful life of the system, by combining
prognostics and health monitoring (PHM) and feedback control. As a motivating
case study, the authors looked at a conveyor belt system and wind turbine motors
[152].

In [5], the authors developed a medium-term mixed-integer linear program (MILP)
formulation for optimizing production planning, scheduling and maintenance simul-
taneously, and [187] developed a framework for integrating data-driven stochastic
degradation models into a mixed-integer optimization formulation. Their result-
ing framework provides an efficient way to calculate an operational strategy that
compromises between maintenance cost and equipment availability.

In [25], a health-aware controller was developed to extend the lifetime of a subsea
CO2 separation system, which they showed improved the reliability of the system,
compared to a traditional MPC structure.

The optimal operation of a polymerization batch reaction subject to fouling was
investigated in [189]. The problem was formulated as a continuous time problem,
with the aim to find a sequence of batches that lead to acceptable fouling rates.

The idea presented in this paper builds on previous work [179], in which we pre-
sented a similar approach for a small subsea case study. In this paper, we extend
the idea by proposing a more general framework, and applying it to a more ex-
tended case study. A multi-layer control structure, similar to [181], was used to
deal with the different time scales of the problem. The contributions of this paper
are the following;:

1. We further develop the idea from [179] to present a systematic step-by-step
framework for developing a health-aware control structure.

2. We demonstrate the method on a cascaded LNG refrigeration case study

4.3 Development of a health-aware operations strategy

4.3.1 Step 1: Economic and process analysis

The first step that should be taken when developing a unified decision making
strategy for control and maintenance (or indeed any decision making strategy), is
to clearly define the overall goals and limitations, as this will determine the required
complexity of the model and optimization in the steps to follow.

Typically, the operational goal is to maximize profit, minimize energy consump-
tion or waste, or to minimize batch time. This goal is to be achieved subject to
constraints such as product quality constraints, maximum allowable temperatures,
maximum input rates, etc.
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Equally importantly, it is necessary to define targets and limitations for the reliabil-
ity of the plant. These can be described in terms of expected availability, allowable
degradation, number of components failed, etc. At this stage it is also important
to define the boundary conditions for the problem. Is the decision making strategy
to include an entire plant, or just a small section of it? What kind of decisions are
included in the decision making strategy, e.g. do we want to optimize the times of
maintenance interventions, or do we assume that these are given? All these ques-
tions must be answered before proceeding, as their answers will determine not only
the complexity of the models and optimization problems formulated later, but also
the way we should go about formulating them. A useful step is performing a criti-
cality analysis, so that less critical components of the plant may be omitted from
the analysis, in order to reduce complexity.

At the end of this step, one should have a (potentially multi-objective) optimization
problem with appropriate constraints.

4.3.2 Step 2: Defining sensible decision-making layers layers

Ideally, we would like consider the entire decision making problem at once, but due
to the complexity and the range of time scales involved, the resulting optimization
problem is not practically feasible for most applications due to limited computa-
tional power. Instead, approximations are introduced so that the problem can be
split into multiple time scale separated problems. A hierarchical decision making
structure results, where each layer represents a different time scale of the process.
But in contrast to the traditional approach to decision making, our framework
assumes that there is an exchange of information between the process control do-
main and the reliability domain. Operation can therefore be less conservative, and
sub-optimality is reduced. Note that there are no strict rules for which layer covers
which part of the time scale, and that consequently some layers are overlapping.

In contrast to the standard control hierarchy, where decisions are made based on
economic key performance indicators, a health-aware control layer has access to
and uses information from the condition monitoring system for decision-making.
Analogously to the traditional control hierarchy, we define the layers of the health-
aware control system:

e Health-aware control: Obtained by integrating condition monitoring data into
the advanced process control (APC) / real-time optimization (RTO) layers.
The time scale on which this layer operates ranges from milliseconds to hours.
The advantage of combining these layers into one is that high-frequency dis-
turbances that have an impact on the RUL of the plant can be counteracted
quickly, without having to rely on manual intervention. By monitoring the
KPIs of the plant, correct actions can be taken immediately. Typically the
actions taken in this layer are purely reactive, though there might be some
benefit to also having proactive controllers in this layer. Depending on the
complexity of the process, these actions could either be achieved by a health-
aware MPC, a health-aware feed-forward controller or a simple PI controller.
Examples of actions taken in this layer: opening and closing of valves, com-
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pressor speeds, etc.

e Health-aware scheduling: Obtained by unifying the decision making processes
in the higher layers of the hierarchy. Typically, the time scale of these lay-
ers range from hours to years. Decisions in this layer pertain to long-term
production strategies. Implementation may be in the form of an MPC or a
dynamic RTO, or a more sophisticated scheduling problem. Actions taken in
this layer are typically proactive, in addition to being reactive. Examples of
actions taken in this layer: load distribution among parallel units, sequence
of batches for a day of production, etc.

e Health-aware long term planning: Obtained by integrating the very top layers
of the decision making hierarchy. The time scale of these decisions range from
weeks to years. Often these decisions are made manually, though there could
be some applications where it would be beneficial to make these decisions
automatically. Examples of actions taken in this layer: how frequently to
exchange catalyst in a reactor, when to perform washing of a gas turbine,
when to retrieve and maintain a subsea installation.

4.3.3 Step 3: Developing problem-specific / fit-for-purpose
models for each of the layers

Once we have defined the desired plant behaviour in terms of a decision-making
hierarchy, the next crucial step is to develop problem specific or fit-for-purpose
models for each of the layers. By fit-for-purpose we mean that the models are suf-
ficiently detailed to capture the phenomena occurring in the relevant time scale
with sufficient accuracy, but without being too numerically challenging to be run
in real-time. Furthermore, contrary to what is used in the conventional (decen-
tralized) approach to operations, where separate models are used for production
optimization and maintenance optimization, we need a unified model covering both
domains [31].

Integration of the existing models from the different domains may prove difficult,
due to the use of different modelling approaches in the two domains. Usually, it is
necessary to build the models from the bottom up, to ensure compatibility.

4.3.4 Step 4: Optimization problem formulation and dealing
with uncertainty

How the decision making process in each of the layers is implemented will be
situation dependent. But since we defined objectives and constraints in the previous
steps, it is natural to use a model-predictive control (MPC)-based control scheme,
or something similar. MPC is a optimization-based control strategy that has gained
traction in industry lately due to its ability to deal with constrained, multivariate
problems [115]. At each time step, an optimal control problem (OCP) is solved and
the first inputs of the optimal solution are applied to the plant. New measurements
are collected periodically and the OCP is resolved repeatedly in a moving- or
shrinking-horizon fashion. An illustration of the MPC principle is shown in Figure
4.3.4.

45



4. Combined Reliability and Optimal Operation: Application to an LNG
Liquefaction Plant

Model

—— xp: predicted states
[} zo: initial state
~up: predicted inputs
- Set-point

tr

\\)&62\5\“"'(1 state a¢ t0
" Induy jozgu00 fpud

i

@® x(o: most recent measurement
ug: historical inputs
—_— ug: most recent input

'
i
i
l
° x): historical states |
'
i
'
i

<— Past  Present Future —

Figure 4.2: Hlustration of the MPC principle.

The term ”model-predictive control” is usually reserved to described controllers
acting in the advanced process control (APC) layer, i.e. controllers either manipu-
lating the inputs to the plant directly, or setting the set-points to the controllers
in the stabilizing control layer. However, the term real-time optimization (RTO)
is also used to describe the same methodology. The main difference between MPC
and RTO is that RTO usually acts on slower time-scales, higher up in the decision
hierarchy.

We mention MPC and RTO here in particular because they are both model-based
optimization approaches to decision making, which makes them particularly well
suited for the horizontal integration of the process control domain and the relia-
bility /maintenance domain. One may ”simply” include models of the plant degra-
dation and maintenance into the existing MPC or RTO formulation, and thus
optimize both at the same time. This requires little modification of the existing
MPC methodologies, and existing theory can be used. Other approaches, such as
feedback or feed-forward control structures may also be used if found to be suffi-
cient.

Dealing with uncertain or stochastic parts of the model requires a slight reformula-
tion of the MPC problem. Several different formulations exist. So called worst-case
or min-max formulations have been popular approaches, as they ensure that the
solution is feasible even if the worst-case realization of some bounded uncertain
parameter should occur [21, 92, 159]. Since this approach requires the solving of
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Figure 4.3: Scenario tree with prediction horizon n, robust horizon n.opyst = 2 and
3 possible parameter realizations (7—, 7° and 7 1) at each branching node. Every
scenario has an associated probability p;.

nested optimization problems, researchers have focused on making the MPC prob-
lem tractable, e.g. by finding simplifications or solving the problem offline and
applying an online correction [41, 88, 104].

An alternative to the min-max formulation is tube-based MPC. In min-max MPC,
the effect of feedback is not explicitly taken into the problem formulation. Conse-
quently, the solution is a sequence of control moves which are open-loop robust.
Naturally, this approach may perform very poorly due to the large amount of con-
servatism. Tube MPC seeks to reduce this conservatism by optimizing over control
policies or control laws rather than just sequences of control moves. By doing so,
the effect of feedback is explicitly considered [105, 139, 182].

A third approach which is popular is scenario-based or multi-stage MPC. Based on
multi-stage stochastic programming, the main idea is to discretize the probability
distribution of the uncertain parameter into scenarios [29]. Each scenario represents
a path of possible future parameter realizations. Scenarios are bundled together in
scenario trees, as shown in Figure 4.3. Each new branch in the tree represents
the possibility of recourse, e.g. the possibility to adjust the inputs in a control
setting. While constraint satisfaction can usually not be guaranteed except in the
convex case and when the uncertainty set is bounded, the scenario-tree approach
performs well for nonlinear systems as well, as long as the nonlinearity is reasonably
small [102]. Due to the exponential growth of the scenario tree with the number of
possible parameter realizations at each node, we usually only consider branching up
until a point called the branching horizon [102]. The parameters are kept constant
after the branching horizon. Since branching represents the availability of new
information in the future, shortening the robust horizon means disregarding future
state information.

4.3.5 Step 5: Implementation

Solving the optimization problem online requires appropriate software and hard-
ware solutions. Typically, the fast-acting, low-level controllers require embedded
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solutions, whereas the higher-levels can be solved remotely on a server or in the
cloud.

Communication protocols must also be established to allow the control system to
talk to the existing condition monitoring system.

Estimators such as the Kalman filter or a moving horizon filter must be run in
parallel with the controllers and continuously update the models to reflect the
ever-changing plant conditions.

4.4 Case study: process description

In order to study the framework discussed in this paper, we follow the step by step
procedure to develop a health-aware decision making strategy for the refrigeration
section of a cascaded liquid natural gas (LNG) liquefaction plant. An illustration
of the full process is shown in Figure 4.4.

The advantage of a cascaded design is that the mean temperature difference in
the heat exchangers is relatively small, thus resulting in a lower overall energy
consumption. The drawback of the cascaded design over a mixed-refrigerant one is
that the design requires more unit operations, thus potentially requiring a larger
footprint. More importantly in the context of this paper: since each individual
refrigerant cycle must be functional for the overall system to satisfactory perform
its intended purpose, it is vital that the reliability of key equipment is ensured.
The application of a health-aware control philosophy is therefore necessary.

The particular plant studied in this work has three intertwined refrigerant cycles;
a high temperature propane cycle, a medium temperature ethane cycle and a cold
temperature methane cycle. As is standard in refrigeration, each of the three cycles
has a low pressure and high pressure zone. Pressure is increased in a single stage
compressor driven by a turbine, allowing the compressor speed and consequently
the compressor head, to be adjusted.

Upon exiting the compressor, the superheated refrigerant vapor is cooled and con-
densed by exchanging heat with cold sea water and, if applicable, the other liquid re-
frigerant streams, in the so-called condensing section. The condensing section of the
propane cycle consists of a water-cooled condenser only. On the low-pressure side of
the cycle, the refrigerant is evaporated in a series of cross-cycle heat exchangers and
an LNG heat exchanger. For the propane cycle, the evaporation section consists of a
propane/ethane heat exchanger followed by a propane/methane heat exchanger and
a propane/LNG heat exchanger. Analogously, for the ethane cycle, the condensing
section consists of a water-cooled condenser followed by the propane/ethane heat
exchanger. The evaporation section consists of the ethane/methane heat exchanger
and the ethane/LNG heat exchanger. Finally, methane is condensed by exchang-
ing heat with water, propane and ethane, in that order. In the methane/LNG heat
exchanger, the natural gas is brought down to its desired temperature of —150 °C.

Note that the representation of the condensing and evaporation section of the indi-
vidual refrigerant cycles is somewhat unrealistic, as in reality, these small exchanger
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Figure 4.4: Process flow diagram of the studied cascaded refrigeration cycle LNG
liquefaction plant. The plant consists of three interconnected refrigeration cycles,
containing the refrigerants propane, ethane and methane, which are referred to as
P, E and M, respectively. The abbreviations HP and LP refer to the high and low
pressure sides of the cycles, respectively. The evaporation section of each cycle is
highlighted in blue and the condensing section is highlighted in red.
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would be replaced by a large, multi-stream heat exchanger in order to reduce equip-
ment investment cost and footprint, and to reduce heat loss. However, we chose
to model the multi-stream exchangers as series of two-stream heat exchangers to
simplify mathematical model. As our intention is to use the model to develop a
novel health-aware control strategy, and not to estimate investment cost or foot-
print, we assume that this simplification does not influence the results obtained in
this paper.

4.4.1 Step 1: Economic and process analysis

The purpose of the cascaded LNG refrigeration plant is to subject a pretreated
natural gas stream to multiple, increasingly cold, closed heat exchangers. After
passing through the final heat exchanger, the natural gas has reached a sufficiently
low temperature that it remains in liquid phase when subjected to ambient pres-
sure, since transport and storage of natural gas in liquid phase is preferable to gas
phase. An outlet temperature of no higher than —150 °C is required to ensure that
the natural gas remains in liquid phase.

The LNG liquefaction plant is expected to operate for long periods of time without
breaking down or needing maintenance. A criticality analysis was performed, and
it was found that the rotating equipment, i.e. the compressors, are the most critical
components of the system. Due to their complexity, they are more likely to degrade
than the static components of the system. In particular, the compressor bearings
degrade due to load-induced wear and tear. It is important to keep this wear and
tear below a certain threshold to ensure that the compressor can operate reliably.

To summarize, the desired plant behaviour is the following:

e Operate at minimum energy consumption while still satisfying that the outlet
temperature of —150 °C is not exceeded for any given load of natural gas.

e Ensure that the compressor bearing degradation does not exceed a critical
level between two scheduled maintenance interventions.

4.4.2 Step 2: Defining sensible decision-making layers layers

Because the dynamics of the the LNG plant range from the range of milliseconds
(measurement of bearing vibrations) to months (bearing degradation), it is natural
to devise a hierarchical control structure. We propose the following layers

1. Stabilizing control layer: Acts on a very fast time-scale (seconds). Since
degradation is assumed to take place on a much slower time scale, this layer
does not take the degradation information into account. Degrees of freedom
in this layer: valve openings.

2. Optimizing control layer: An economic NMPC whose objective it is to
reject disturbances while simultaneously minimizing the energy consumption
of the plant. In this layer, the dynamics relating to the long-term degradation
can be assumed to be constant, so their differential states are replaced by
constants.
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The MPC is constrained by the maximum allowable outlet temperature,
and the maximum allowable degradation rate set by the top-layer scheduling
controller. Since this controller is operating on a somewhat fast time scale,
multiple realizations of the uncertainty (in this case, we assume the inlet
temperature and flow-rate, as well as the condenser water temperature, to be
uncertain). Degrees of freedom in this layer: set-point to stabilizing control
layer, compressor speed, condenser duty.

3. Scheduling control layer: A shrinking-horizon dynamic optimal scheduling
controller whose objective it is to minimize the overall energy consumption
of the plant, subject to a maximum allowed degradation limit between two
maintenance interventions. In this layer, the fast dynamics, i.e. the mass and
energy balances for the refrigerants, can be assumed to be instantaneous.
Degrees of freedom in this layer: set-point to optimizing control layer, com-
pressor speed, condenser duty.

An illustration of the proposed control structure is shown in Figure 4.5.

Setpoint for degradation rate
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:

Health-
aware
optimizing
control
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Regulatory/
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LNG plant

PID
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Figure 4.5: Proposed control structure for the LNG case study. Blue arrows indicate
the flow of information, whereas red arrows indicate the flow of decisions between
the different blocks.

4.4.3 Step 3: Developing problem-specific / fit-for-purpose
models for each of the layers

The full model of the cascaded LNG refrigeration plant can be found in the ap-
pendix. The process model was previously described in [177].

Process model

The process model consists of mass and energy equations for the unit operations,
including the evaporators, receivers, valves and compressors. The thermodynamic
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properties of the fluids are calculated by surrogate models, which were fitted to
thermodynamic data.

Degradation model

In addition to the regular conservation equations for mass and energy, the model
describes the degradation of the system over time. For the sake of simplicity, only
a single degradation mechanism is included in the model, namely the degradation
of the compressor bearings due to load-induced wear and tear. Paris-Erdogans
law of crack propagation [130] is used to describe the evolution of the bearing
imperfections.

4.4.4 Step 4: Optimization problem formulation and dealing
with uncertainty

A three-layer decision making hierarchy was proposed for this plant. The three
layers are discussed below

Stabilizing control layer

This layer acts on a fast time scale, and its main purpose is to keep important vari-
ables (e.g. levels) at their set-points and stabilize the process. Therefore one could
formulate optimal operation as minimizing the deviation from their set-points.
However, since minor variations do not significantly effect the economics, it is com-
mon to use a decentralized control structure based on PI controllers.

Level controllers for the receivers were implemented as shown in Figure 4.6. The
controllers are simple PI controllers tuned reasonably tightly, so that the distur-
bances are rejected reasonably quickly. Three degrees of freedom are used in this
control layer, namely the valve opening of the receiver outlet valve. The remaining
degrees of freedom for the above control layer are the compressor speeds and the
condenser duties. Additionally, one could adjust the set-points of the level con-
trollers, but these were left constant for the sake of robustness. Since the levels
only have a transient effect, the level set-points have little effect on the overall
economic

Optimizing control layer

A scenario-based moving-horizon economic NMPC [103] was chosen for this layer,
as it was found that a non-linear, online method was necessary to deal with the
disturbances. Since many realizations of the stochastic parameters would be ob-
served, a scenario-based approach was chosen in order to ensure that the solution
is acceptable no matter the realization.

The optimization problem solved at each time step can be formulated as

s N
min Zpi Z ¢ (Xi ks Wi ke, Ti k) (4.1a)
Xi ke, Wi ke =

i=1
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Figure 4.6: Process flow diagram of the studied cascaded refrigeration cycle LNG
liquefaction plant, with added level controllers for the receivers.

s.t. fXig,Wig,mik) <0 Vi=1.5,k=1.N (4.1b)
g(xi,k,ui,k,ﬂ'i}k) =0 Vi= 157 k=1..N (41(3)

S
Aipu; =0 Vk=1..N (4.1d)

1=1

where S is the number of scenarios p; is the probability associated with scenario
i and A are the non-anticipativity constraints. The variables u are the inputs, i.e.
the compressor speeds and the condenser duty.

Here,
¢ = Wcomp,P + Wcomp,E + Wcomp,M + CpenaltyAuTAu (42)
fi = Tia+ 150 (4.3)
f2 - ACL - Aasetpointa (44)

where the objective ¢ consists of the sum of the energy consumption of the three
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compressors, and a term penalizing excessive change in input from one time step to
the next. Two inequality constraints f; and fy are constraining the optimization.
The former constraint sets the maximum allowable outlet temperature, the latter
ensures that the compressor degradation rate Aa does not exceed a threshold
Absetpoint, Which is determined by the scheduling control layer, discussed below.

Each of the scenarios represents one possible realization of the uncertain param-
eters, in this case the natural gas flow-rate and temperature, as well as the con-
densing water temperatures. Each of these three disturbances was assumed to be
normally distributed, to represent day-to-day variations in natural gas supply and
weather conditions. In order to avoid a large scenario tree which impacts per-
formance of the MPC, we chose to represent the uncertainty by seven possible
combinations of realizations: one nominal case and a high realization case and a
low realization case for each of the three uncertain parameters. To reduce the size
of the scenario tree even further, it was chosen to use a robust horizon of length
one, meaning that all uncertain parameters were assumed to be constant follow-
ing the initial branching. This meant that the scenario three had a total of seven
branches.

Dynamic scheduling control layer

A worst-case shrinking-horizon economic DSC was chosen for this layer, since the
. Since few observations of the uncertain parameters would be made, a worst-case
realization approach was chosen in order to ensure that the degradation would not
exceed the acceptable threshold at the end of the horizon, no matter the true value
of the degradation rate parameter.

The uncertainty here relates to the degradation rate parameter cpqris from 4.7.5,
which determines how quickly the cracks on the compressor bearings grow in size,
given a certain load. As more observations are obtained, the true value of the
degradation rate parameter can be estimated more accurately. Consequently, as
the uncertainty is reduced, the worst-case prediction will become less and less
conservative. Periodic model re-fitting is performed to get better estimates of the
degradation rate parameter cpqris

The optimization problem solved at each time step can be formulated as

N
Jmin Z o (Xp, ug, ) (4.5a)
k=1
s.t. 7w = argmax f(x, ug, p) (4.5b)
P
f &g, ug,m) <0 Vk=1..N (4.5¢)
g(xk,u,m) =0 Vk=1.N (4.5d)

u are the inputs, i.e. the compressor speeds and the condenser duty.
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Note that the constraints f and g, as well as the objective ¢ is not the same in
problem (4.5) and problem (4.1). Here,

¢ = Wcomp,P + Wcomp,E + Wcomp,M + cpenaltyAuTAu (46)
Ji = Tya+150 (4.7)
f2 = a— Gmax =a—1. (48)

The last constraint indicates that at the end of the period, when the next main-
tenance is scheduled, the maximum crack length on the compressor bearings must
not exceed 1 mm.

The above optimization problem is solved repeatedly in a shrinking-horizon fashion.

4.4.5 Step 5: Implementation

Because the case is illustrative only and no real operational data exists, all results
were obtained from simulation studies.

The model and MPC controllers were implemented in MATLAB and CasADi 3.4.1
[11]. Both the NMPC in the optimizing control layer and the DRTO in the schedul-
ing control layer were transformed into non-linear programming problems (NLPs)
using direct orthogonal collocation. IPOPT 3.12.3 [185] was used to solve the prob-
lems.

To illustrate how the condition monitoring system may be integrated into the op-
erational decisions, assume that a vibration sensor exists on the housing of the
compressors. In order to predict the bearing crack magnitude, the vibration sig-
nals are analysed. Commercial software and hardware solutions exist that do this
already, but assuming that such a commercial solution does not exist for our LNG
case study, one must develop an estimator to successfully ”link” the two domains
of reliability and control, so that the MPC controller knows what the degrada-
tion is at any time. (It can be argued that the following part belongs in section
2: modelling, but we chose to include it here). The bearing diagnostic model was
previously presented in [179]. For a full overview of bearing fault diagnostics, see
e.g. [186]

Bearing diagnostics - estimating the degradation

Figure 4.7 shows a frontal and axial cross sections of a ball bearing. When a ball
bearing rotates, its inner race and balls will rotate at different frequencies, denoted
fs and fy; respectively. Additionally, each ball will rotate around itself with fre-
quency fpqi- These three frequencies are all dependent on the dimensions of the
ball bearing, shown on the right of Figure 4.7. The frequency with which the balls
rotate around the race, the fundamental frequency, can be calculated as

fre=% [1 - (gj)l cos(czs)] . (4.9)

where f5 is the shaft frequency, D, is the pitch diameter, Dy is the ball diameter,
and ¢ is the contact angle, as shown in Figure 4.7.
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Figure 4.7: Frontal and axial cross sections of a ball bearing on the left and right,
respectively.

When a ball bearing has a defect, this defect will create a periodic excitation force.
Depending on if the defect is situated on the inner race, outer race or on one of the
balls / rolling elements, this excitation force will have a particular characteristic
frequency ffyy;- [186] showed that for an inner race fault, f,,;; can be expressed
as

FIR fautt =16 (fs — fre) (4.10)

where ny, is the number of balls in the bearing. For outer race (OR) and rolling
element (RE) failures, the fault frequencies can be calculated as

fOR fauit =10 frt (4.11)

and

FRE fault = f; (g:) [1 - <g’;> B COS(@} : (4.12)

The magnitude of the excitation is proportional to the surface defect size. Further-
more, we know that seen from the perspective of a stationary vibration sensor, the
excitation pulse will be weaker if the defect is on the far side of the bearing, and
stronger if it is on the close side of the bearing. Consequently, the excitation pulses
are magnitude modulated with a characteristic frequency depending on which kind
of fault is occurring. The magnitude of an OR fault will be constant since the outer
ring does not move in relation to the stationary vibration sensor. The magnitude
of an IR fault will be modulated with frequency fs because the distance between
the fault and the sensor is not constant. Lastly, we know that vibrations are not
transferred without energy losses from the vibration sensor and the fault location.
Some energy goes into the system, due to elasticity etc. When the excitation signal
arrives at the vibration sensor, it has been convoluted by the impulse response
function g, which is a damped harmonic oscillator.
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Figure 4.8: Periodic excitation force = (plus noise) is generated by the bearing de-
fect, modulated by the impulse response function g, and measured as the vibration
signal y, via impulse response model g.

Knowing all of this, we can predict how the excitation force will manifest itself as
measured vibrations. This is illustrated in Figure 4.9. By going the reverse path
and using spectral analysis, we can generate an estimate of the excitation force on
the bearing, T from the vibration signal, y. Assuming that g can be found experi-
mentally (by exciting the system and measuring the resulting vibration signal), we
have that

=Gy, (4.13)

where G is the Toeplitz convolution matrix of g. The additive noise is removed by
using a Wiener filter.

Measured ; Excitation
. . 1 Wiener .
vibrations —— G~1(s) — force estimate
y filter 1‘*

Figure 4.9: Estimating the excitation force from the measured vibrations

4.5 Case study: results

The simulation results are summarized in Figure 4.10. The upper row of plots
shows the degradation of the bearings in the three compressors on the z axis, as
a function of time on the x axis. On the y axis are the DRTO iterations. The
black, dashed line shows the actual evolution (history) of the degradation. Around
the black, dashed line, the predicted degradation evolution is shown in blue. Note
that the prediction includes the 90% confidence interval around it. The confidence
interval becomes larger the further in the future the prediction lies, as is to be
expected. On the yz-plane behind the plots, the confidence interval at the final
mission time ¢y = 360 days is shown. Note that this confidence interval shrinks
exponentially in size. The reason for this is twofold. Firstly, later DRTO iterations
have starting time tq closer to the final time ¢y, since ¢; is fixed. Consequently,
since the initial degradation state is known at the beginning of each iteration, the
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Figure 4.10: Top: predicted (blue) and actual (dashed black) degradation of the
compressor bearings for the propane, ethane and methane compressors (left to
right) at five different points in time. The 90% confidence interval of the predic-
tion is also shown around the predicted degradation path. The confidence interval
shrinks in size because the degradation rate parameter (bottom row of plots) be-
comes more accurately known as more observations of the uncertainty are obtained.
Note that as the RTO iteration number increases, the starting time of the predic-
tion gets later and later.

final confidence interval shrinks in size since the uncertainty does not have to be
propagated so long in time. Secondly, more observations of the degradation have
been observed for later DRTO iterations, which are used to update the probability
distribution of the uncertain degradation parameter. This is shown in the bottom
row of Figure 4.10. Starting from a relatively wide apriori distribution for the
degradation parameter, the distribution narrows down as more observations are
obtained. The red lines on the xy-plane indicate the 95% and 5% percentiles for
the plotted probability distributions.

We note that for the first 3 iterations, the upper bearing degradation constraint
is active for the ethane compressor. Similarly, for the first 9 iterations, the upper
bearing degradation constraint is active for the methane compressor. In order to
make sure that the constraint is not violated if the worst case realization happens,
the methane compressor and the ethane compressor is throttled down a little. In
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order to still satisfy the —150 °C LNG outlet temperature constraint, the load on
the propane compressor is increased. The increased load on the propane compressor,
and the fact that the ethane and the methane compressors are running at non-
optimal operating points, increases the overall energy consumption of the system.

4.6 Conclusion and future work

In this paper we presented a framework for the optimal operation of process plants
in the presence of degradation. This concept was dubbed health-aware operation.
We argued that explicitly including the plant degradation in the decision making
process leads to improved flexibility and more optimal operation than the conven-
tional approach. Common practice today is that the allowable operating region of
the plant is reduced by introducing additional constraints originating from a worst-
case reliability consideration. Without continuous adjusting of these constraints,
operation is sub-optimal. Due to the lack of feedback, conservatism must be intro-
duced to ensure that all the constraints are satisfied at all times. By including the
plant degradation directly in the control problem, feedback is introduced.

Due to the vastly different timescales on which degradation usually occurs, it is
useful to divide the decision making process into hierarchical layers, where each
layer follows a different time scale. Depending on the process in consideration, we
discussed how one might go about designing a health-aware control strategy.

To illustrate the ideas discussed here, we applied the method to the case study
of the refrigeration section of an LNG liquefaction plant. As LNG liquefaction is
hugely energy intensive, the main aim of our control structure was to minimize the
energy consumption of the refrigerant compression section. A secondary objective
was to ensure that compressors were able to perform their intended task until the
next maintenance intervention.

In the planning layer of our control scheme, a DRTO was tasked with balancing
the load-induced degradation of the compressor bearings such that it would not
exceed a predefined threshold at the next scheduled maintenance intervention. In
a shrinking horizon fashion, the operation strategy was continuously adjusted by
the DRTO to reflect the current plant conditions. To account for the inevitable
plant-model mismatch in the prognostic degradation model, a worst-case dynamic
optimization method was used. As more observations of the actual degradation
were obtained, these were used to update the confidence interval of the degradation
prediction.

In the supervisory control layer of our control structure, an NMPC was used to
reject process disturbances on a minute-to-minute basis and while simultaneously
ensuring that the maximum degradation rate prescribed by the DRTO was not
exceeded. To account for the mismatch between the NMPC model and the plant,
a scenario-based optimization was used. This way, the NMPC was near-optimal
independent of the actual disturbance realization, while simultaneously ensuring
that the LNG outlet temperature constrain was not violated.

In future work, we would like to apply the proposed method on a real-world case.
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For example, in a real-world process, multiple failure mechanisms would have to
be considered, rather than just a single one, like was done in this study. More
sophisticated ways of handling uncertainty, such as risk-averse formulations for the
upper layers of the decision hierarchy, might be useful, especially when constraint
violation has large economic impact (e.g. equipment failure).
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4.7 Appendix A - Model for the cascaded LNG
refrigeration cycle

In this section, we describe the system model for the LNG refrigeration plant. In
Subsection 4.7.1 we describe the thermodynamic model / equations of state of
the refrigerants. In Subsections 4.7.2, 4.7.3 and 4.7.4, we describe the models of
the compressors, valves and evaporators, respectively. The system is mostly static,
with the exception of the energy balances of the receivers, which are given in section
4.7.5.1n the following sections, we will use the subscript ¢ € {propane, ethane, methane}
to refer to the three refrigerants to generalize the notation and avoid cluttered
equations.

Model parameters for the various units are given in the Appendix B.

4.7.1 Thermodynamics

The thermodynamic properties of propane, ethane and methane are calculated
by polynomial surrogate models. AllProps [95], a software package for calculating
thermodynamic properties of selected refrigerants using the Helmholtz equations
of state, was used to fit the surrogate model.

Saturation temperatures, liquid enthalpies, vapour enthalpies and heat capacities
of the refrigerants are calculated as

2
Toati = Y €Ty 1. - l0g(P;)! (4.14)
§=0
6 .
I:Iqu,i = Chyaii” P’ (4.15)
j=0
6 .
-Hvap,i = Cﬁ[vap,i’j . -P7J (416)
7=0
2
Cpi =) _cc,.i T}, (4.17)
7=0

where P; is the pressure of refrigerant ¢, and c, ; are the model parameters, which
can be found in Tables 4.1, 4.2, 4.3 and 4.4, respectively.

Dranchuk and Abou-Kassems equation of state [45] is used to calculate the com-
pressibility factor Z; of the three refrigerants in the vapour phase, as a function of
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the reduced temperatures and pressures T;.; and P, ;

Cz.2 Cz.3 Cz. .4 Cz. .5
Zi=1+4 g1+ 20t 4 23 “Zid 4 45 g 4.18
( Z;,1 (Tr,i) (Tr’i)d 4 ) 5) ( )

CZ;i,7 €Z;,8 2
+|cz,6+ + B
( (TT7i) (Tr,i)2>

Czir | CZi8 5
— 4+ —— CZth
((Tﬂi) (Tr,i)2>
B2
+ez10 (1+ cz,118%) T3 | &P (—cz11B?),

where
0.27P,;
T;
Tr,z = Tc,i (420)
P;
Pri= 5 (4.21)

The coefficients for Equation (4.18) can be found in Table 4.5

4.7.2 Compressors
The compressors can be assumed to be polytropic compressors, i.e. we can assume

that k
1/k;
(wachwel> - <Pdwchwel) / (4.22)

Tsuction,i Psuction,i

where the polytropic coefficient k; is

Vi
ki =n; 4.23
Mo (4.23)
1 C suction,i C ischarge,i
N = = < p,suction, + p,discharge, > ) (4.24)
2 Cp,suction,i -R Cp,discharge,i -R

7; is the polytropic efficiency, and ; is the ratio between the average heat capacity
at constant pressure C, and the average heat capacity at constant volume C, =
Cp — R, where R is the universal gas constant.

The compressor head is

ki Zsuction,iR

ho P Ty Tisc ar ei_Tsucioni ) 4.25
poly, gM,, (Taischarge, tion,i) ( )

where g is the gravitational constant and M, ; is the molar weight.
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Equipment-specific compressor maps are used to calculate the efficiency n; and
compressor head hpoy,; for each of the compressor.

i = cni,lhpoly,SCaled,i + Cni2 — 10(67”'Bhpoly'scahd’iicw'4) (4'26)
and
Gsuction o Ccomp,tholy,scaled,'L — Ccomp,3 4.97
comp.\Ccomp,1 ( . )
(ui ) Ccomp,4
hsuction,iRTsuction,i
Qsuction,i — (428)

Psuction,i

h .
o poly,i
hpoly,scaled,z o (u?omp')Chpoly,sca,led,i,,l (429)

K3

where Gsyction and Tsyction,i are the suction volumetric and molar flow rates. u;""

is the compressor speed normalized, i.e. the speed in RPM divided by the operating
speed in RPM.

Coefficients used in Equations (4.26)-(4.29) are shown in Tables 4.6-4.8 in Appendix
B.

4.7.3 Valves

The flow through the system is given by the valve opening. The molar flow is
calculated as
hi = u;‘ml’uecchoke,i Pout - Pz (430)

where uf““’e is the fractional valve opening and cepoke,i is the valve constant. The

valve constants for the system can be found in Table 4.9.

4.7.4 Evaporators and condensers

The temperature change of the refrigerant in the evaporators and condensers is
given by the energy balance

. AT, — AT,

@ =U4; log ATy — log ATy (4.31)
= Heold,out — Heotd,in (4.32)
= Hpot,in — Hhot,out, (4.33)
where
ATy = Thot,in — Teold,outs (4.34)
ATy = Thot,out — Teotd,in- (4.35)

4.7.5 Dynamics

For the sake of the two optimization-based control layers, we can assume that the
levels in the receivers are perfectly controlled on the time scale we are interested in.
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On the time scale of the MPC, the dynamics of the system are caused by thermal
inertia of the three receivers. Since the receivers are relatively large, the exchange
of energy is relatively slow, and cannot be assumed to be instantaneous.

The dynamic energy balances of the three receivers can be written as

dTreceiver P thS
—— = ———— (T3 — 17 4.36
dt Nyeceiver ( 103 104) ( )
dHreceiver g °. . 2 . ES
—a P = Hoga — Haos = 204 Haoa — 71205 Haos (4.37)
dHreceiver.Z\/[ g : . 2 . ES
—a " H3os5 — Hso6 = 1305 H305 — 11306 H306 (4.38)

4.7.6 Compressor bearing degradation

Paris’ crack propagation model [130] is used to predict how the bearing defect
will develop over time. Given a surface crack of size a, it will increase in size
exponentially when force is applied. Paris’ law states that

da

—  —D-(AKO)" 4.
R (AK)", (4.39)

where n¢ycres is the number of cycles, AK is the strain applied to the system, and
D and n are constants. Assuming that the motor torque can be used as an indicator
for the strain [20], the above equation can be reformulated as

da

2 P2
E = CParis * (T : fs) = CParis * ( ) s (440)

s
where cpgris is a lumped parameter, T is the motor torque and P is the motor

power. In this case study, we assume that the true value of cpg,s is not known, so
that it must be estimated online.
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4.8 Appendix B - Design parameters

Table 4.1: Design parameters for calculating the saturation temperature in Equa-
tion (4.14)

Parameter Value
Propane Ethane Methane

.0 | 3:0053 24141 1.4966
¢r..a | 093582 0.77135  0.51530
T sz | 0.24817  0.21080  0.13110

Table 4.2: Design parameters for calculating the specific liquid saturation enthalpy
in Equation (4.15)

Parameter Value

Propane Ethane Methane
Cl15q.4,0 -9992.7  -9447.4  -15187
Chginl 15991 12605 5974.2
Clgs,2 -11110  -12132  -5488.7
i3 4838.4  7061.9 3138.6

Ca | 97054 21465 -943.33
Ch s | 50621 3191 13842
C o | 48879 18124 -T.6457

Table 4.3: Design parameters for calculating the vapor saturation enthalpy in Equa-
tion (4.16)

Parameter Value

Propane Ethane Methane
Ch. o | 90369 5906  -6622.6
ch. .. | 11005 62008  2117.7
ch. 5 | -12080 78849  -1650.9
Clenp.i,3 9271.9 54129  518.47
Ch. .4 | 36446 1973 -59.04
ch. .5 | 7252 356.06 0
Ch.. .6 | 56405 -25.103 0
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Table 4.4: Design parameters for calculating the heat capacity in Equation (4.17)

Parameter Value
Propane Ethane Methane
cc,i1 14.1504 9.4031 10.0858
cCp.i2 0.07550 0.1598 0.23931

copin | -1799107° 46231077 -7.336.107°

Table 4.5: Design parameters for calculating the compressibility factor in Equation
(4.18)

Parameter Value

¢zia 0.3265
¢z, -1.0700
2.3 -0.5339
¢4 0.01569
2.5 -0.05165
CZ;.6 0.5475
czin -0.7361
¢z,.8 0.1844
¢z 0.1056
CZ;,10 0.6134
Cz;,11 0.7210

Table 4.6: Design parameters for calculating the compressor efficiency in Equation
(4.26)

Parameter Value
Propane Ethane Methane
Cnitl 0.061733 0.03448682 0.0251571
Cna,2 -0.074 -0.074 -0.074
Cni 3 0.338767 0.18925109  0.138053
Cn; 4 6.5963 6.5963 6.5963
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Table 4.7: Design parameters for calculating the polytropic head in Equation (4.27)

Parameter Value
Propane Ethane Methane
Ceomp,1 1.79 1.79 1.79

Ceomp.2 1.9928  1.9928  0.27146
Ceomps | 351962  63.00  11.765
Ccompa | 18.3546  32.855  45.040

Table 4.8: Design parameters for calculating the polytropic head in Equation (4.29)

Parameter Value
Propane FEthane Methane

2.11 2.11 2.11

Chpol’y,scaled.’i 71 ‘

Table 4.9: Design parameters for calculating the molar flow through the valve in
Equation (4.30)

Parameter Value
Propane FEthane Methane
Cchokesi | 13.0 8.4 3.4
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Chapter 5

Health-Aware Operation of a
Subsea Compression System
Subject to Degradation

This chapter is from the article

e A. Verheyleweghen, J.M. Gjgby and J. Jaschke. Health-Aware Operation of a Sub-
sea Compression System Subject to Degradation (28th European Symposium on
Computer Aided Process Engineering (ESCAPE), Graz, Austria). Computer Aided
Chemical Engineering. volume 43, pages 1021—1026, 2018

5.1 Abstract

We propose an health-aware operation approach for combining short-term control
objectives with long-term profit and reliability targets. In particular, we present
a hierarchical approach for operating a compressor subject to degradation. We
consider a case study of a subsea compressor, where the goal is to maximize the
gas throughput, while ensuring that the compressor can be operated continuously
until a planned maintenance stop. In the top layer, we repeatedly solve a dynamic
optimization problem to find the optimal long-term operation strategy, subject to
load-induced compressor degradation. The supervisory control layer below receives
the computed setpoints and operational parameters, and applies them in a self-
optimizing control structure to ensure near-optimal operation in the presence of
disturbances. The regulatory control layer in the bottom stabilizes operation in an
otherwise unstable operating region (surge). We show the efficacy of our health-
aware operation approach by comparing it to traditional control structures where
the equipment health is not explicitly considered as part of the production opti-
mization. Our approach results in higher average production, without jeopardizing
the health of the system.
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5.2 Introduction

Unplanned maintenance intervention of subsea systems are costly, so it is necessary
to ensure that operation does not reduce the system reliability to unacceptable lev-
els. Traditionally, this has been achieved by introducing large safety margins and
enforcing conservative operational strategies. Better economical performance can
be achieved by employing prognostics and health monitoring (PHM), which means
that the system state is monitored and projected into the future. A natural exten-
sion of PHM is health-aware control, in which we combine control and reliability
objectives, yielding a control structure that maximizes plant profitability while
keeping the plant health within acceptable limits [152, 179].

Health-aware control is achieved by repeatedly solving a shrinking horizon dynamic
optimization problem to find an operating strategy based on the current compressor
health and its predicted development. The time horizon is from the present until
the next planned maintenance intervention, and the objective is to maximize the
profit subject to health constraints. The dynamics of this layer are on the time-
scale of weeks to months. On a more frequent basis, disturbances are rejected by a
supervisory control layer in order to keep operation close to the desired (optimal)
operating point. We use self-optimizing control ideas [161] to achieve this. The
lowest and fastest control layer is in charge of surge control. Surge is an unwanted
mode of operation characterized by limit-cycle oscillations in flow and pressure,
which can harm the internals of the compressor [107]. Traditionally, operation
is restricted by a generous safety margin from the surge line. However, it is often
desirable to operate closer to the surge line, as this leads to increased efficiency and
lower operating costs. An alternative to surge avoidance is active surge control. For
this purpose, a close-coupled valve (CCV) is introduced to the system. Using the
CCV, we can control the compressor characteristic, thereby stabilizing operation
in an otherwise unstable region [70]. A feedback linearizing controller proposed by
[17], is used for this purpose. An illustration of the proposed control structure is
shown in Figure 5.1.

Health-aware and economic
e . Months
optimization
gl
Self-opt.
supervisory control %
Q
v
Stabilizin H:
o e
control
ul
Plant Seconds

Figure 5.1: Multi-layer control structure for stable, health-aware operation.

The main contributions of this paper are the following: 1) We propose a three level
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control structure for health-aware control of a compression system. 2) We show
that the method outperforms traditional control methods

5.3 Model description

Compressor Plenum

[ or (y)

CCV Throttle

Figure 5.2: Flowsheet of the Greitzer compressor model

5.3.1 Short timescale dynamics: Surge

The surge model used here is that of a centrifugal compressor with an added CCV
for surge control, which as described by [160]. We use the transformed version of
the model presented by [70], by which the system can be described in terms of
the non-dimensional compressor mass flow ¢ and the non-dimensional pressure rise
across the plenum, . A detailed description and derivation of the model is given in
[70], but a summary is given below for completeness. An illustration of the system
is given in Figure 5.2. Three degrees of freedom are available for control in the
system: the compressor speed, the CCV opening and the throttle opening.

The two-state Greitzer model is given as:

o = Blic(8)—9-u (5.1)
b= L[o-ar(9)], (52)

where the (*)-symbol is used to denote deviation from the specified operating points,
b= ¢ — do and ¥ = ¥ — 1. (o, 10) is the specified operating point. In the above
expression, B is the Greitzer parameter, which is proportional to the compressor
blade tip speed U, B = kU, where k is a geometry-dependent constant. e s
the cubic approximation of the axisymmetric compressor characteristic, O is the
throttle characteristic, and the input w is the pressure drop across the CCV (as
determined by its opening). The compressor and throttle characteristics is shown
in Figure 5.3.

The compressor characteristic ¥ indicates the pressure rise for a given flow, and
is unique for every compressor. The characteristic is approximated by the cubic

2 (QB) = —k3¢® — k2tp® — k16, (5.3)

aw?2 \ W aw? \w
equipment-specific parameters relating to the peak and valley points of the com-

where k; = 2H (@— ), ko = 24 (m— ) and ks = iz, H and W are
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pressor characteristic. The peak point, (¢*,¢*) = (2W,¢*), is assumed to be the
surge point, with all points left of the peak being unstable.

Vg

Y,
-]

|4

¢

Figure 5.3: Cubic approximation of the axisymmetric compressor characteristic
(blue) and the throttle characteristic (red). The operating point (¢g, o) is shown
in purple and the surge point (¢*,¢*) = (2W,*) is shown in orange. The surge
line (surge point at various compressor speeds) is shown as the dashed line.

The throttle characteristic is given as
(N %o (.
o1 (9) = = (sien () VIVT - Vo). (5.4)

The intersection between ¥ and &1 gives the operating point (0, 10), shown in

purple in Figure 5.3

5.3.2 Long timescale dynamics: Compressor degradation

Variations in pressure and flow rate (as caused by surge) lead to radial vibrations,
axial thrust displacement and a large temperature rise. This will in turn damage
bearings, blades and other internal components [107]. We lump the accumulated
damage on all internal components into a health indicator state z, whose propaga-
tion is modelled as

oo

z=E | p1do +/ (pz ‘é(d)‘ + D3 ‘dg(d)‘) dt |, (5.5)

0

where E is the expected value operator, d = [W H wCO]T are independently
normal distributed disturbances and p; are weights. The p;-term is the damage
caused by regular operation, which is proportional with the throughput. The harder
the compressor is run (in terms of throughput), the more rapidly it degrades. The
po-term is damage caused by oscillations in pressure and flow, caused by surge.
The ps-term accounts for high-frequency oscillations, as these are thought to be
more harmful to the compressor than low-frequency oscillations.
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5.4 Hierarchical control structure for the subsea
compressor

Due to the large difference in time scales for the problem, it is natural to divide
it into several timescale-separated layers. The lowest layer stabilizes operation,
the middle layer rejects disturbances, and the top layer is used to ensure reliable
operation. Three degrees of freedom are available to achieve this: the pressure drop
over the CCV, u, the blade tip speed, U, and the flow through the compressor, ¢,
as determined by the throttle. The three layers are described in more detail in the
following subsections.

5.4.1 Stabilizing control layer

The purpose of the lowest control layer is to stabilize the compressor beyond the
surge line. For this purpose, we use a feedback linearizing controller which adjusts
the CCV. Feedback linearizing control enables controlling non-linear systems with
a linear control law, allowing for higher sampling frequencies due to the reduced
computational complexity. Since the surge phenomenon happens on a short time
scale, while simultaneously being non-linear, the use of feedback linearization is
appropriate. We use the feedback linearizing controller presented by [17]. A full
description and derivation of the control law is given there.

The proposed feedback linearizing controller for the CCV is:

u= 1o+ v, (5.6)

where v is the pressure drop across the CCV and pq and pg are controller tuning
parameters.

5.4.2 Supervisory control layer (Local disturbance rejection:
Self-optimizing control)

After stabilizing the system with the CCV, we can optimize operation by adjust-
ing the flow through the system. The operational objective is to maximize the
compressor efficiency, but operation too close to the surge point is penalized.

min 0% = —n(go) + B (2W = o). (5.7)

In the above expression 7 is the efficiency and [ is the penalty weight. Using self-
optimizing control [81, 161], we can keep the operation such that it is near optimal
in the sense of Problem (5.7) by controlling a combination of carefully chosen plant
measurements ¥, to a predetermined set-point:

c=H%9% (5.8)

In this case, the plant measurements are augmented by disturbance measurements,
d = [W H 1/1@0?, such that y = [gzb P d]T. A measurement combination
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matrix H59¢ that can be shown to minimize the average loss L = J (¢o,d) —
JoP ($3P", d) is [190]

(H599)T = (yYyT) "' @V, (5.9)

where
Y =[FWy Wy, (5.10)
and GY = %’0 o is the linearized system model evaluated at the nominal op-
erating point, F 0: d"g;pt is the optimal sensitivity matrix, and W,y and W, are

diagonal matrices of appropriate sizes with the variances of the measurement errors
/ noise n¥ and the variances of d.

5.4.3 Optimal economic and reliable operation

In the top control layer, we devise a dynamic real-time optimization (DRTO)
scheme to calculate the optimal compressor speed U and penalty weight S for
the SOC layer. The purpose of this layer is to adjust operation for the other layers
to ensure both economic optimality and satisfaction of operational and reliability
constraints. At each time step we solve the following dynamic optimization problem

ty ty
min JPRTO — —/NPV((;SO)dt = —/ %o - dt (5.11)
r ’ (1+1)
s.t. T < Tmaz (5.12)
wout > wout,min; (513)

where NPV signifies the net present value with discount rate i and z is the degra-
dation from Equation (5.5). ¥out = ¥ 4 tres is the outlet pressure from the com-
pressor.

5.5 Simulations

The system described in Section 5.3 and the control structure described in Section
5.4, are implemented in MATLAB/Simulink and Casadi 3.0.0 [10]. IPOPT 3.12.3
[185] is used to solve the optimization problems Problem (5.7) and Problem (5.11).

5.5.1 Stabilizing control

Figure 5.4 shows the response of the system with the surge controller turned off
(solid blue line) and with the surge controller turned on (dashed blue line) to a step
change in ¢g. After the step, the new set-point lies within the unstable operating
region, causing the limit cycle behavior in the uncontrolled case.

5.5.2 Local disturbance rejection (Self-optimizing control)

Figure 5.5 shows the response of the SOC structure (open loop (OL) and closed
loop (CL)). As can be seen, the CL structure drives operation back to the optimal
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Figure 5.4: Closed-loop (CL) and open-loop (OL) responses to a set-point change
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Figure 5.5: Open loop (OL) and closed loop (CL) losses for the SOC structure for
the disturbances W, H and ¢,

point. The OL structure, while stable thanks to the surge controller, does not.
Operation continues at a sub-optimal operating point, resulting in higher cost.
Note that for the simulated disturbance in H and 1., , the steady state loss for the
CL structure is higher than that of the OL structure. On the other hand, a step in
W results in a lower loss, illustrating that it is the average loss that is minimized
by Problem (5.9), not the loss for each individual disturbance.

5.5.3 Optimal economic and reliable operation

We consider three cases of DRTO. The DRTO1 and DRTO2 do not take the de-
gratation constraint into account, and differ in terms of the maximum allowable
shaft speed. DRTO1 allows higher shaft speed. DRTO2 is more conservative with
a lower maximum allowable shaft speed. The DRTO3 is health-aware and does not
have constraints on the shaft speed, but instead ensures that the degradation is
not exceeded. The closed-loop responses of the DRTOs are shown in Figure 5.6.
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It can be seen that operation is adjusted to maximize the NPV of the produc-
tion in all three cases by gradually reducing the production over time. However,
only the ”conservative” DRTO2 with the lower maximum allowable speed and the
health aware DRTO structures satisfy the reliability constraints. The non-health-
aware DRTOs do not ”see” the compressor degradation. The system is disturbed at
around ¢ = 1.5 and again at ¢ = 2.5, by stepping first up, then down in the degra-
dation speed, to show that the health-aware control structure takes into account
the updated health information.

B 100 L
@ =

=
'%7 s 06
) ~ [ -
= £ £ 3 04l T
= 510 S S
[ ~ [—DRTO1 %

——DRTO2

Health-aware DRTO3
L 1 ----Bounds

Time [yrs.] Time [yrs.]

Figure 5.6: Closed loop responses of the regular DRTOs and the health-aware
DRTO to disturbances in degradation speed.

5.6 Concluding remarks and future work

We have proposed a control structure for a compression system subject to long-
term load-induced degradation. By using time scale separation it is possible to
counteract surge and reject disturbances, while also achieving long term optimality
and satisfaction of reliability constraints. We have shown that the proposed method
is better than a "regular” DRTO scheme, in which reliability considerations are not
taken into account when planning future production.

Several assumptions have been made in this work: we assume perfect state feedback
for the DRTO, meaning that we can measure the health indicator state directly and
without errors. This is somewhat unrealistic. In practice, we need to estimate the
health indicator from other measurements. In the DRTO, we did not use parameter
estimation to adapt the model when the operating conditions changed. Finally,
the DRTO has to be made robust towards model uncertainty by formulating a
robust/stochastic optimization problem. This will be addressed in future work.
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Chapter 6

Oil Production Optimization of
Several Wells Subject to Choke
Degradation

This chapter is from the article

e A. Verheyleweghen and J. Jédschke. Oil Production Optimization of Several Wells
Subject to Choke Degradation (IFAC Workshop on Automatic Control in Offshore
Oil and Gas Production (OOGP), Esbjerg, Denmark). IFAC-PapersOnLine. volume
51(8), pages 1—6, 2018

6.1 Abstract

Unplanned maintenance interventions of subsea oil and gas production systems are
very expensive, which leads to strict requirements to equipment reliability. With-
out a systematic way to ensure reliable operation however, a very conservative
operational strategy is often chosen, which can lead to sub-optimal operation and
the loss of large potential profits. We propose to integrate condition monitoring
and prognostics into the production planning problem to reduce conservativeness
by actively steering plant degradation and preventing violation of health-critical
constraints. We achieve this by combining equipment degradation models with reg-
ular process models and solving a shrinking horizon real-time optimization problem
until the next planned maintenance horizon. A network of oil and gas producing
wells with artificial gas lift, subject to particle induced choke erosion is used as a
case example.

6.2 Introduction

In this paper we consider an oil and gas production network consisting of multiple
wells. The wells are connected to a common manifold, from which the combined
flow goes through a riser to a topside receiving facility. As the field matures, the
reservoir pressure decreases. Eventually, the pressure might drop to such low levels
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that fluids can no longer overcome the resistance in the riser, and production comes
to a stop. Artifical gas lift can be used to reduce the pressure drop and increase
the flow, prolonging the lifetime of the field.

However, increased volume flows (and consequently velocities), in addition to the
decreased density, may lead to accelerated degradation of vulnerable parts of the
system. In particular, erosion of chokes and bends may be a problem, especially if
the sand production from the reservoir is high. Particle erosion can severely limit
the remaining useful life of exposed equipment. In rare cases, sand erosion has been
known to erode away critical components such as chokes in as little as a few hours
[73]. Choke replacement frequencies of 3-4 months, though having significant costs
associated with them, are not unheard of in the subsea industry.

Sand production generally tends to increase as the field matures and reservoir
pressure decreases, though it can also pose problems in some green fields. It is con-
sequently vital to consider potential sand erosion when deciding on a production
strategy, in order to prevent breakdowns which require costly unplanned mainte-
nance intervention. Common industrial practice is to define an acceptable sand rate
(ASR) above which operation is not permitted. The ASR is often conservatively
defined in order to account for worst-case erosion scenarios. The operational de-
grees of freedom for production optimization are consequently severely constrained,
leading to sub-optimal operation.

The conservativeness can be reduced by monitoring the rate of erosion on criti-
cal components real time and adjusting operation to reflect equipment integrity.
Monitoring usually involves periodic inspection of weight loss coupons. Real-time
erosion monitoring systems, such as ABBs INSIGHT [2], exist, but are not yet
widespread in industry. These systems are usually not integrated with the control
system. Set-points of the control system must still be manually adjusted by the
operator. This dependency on the operator can lead to delays, manual overrides
and overall reduced efficiency of the production system.

In this paper, we use a health-aware real-time optimization (RTO) approach, in
which health monitoring and prognostics is included in the decision making pro-
cess to find the optimal operational strategy without jeopardizing equipment health
[179]. Specifically, we formulate the problem of optimal operation as a dynamic op-
timization problem where the objective is to maximize the overall profit of the
plant, without violating constraints on the maximum allowable choke erosion. We
also show how uncertainties in the model parameters can be taken into account
by formulating the problem of optimal operation as a worst-case / min-max opti-
mization problem or a multi-stage stochastic optimization problem. We implement
both methods and solve the problem repeatedly in a shrinking-horizon, RTO-like
fashion.

The remainder of the paper is structured as follows: In Section 6.3 we give a
process description for the gas lifted well network. In Section 6.4 we formulate the
optimization problem and explain how uncertainty is treated. Simulation results
are presented and discussed in Section 6.5. Finally, concluding remarks are given
and future work is described in Section 6.6.
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6.3 Process description

The model for the oil and gas production system used in this work is based on the
model by [89]. An illustration of the process is given in Figure 6.1. A full description
of the model is given there, but for the sake of completeness, we provide a summary
below. The model was modified slightly in the following ways:

1. The model uses a larger time horizon since our aim is to do health-aware RTO,
which requires the time horizon to capture the degradation dynamics. We
therefore assume that changes in mass flow rates are instantaneous, resulting
in constant mass hold ups. The dynamics in our work are instead dictated
by gradual choke degradation and slow decline of reservoir pressure.

2. The model considers a three-phase system consisting of oil, gas and water.

3. The model is extended to include three wells and a riser

Production

Topside
facility

Figure 6.1: Illustration of the oil and gas network with artificial gas lift.

Gas injection at the bottom of the well lowers the average fluid density, thereby
reducing the hydrostatic pressure drop in the well. As a result, the bottom hole
pressure and consequently the flow from the reservoir increases, until a certain
point. Too large gas injection rates result in increased frictional pressure drop due
to increased velocities. We define the short term optimal gas injection rate (with
respect to oil and gas production), as the point at which the marginal frictional
pressure drop is balanced by the marginal hydrostatic pressure drop. As we shall
see later, the increased velocities lead to more rapid degradation, which might force
us to operate at lower-than-short-term-optimal gas injection rates.
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6.3.1 Process model

The steady-state mass balances in each well are

6.1)
T = Tpw + 1o (6.2)
6.3)

where 174 is the flow rate of lift gas through the annulus, 12,4 is the flow rate of gas
from the reservoir, and 1,4 and 10, are the flow rates of produced gas and liquid
respectively. The liquid flow 7, is the sum of the flow of water m,., and the flow
of oil 1,, from the reservoir. Finally, the total flow rate through the production
choke is m,. Adjusting the gas lift rate and the total flow through the production
choke is achieved by opening and closing the valves. The flow rates can then be
expressed in terms of the valve equation:

Mpg = Mpg+ My (

mpy = Mpg + My, (

m, = Cpc Pw (pwh_pm) (6.4)
g = Cig\/Pa (Da — Pui)- (6.5)

Here, C). and (4 are the valve coefficients of the production choke and the lift
gas valve respectively, and p,, and p, are the fluid densities in the well tubing and
in the annulus. Pressures p driving the flow are denoted by wh for wellhead, m for
manifold, a for annulus and wi for well injection point.

Assuming that the ideal gas law can be applied here, we express the density of the
gas in the annulus as

Mpq
Pa = TR (66)
Mg
T AL, (6.7)

where M is the molar mass of the lift gas, T, is the temperature in the annulus
and R is the universal gas constant. The average density in the well tubing is
Mgt + my — plLrAr
P { 6.8
p T A (6.8)
pr = WCpy+ (1 - WC)p,. (6.9)

In the above expressions mg,, mg: and my; are the hold-ups of gas in the annulus,
and hold-ups of gas and liquid in the tubing, L, and A, are the length and cross-
sectional area of the tubing above the gas injection point, and L,, and A,, are the
length and cross-sectional area of the tubing below the gas injection point.

The flow from the reservoir is given by

mrl = PI'(prfpbh) (610)

we = e (6.11)
My

yg = GOR -1y, (6.12)
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where
My T

V.
Above, PI is the productivity index, WC' is the water cut, GOR is the gas-oil-ratio,
and p, is the reservoir pressure. These are well-specific parameters.

Finally, the well pressures are decreasing as the reservoir is slowly depleting. We
model the reservoir as a storage tank, yielding
dmyg
dt

= iy (6.14)

6.3.2 Choke degradation model

Choke erosion rates depend on a number of different factors, such as physical
properties of the fluid and the impacting particle. In addition, erosion rates are
heavily dependent on the choke geometry, as this will influence the flow patterns.
It is therefore a challenging task to predict the erosion rates for a given choke,
without expensive computational fluid dynamics (CFD) simulations. [44] give an
overview over some erosion prediction models for simple choke geometries, based
on which they recommend ASRs. We use the erosion model presented in [44], which
is a variation of the model presented in [73]. The erosion rate is given as

dE  K-F(a)-U} ~
E = W -G Cl - GF - Msand * Cunit (615)

where % is the erosion rate in mm/yr., K, n, C;, GF and Cy,; are various

constants. Mmgqnq 1S the sand production rate and G is defined as

_dp B (1.88 - log (A) — 6.04)

¢ D

(6.16)

pipe
where d, is the particle diameter, and D,, is the pipe diameter. 8 and A are di-
mensionless parameters

A = Re.tanﬁ(a) (6.17)
B = % (6.18)

where Re is the Reynolds number of the flow, p, is the particle density and py is
the fluid density.

The sand production rate mgqnq is assumed to be proportional to the overall mass
flow rate from the reservoir:

Msand = SR - mra (619)
where SR is the sand rate parameter. Furthermore, in Equation (6.15), F is the

ductility of the choke gallery material, which is

F=06- [Sin(a) +7.2 (sin(a) — sinz(oz))]o'6

-[1 — exp(—20a)] (6.20)
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for ductile materials. Here, « is the particle impact angle, which is given as

« = arctan ( (6.21)

1
\/2R> ’
with R being the radius of the choke gallery. U, is the particle impact velocity,
which is determined by

3-Q 3-Q
U, = = ,
4-A, 8-H-D

(6.22)

where @ is the actual volumetric flow rate, A, is the effective gallery area, H is the
effective height of the gallery and D is the gap between the choke cage and choke
body.

6.4 Optimizing economic performance subject to health
constraints

By combining the process model and the health degradation model described in
Section 6.3, the combined DAE model can be used to formulate an optimization
problem in which the economic performance is maximized subject to constraints on
the maximum allowable health degradation. In previous work [178], we have shown
that failing to include the constraints on health degradation will lead to unreliable
operation, since this constraint always will be active in the optimal solution for the
operation strategy.

The health state of the plant is assumed to be known at any given time, meaning
that real-time erosion monitoring systems are installed and working.

The optimization problem which is solved at each RTO iteration can be written
as:

123
min/gb(x,z,u,p) dt (6.23a)
to
s.t. f(x,z,u,p) <0 (6.23b)
g(x,2z,u,p) =0 (6.23c)

where ¢ is the objective function which is to be minimized, and f and g are the
inequality constraints and equality constraints. The variables x, z and u denote
the differential states, algebraic states and inputs, respectively. p is used to denote
the uncertain parameters.

The dynamic problem from Problem (6.23) is discretized and solved with orthog-
onal collocation with three collocation points for each finite element [27]. The
discretized problem can be written as

N
m&nz ¢ (Xk, Zk, Uk, P) (6.24a)
k=1
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s.t. f(xk,2g,ug,pr) <0 Vk=1..N (6.24b)
9(Xk, 2k, ug, pr) =0 Vk=1.N (6.24c)

where N denotes the horizon length.

6.4.1 Uncertainty handling

To account for plant-model mismatch / parametric uncertainty, or intrinsic stochas-
ticity of the system, we consider some of the variables (denoted p in Problem (6.23))
to be stochastic. In particular, it is assumed that the sand production rate SR and
the productivity index PI in each of the three wells are stochastic. For simplic-
ity, we assume that the nine uncertain variables are independent and normally
distributed, pgr ~ N (ug, or)-

Various approaches for optimization under uncertainty are found in literature. Two
of the most popular approaches are worst-case optimization and scenario-based
optimization.

Worst-case optimization; stochasticity is acknowledged by substituting in the
worst-case realizations in the uncertain parameters. If constraints are satisfied for
the worst-case realization, they should also hold for other parameter realizations,
for most cases. Though it can be shown that the worst-case solution may be infea-
sible for other parameter realizations, this approach has been successfully demon-
strated for a number of practical applications.

Scenario-based optimization; in which the probability distribution of the un-
certain parameters is discretized into a finite number of scenarios and incorporated
into the optimization problem in the form of a scenario tree. An illustration of a
scenario with four scenarios is shown in Figure 6.2.

By optimizing for all scenarios simultaneously, it is ensured that the obtained
solution is not only feasible for the worst-case realization or expected realization,
but for all possible realizations in the scenario tree. Furthermore, the degree of
sub-optimality of the solution can be reduced by weighing the individual scenarios
with their respective probabilities. This leads to a solution that is, on average, less
conservative than the worst-case approach. Possibility of future recourse is included
in the optimization by design of the scenario tree, which makes this method well
suited to RTO problems under uncertainty.

The drawback of the this method compared to the two others is the increased
problem size and consequent computation time, due to the need for additional
variables for each scenario.

Worst-case and scenario-based RTO maybe classified under the umbrella-term of
robust optimization, in which parameter realizations are assumed to occur within
bounded uncertainty sets. These approaches are perhaps the easiest to grasp con-
ceptually, but other ways to handle uncertainty (such as chance constrained opti-
mization, dynamic programming, and fuzzy programming) exist in literature. We
will however only consider worst-case and scenario optimization in this work.
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6.4.2 Worst-case optimization

The worst-case optimization problem can be written as

N
m&nZ(ﬁ(xk,zk,uk,pZ) (6.25a)
k=1
s.t. P = argngiXHf(Xk,Zk,uk,pk)||
Vk=1..N (6.25b)
9(Xk, 2z, U, Pr) =0 Vk=1..N (6.25¢)

where pj is the worst-case parameter realization, i.e. the scenario which leads to
the largest constraint violation. Due to the two nested optimization problems, this
approach is also known as min-max optimization. These problems are generally
difficult to solve or even intractable [22]. In general, we must require p; to be
bounded for the inner problem to have a solution. In some cases, such as the one
considered in this work, the worst case parameter realization p; can be known
a priori. This significantly simplifies the problem since the second optimization
problem disappears.

6.4.3 Scenario-based optimization

In scenario-based optimization, we discretize the continuous distribution function
into a finite number of discrete scenarios, and optimize the following objective

5 N
m&HZPz‘ Z ¢ (Xi ks Zi ks Wik, Pisk) (6.26a)
i=1 k=1
subject to the following constraints
s.t. f(Xiks Zi gy Wi g, Pik) <0
Vi=1.S,k=1..N (6.26Db)
9(Xi 1, Zi ks Wik, Pisk) = 0
Vi=1.5, k=1.N (6.26¢)
s
A =0 VE=1.N (6.26d)

i=1

where S is used to denote the number of scenarios, and p; denotes the probability
of realizing scenario 3.

Equation (6.26d) are the so-called non-anticipativity constraints, which are needed
to enforce non-anticipativity, i.e. making sure that the optimal solution does not
depend on yet unrevealed information. The scenario tree shown in Figure 6.2 has
N =20 and S = 4, for example.

For the kind of scenario trees encountered in RTO problems, each branching rep-
resents the different parameter realizations due to uncertainty. One might expect
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Figure 6.2: Scenario tree with N =20 and S = 4.

that the branches from each node should be identical to the branches from its
parent node. Alternatively, if the unknown parameters are estimated between each
RTO iteration, this information can be included in the scenario tree by propagat-
ing the probability distribution into the future from each node and adjusting the
parameter realizations of the child nodes according to the propagated probability
distribution. In any case, this would lead to exponential growth of the scenario tree,
with each scenario tree having nY scenarios, where n, is the number of discrete

-
realizations of the probability distribution.

To avoid this explosive growth of scenarios, a robust-horizon N, pust < N, i.e.
the stage until which branching occurs, is commonly defined [102]. By choosing a
robust horizon shorter than the RTO horizon, we disregard the possibility of future
recourse, and are consequently expected to get a sub-optimal solution. However,
the loss is expected to be small, since the later stages of the RTO typically do not
effect the objective much. A robust horizon longer than Ny opyust = 1 0 Nyppuss = 2
is rarely used, since the marginal improvement of the solution in practice rarely
justifies the increased dimensionality of the NLP. In this work, we only branch
once, s0 Npopust = 1, which yields a two-stage stochastic program.

We further reduce the number of scenarios by limiting n,, the number of discrete
realizations used to approximate the continuous probability function. We generate
the scenario tree similarly to what is proposed by [103], i.e. by using all possible
combinations of the maximum and minimum uncertain parameter realizations, in
addition to a scenario for the expected and nominal uncertain parameter realiza-
tions, for a total of n,, = S = 65 scenarios. The possible scenario realizations are
given in Table 6.1.
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Table 6.1: Possible realizations considered for the uncertain parameters in the
scenario-based approach.

Variable PI, SR
wells 1...3 wells 1...3
Lower 6.3-107°[] 0.80-1072 []
Mean  6.5-107¢ [-] 0.85-1072 [-]
Upper  6.7-107% [-] 0.90-102 []

6.4.4 Summary of scenario-based problem formulation

The objective is to maximize the profit, i.e. maximizing the oil and gas production
and minimizing the cost of produced water and the cost of gas .

S=65 N
o, min ; pi ,;NPV (6 (i b, Zi 0 Wi 1)) (6.27a)
where
3
b= Cqlitrg + Cotito + Cigtingg. (6.27b)
well=1

Here, NPV is the net present value with a discount factor » = 0.1 and ¢4, ¢, and
ciy are the gas price, oil price and gas injection cost, respectively. We assume ¢, =
3 USD/MMBtu, ¢, = 44 USD/bbl, ¢, = 1.3 USD/MMBtu. Bound constraints
for the variables are given in Table 6.2. In addition come the non-anticipativity
constraints and the model constraints from Problem (6.26) for the scenario-based
approach. For the worst-case method, we have that Problems (6.25) and (6.26)
are identical when S = 1 and the worst-case scenario p;, is bounded and known
a priori. For this particular problem, we have that the worst case scenario occurs
when both PI and SR are high in all three wells.

Table 6.2: Bound constraints

Variable Lower Upper Unit
bound bound

Choke opening, wells 1...3 0 1 -]

Gas lift rate, wells 1...3 0 2.5 [ke/s]

Total gas lift rate 0 4.9 [kg/s]

Choke erosion, wells 1...3 0 0.5 [mm]

6.5 Results
We implemented the model in MATLAB using Casadi 3.0.0 [10] and solved the

NLP from the discretized problem with TPOPT [185]. Both uncertainty handling
strategies, i.e. worst-case RT'O and scenario-based RTO, were implemented.
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6.5.1 Problem

Problem (6.27) is solved repeatedly in a shrinking horizon fashion, starting with
N = 18. After finding the optimal solution, only the first input is implemented on
the actual plant, before the model is re-optimized. This process is illustrated in
Figure 6.3, which shows the open-loop solution of the scenario-based optimization
problem at three selected times ¢t = 0, ¢ = 2 and ¢t = 4 years. The predicted states
for the 65 scenarios are shown in solid lines, while past states are shown as dashed
lines. It can be seen that the first inputs are identical for all scenarios due to the
non-anticipativity constraints. Red, blue and yellow color distinguish the first well,
second well and third well, respectively.

Figure 6.4 shows the closed-loop solution of the scenario-based method (solid line
with circular markers) compared with the worst-case method (dotted line with cross
markers). The total profit of the two operational strategies, in terms of Problem
(6.27a), is 6.91 bn. USD for the scenario approach and 6.75 bn. USD for the worst-
case approach. Although the actual numbers should be taken with a pinch of salt,
the relative difference of approx. 2.5% is significant.

6.5.2 Discussion

In this work, we have assumed full state feedback, meaning that the initial values for
the states are perfectly known. To simulate plant model-mismatch, the uncertain
parameters are perturbed with random noise between each RTO iteration.

Since NPV of production is maximized, we see that early production is higher than
late production. Due to depleting reservoir pressure, we also see the need for more
lift gas as the field matures. However, due to the decreased density and consequent
higher erosion rates, overall production must be throttled down to prevent choke
failure, as only so much production can be permitted over the lifetime of the field.

6.6 Conclusion and future work

Our health-aware RTO framework combined diagnostics, prognostics and produc-
tion optimization of a subsea gas-lifted oil and gas production network subject
to sand particle induced choke erosion. We show that by combining a prognostic
model for the choke erosion in the production optimization, we can make sure that
critical erosion levels are not exceeded during operation, which means that the
risk of costly unforeseen maintenance interventions is minimized. We also show
that parametric uncertainty in the model should be handled with a scenario-based
stochastic optimization approach, as this leads to better economic performance
than the conservative min-max formulation that is commonly used.

The objective of the paper is to showcase the efficacy of our framework, rather
than providing results which correspond 1:1 with real field data. We have there-
fore used a simple choke degradation model and reservoir model. It is understood
that accurate models must be developed for the specific equipment in question
before real-world implementation. These degradation models will have to be devel-
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Figure 6.3: Three snapshots of the open-loop solutions of the scenario-based RTO
at t =0, t =2 and t = 4 years. The red, blue and yellow are for the first, second
and third wells, respectively. The dashed lines show the past states, while the solid
lines show the predicted states for each of the 65 scenarios.
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Time [yrs.]

Figure 6.4: Closed-loop solutions for the compared approaches. The solid line with
circular markers shows the scenario-based RT'O, while the dotted line with cross
markers shows the worst-case RTO. The red, blue and yellow scenarios are for the
first, second and third wells, respectively.
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oped by CFD simulations and/or in collaboration with equipment manufacturers.
Furthermore, future work will address the issue of overall plant reliability vs. sin-
gle component reliability, as correlation between failure modes may significantly
impact the overall plant reliability.
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Chapter 7

A Unified Approach for
Simultaneous Optimization of

Production and Maintenance
Schedules

This chapter is from the article

e A. Verheyleweghen, H. Srivastav, A. Barros and J. Jaschke. A Unified Approach
for Simultaneous Optimization of Production and Maintenance Schedules. IEEE
Transactions on Reliability. (Under review), 2020

7.1 Abstract

Many systems in process industry experience degradation which is dependent on
the usage of the system. At the same time, the systems generate some kind of profit
when utilized, which typically increases the more the system is used. Often, this
leads to a trade-off between maintenance costs and the profit associated with the
utilization of the system. How to optimally operate the system in order to achieve
a desired trade-off is a little-explored topic in literature. Common practice in many
industries is to optimize operational decisions and maintenance decisions more or
less independently of each other, subject to constraints to ensure feasibility of the
obtained decisions. This leads to sub-optimal utilization of the system. In this
paper, we propose a framework for formulating optimization problems which can
be solved to obtain operational strategies which simultaneously optimize the trade-
off between production profit and maintenance costs. We show how the discrete
decisions pertaining to maintenance times can be approximated by a continuous
model and solved using off-the-shelf optimization solvers. Because a global solution
cannot be guaranteed using our proposed method, we employ a heuristic multi-
start approach to find a near-global solution. We demonstrate the method on a
case study inspired by subsea oil and gas production.
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7.2 Introduction

In this paper, we propose an unified approach for simultaneous optimization of
the production or the system load, and maintenance schedules. Within the pro-
cess systems engineering community, the development of operational strategies
that maximize some economic objective of a chemical production plant, subject
to various constraints, is an important research question. How to optimally adjust
operational degrees of freedom to achieve higher throughput, while still ensuring
that the products are on-spec, is addressed on several time-scales and levels of
system complexity, all the way from operation of single components to plant-wide
operation [162].

Since plants like these inevitably degrade over time, maintenance interventions
need to be performed. The optimization of maintenance schedules is also a much-
explored research topic. Especially the field of condition-based maintenance (CBM)
has attracted a lot of attention in recent years, both from academia and from indus-
trial practitioners [7]. The main idea behind CBM is to monitor the degradation of
the plant, so that maintenance can be performed when necessary according to some
safety or economic criterion. This is turn leads to more efficient use of money, time
and other resources by avoiding premature (preventive) maintenance. However, in
certain industries, continuous process monitoring may not be possible due to lack
of technology or prohibitive cost. One such example is subsea oil and gas pro-
duction, where usually real-time equipment monitoring is currently not available
due to lack of qualified instrumentation. Another thing that further complicates
the issue is the fact that inspections are very costly, due to the need for special
inspection remotely operated vehicles (ROVs). Depending on the location of the
subsea installation, inspection might also be impossible to perform for long periods
of time due to weather conditions. In such cases, there might be significant eco-
nomical benefits to finding an optimum inspection and maintenance schedule in a
rigorous manner.

In this work, we will therefore focus on such cases where continuous monitoring
is not possible, and there is significant benefit to finding an optimal maintenance
schedule. For these kind of applications, literature has traditionally focused on
finding the optimum frequency of inspections for a periodic (equidistant in time)
inspection schedule [84]. However, as we shall discuss later in this paper, periodic
maintenance schedules are not optimal in general. One reason for the focus on
period schedules in literature is that the tools commonly employed for finding
these schedules are not well suited for the aperiodic case.

A major problem associated with maintenance optimization is that the problems
tend to be stochastic. Since degradation of process plants is typically not determin-
istic (either due to inherent stochasticity of the process, or insufficient information),
failure times and consequently maintenance costs are usually stochastic in nature.
Analytical expressions for the distributions may exist, but could be difficult to ex-
press. Consequently, a popular approach to obtain the distributions is by repeated
simulation of the system by the use of sampling (Monte Carlo) methods. Once the
distribution has been obtained, we can use it to evaluate the maintenance schedule
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according to some criteria, such as the expected cost or the value at risk.

During optimization of this criteria, we may need to evaluate the cost function
multiple times. Every single one of these function evaluations may be very compu-
tationally expensive, due to the need for a large number of Monte Carlo samples
when the dimensionality of the problem is large. If the aim is to find optimal non-
periodic maintenance schedules, i.e. if maintenance can occur at any point in time
and not just at fixed times (maintenance time is a continuous variable), the search
space becomes infinitely large and many function evaluations are necessary for
the optimization algorithm to converge. Extensions of traditional/textbook Monte
Carlo algorithms have been developed to somewhat reduce the amount of sam-
ples necessary for each evaluation of the cost function by choosing ”smart” sample
points. Unfortunately, this only partially mitigates the problem, and evaluations of
the cost function through the use of sampling methods tends to be computationally
expensive for large problem sizes.

As an alternative to sample-based methods for the evaluation of the cost, we may
use numerical integration, which is generally computationally cheap if the func-
tions are sufficiently smooth and convex. An underlying assumption is that we
are able to express the evolution of the probabilities as a differential equation.
However, it is not necessary that a closed-form solution of the integral exists. The
advantage of expressing the cost as a numerical integration is that we can sub-
sequently use theory from the field of dynamic optimization to find the optimal
maintenance schedule. Algorithms for numerical optimization can efficiently solve
certain large-scale decision making problems, with hundreds of thousands or even
millions of variables [67]. Sampling-based methods for evaluating the cost would be
infeasible for these large-scale applications due to the sheer amount of cost function
evaluations required.

Numerical approaches to combined production optimization and maintenance schedul-
ing were previously addressed in works by e.g. [58, 77, 129, 180, 188]. Typically,
the problem is formulated as a lot-allocation problem, meaning that the operation
is split into different modes or lots of products, the sequence of which is to be
optimized. Consequently, the problems end up being mixed-integer (non-) linear
programs (MI(N)LP). Generally, MINLPs are very difficult to solve, with solu-
tion times being orders of magnitude larger than for NLP problems of comparable
size and complexity. In general, solution time of MINLPs grow exponentially with
the number of integer variables [19]. Although algorithms have been developed to
deal with integer problems, we would rather avoid the use of integer variables (be-
cause this leads to much more difficult optimization problems) by reformulating
the problem. In this work, we avoid the use of integer variables by formulating the
problem using complementary constraints, which can be solved using off-the-shelf
NLP solvers to obtain local solutions in polynomial time [19]. Furthermore, we con-
sider the case where operation of the equipment can be adjusted in a continuous
fashion, which is also a largely un-explored topic in reliability literature.

In this paper, we propose a unified approach for simultaneous optimization of the
production and maintenance schedules. Note that because the problem is stochas-
tic, we optimize a statistic of the probability density function. Here, we chose to

93



7. A Unified Approach for Simultaneous Optimization of Production and
Maintenance Schedules

optimize the expected economical profit of the system by assigning an economic
value to each of the discrete degradation states. Note also that the obtained strate-
gies are only optimal in the expected sense, and not optimal for any one given
realization of the uncertainties. We start by using a differential model to describe
the degradation of the system and resetting the initial conditions each time main-
tenance is performed. We then show how this piece-wise, discontinuous model can
be approximated by a non-smooth, continuous model which is more suitable for
optimization.

Several methods for optimization of non-smooth problems exist in literature. Among
the most popular methods are subgradients methods and bundle methods. See e.g.
[71] for an in-depth discussion on the topic and the different methods. In our case,
the non-smoothness stems from the introduction of complementary constraints.
Using problem reformulations for mathematical programs with complementarity
constraints (MPCCs) from [28], the resulting problem can be solved using of-the-
shelf standard non-linear solvers such as IPOPT [185]. One disadvantage of using
local solvers is that only locally optimal solutions can be guaranteed. Depending
on the non-convexity of the problem, the local solutions may be significantly worse
we use a multi-start approach to converge to a solution close to the global optimum
in this paper. A subsea case example is used to demonstrate the proposed method.

The remainder of the paper is structured as follows; in Section 7.5, we use a small
toy example to show how a non-periodic maintenance schedule can result in higher
expected net profit than a periodic maintenance schedule, motivating the rest of
the paper. Then in Section 7.3 we show how to derive the general continuous
differential model. In Section 7.4.1 we show how to formulate an optimization
problem to optimize the net profit of a system by adjusting its inspections and
operation. We also show how a multi-stage problem formulation may lead to even
better economic performance, at the cost of a larger problem size. The case study
illustrating our method is presented in Section 7.7. Finally, concluding remarks are
given in Section 7.8.

7.3 Modelling framework for degrading systems

7.3.1 Modelling degrading systems

By ”degradation” of process systems, we mean the evolution of a health state or
reliability state in time. Both the evolution in time and the evolution in space can
be modelled either discretely or continuously. In reliability engineering, continuous-
time, discrete-state models are the most common [93, 153]. Consequently, in this
work, we limit ourselves to study systems whose degradation cannot be deter-
mined with arbitrary fidelity, but whose degree of degradation can be divided into
n, uniquely distinguishable, discrete degradation levels. The transition between
these discrete degradation levels is stochastic in nature, and happens at randomly
distributed times. Thus we can define a vector of probabilities

yG{MOSyiﬁLZ%l}CR%, (7.1)
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where the entry y; is the probability that the system is found in degradation level ¢
at time ¢. The transition between the degradation levels, i.e. the degradation of the
system over time, can be described in terms of the change in the associated prob-
abilities. The change in probability is given by the following ordinary differential
equation (ODE) system as

% — f@t) (7.2a)
y(t) = g(iL‘,t), (7'2b)

where we refer to f : R"* — R™ as the state equation and g : R™* — R™ as the
output equation. The function f is assumed to be piece-wise continuous in time and
locally Lipschitz, meaning that at a point xg, there exists a neighborhood around
(xo,t), N(xo,7) = {x € R ||| — 20|| < r} within which f satisfies the Lipschitz
condition.

[f(t, 1) = ft,22)|| < L2y — 2| (7.3)

where L > 0. If there exists a connected open subspace D in which all points are
locally Lipschitz, then f is said to be locally Lipschitz in D.

Remark 7.1. Requiring this condition for f guarantees that the solution of the
ODE (7.2) does not only exist, but is also unique. Uniqueness and existence of the
solution is necessary to guarantee causal determinism. In other words, if we have
perfect information about the system and the input-induced loads acting on it, we
can predict the future probabilities for degrading. If we were not able to predict
the future of the system, we would be unable to optimize decisions influencing the
future of the system, as we shall do later.

In the following two examples, we will show what the ODE (7.2) may look like,
based on three popular approaches to reliability modelling in literature: reliability
block diagrams (RBDs), fault trees (FTs) and Markov chains (MCs). RBDs, FTs
and MCs are all somewhat interchangeable modelling techniques, although they
do have their strengths and weaknesses [6]. As long as we are able to express the
degradation of the system in terms of a differential equation system, it does not
matter if the degradation model starts out as an RBD, an FT or an MC.

Example 7.1 (Application to RBDs & FTs):

A common way to represent complex multi-component systems in reliability engi-
neering is through the use of reliability block diagrams (RBDs) [141]. In RBDs, the
system reliability is represented as a combination of subsystems / components in
parallel or series configuration. In a parallel configuration, all subsystems must fail
before the system fails. Conversely, in a series configuration, only a single subsys-
tem failure leads to overall system failure. In RBD analysis, the system reliability
is found by checking whether there exists any path from beginning to end of the di-
agram. If no such path exists, then the system is considered to have failed. A RBD
may be converted into a fault-tree (FT), i.e. a set of logic gates that describe the
relationship between basic low level events and critical system level events such as
failure. An illustration of some simple RBDs and their corresponding FTs is shown
in Figure 7.1.
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Figure 7.1: Illustration of reliability block diagrams (right) and corresponding fault
trees (left). Taken from [141].

Since such a system is compartmentalizable, we split the state vector into k parts,
each corresponding to one of the k subsystems.
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The deterioration of subsystem 1 is described by

d:c,» _ 7
= = fi(x,t). (7.5)

Note that under the condition that the deterioration of the k subsystems happens
independently from one another, we can write
d:ci

dt = fi(wi,t), (76)
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i.e. the deterioration of component i is only dependent on x;, and not dependent
on x;4;. This independence makes the problem separable, and easier to threat
numerically.

Let 1) : R": — RF be a function that calculates the subsystem reliabilites x € R¥

x(t) = ¥ () (7.7)

1) could be a selection function, or a more complex relationship between the com-
ponent degradation states.

Then the system reliability, xs, is

Y(t) = xs(t) = h(x; 1) (7.8)

h : RF — R! is also known as the reliability polynomial of the system. The re-
liability polynomial of a system describes the connection between components in
a network of components. If we again assume that the k subsystems deteriorate
independently, then it can be shown that the reliability polynomial of the sys-
tem is equal to the structure function of the system. How to find this structure
function in a systematic and efficient manner is a large research topic in itself,
see e.g. [47, 143] for some binary decision diagram (BDD)-based methods that are
commonly employed. Finding these structure functions or reliability polynomial
functions is outside the scope of this article: we assume that they are known for
the systems we are working with.

For the example RBDs shown in Figure 7.1, the ODE describing the system degra-
dation can be written as

dx
E = f((l:,t)
[ fi(x1,t)
= f2 (332, t) (793)
| fa(®3,1)
x(t) = (=)
_wl(wlat)
= wg (wg, t) (79b)
| V3(x3, 1)
y(t) = gi(x,t) (7.9¢)
= Xs(t>7 (79d)
where
gi = X1°X2°X3 (7.9¢)
gi = 1—=(1-=x1)-(1—-x2) (1-x3) (7.91)
giii = x1-(1—=(1=x2)-(1—-x3)) (7.9g)

Note again that in this example, the subsystems/components degrade indepen-
dently of each other, such that f; and v; are only functions of x;, and not x;;.
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Example 7.2 (Application to MC):

A third, widespread method for describing the dependability or availability of a
system is with Markov chains (MCs). In Markov chains, the system is divided into
a set of discrete states. The transition between these states is stochastic, and the
transition probabilities are Markovian, meaning that they only depend on the the
current state of the system. For the case where the transition rates between the
states are constant over time, the evolution of the distribution of states over time
in a MC can be written mathematically as

dx
— = A 7.10

= z (7.10)
where A is known as the transition matrix. In this case, the ODE (7.2) is a linear
system.

7.3.2 Modelling the input-induced loads

As alluded to in the introduction, there are many examples of processes where the
rate of degradation depends on the operation of the system. For example, [156]
reports that the degradation of airplane gas turbine engines evolves exponentially,
but the rate of degradation is impacted by the operating mode of the airplane, in-
cluding parameters such as altitude, ambient temperature and throttle lever angle.

In marine vessels, propeller cavitation and fatigue due to cyclic loading are two
phenomena which negatively influence the efficiency of a vessel propulsion system
[35]. These degradation phenomena are influenced by the operating mode of the
vessel, so that higher vessel speeds lead to faster degradation.

Let us denote by u(t) : R — R™ the input-induced load on (or simply inputs to)
the system. We assume now that the transition rates f = f(x, u(t),t) = f(x,t) are
a function of these input-induced loads. Consequently, by changing w(t), we can
actively steer the evolution of the system degradation in a desired direction.

If f is Lipschitz in u, t, &, then the solution x(t) exists and is unique [168].

Example 7.3 (Modelling of wear-out and infant mortality):

If f is time-independent, this results in a constant failure rate for a constant input
w. Alternatively, a time-dependent function f allows us to model effects such as
wear-out (accelerated rate of failure towards the end of a systems lifetime) or infant

mortality (decreasing rate of failure at the beginning of a systems lifetime due to
burn-in) [164].

A bathtub curve hazard function with infant mortality and wear-out proportional
to the cumulative usage of the system can be modelled as

dx B - v(t)
g(m,t) = xs(t)=1[1 0] -x(t) (7.11Db)
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where ¢ Is a nonzero constant that determines the rate of degradation, v(t) =
[ ¢-u(t)dt is the cumulative usage of the system, and

z(t) = hl(g)} (7.12)

7.3.3 Modelling repairs

In the context of this work, let us by ”repairs” refer to the action of resetting
the state of the system, i.e. shifting probability from one discrete health state to
another. In practice, the probability of being in the degraded or failed state will
be reduced and the probability for being in a healthy state will increase corre-
spondingly, i.e. the system will be repaired. Note that since we are dealing with
probabilistic systems with multiple discrete health states, the expectancy of being
in the fully repaired state is not necessarily 1 after a maintenance intervention,
depending on the chosen maintenance strategy. If our maintenance strategy is to
only repair failed systems upon inspection, and to leave partially degraded systems
as is, then the probability of these partially degraded systems will not be altered
by maintenance interventions.

Repairs are assumed to be instantaneous, consequently they cause a discontinuity
in the system state. Inspection refers to the action of inspecting the system or a
component in order to assess which discrete state it is in.

If the system is found to be failed upon inspection, replacement, i.e. reactive repair,
is necessary to restore the system to an operational state. If the system is found to
be degraded, preventive maintenance could be performed to restore the system to
a less degraded state and reduce probability of a system failure.

We denote by = (T}) the left-handed limit of & when ¢ approaches T}, meaning x
at the moment immediately before the inspection at time Tj. Conversely, ™ (T})
denotes the resetted state, i.e. after inspections and maintenance. In a similar
vein, y~(T1) and y™(T}) denote the system output before and after inspection,
respectively. For inspection and maintenance at time 77, the system probabilities
before and after the inspection and maintenance intervention are

xz (T1) = lim :c(t)z/f(:c,T)dT

t—T1
y () = g(& (Th),Th) (7.13)
T (1) = tlirrTl1 z(t) = Mx™(Ty)
y (1) = gla™(T1),T1) (7.14)

Since f is Lipschitz, the limit =~ (7}) exists and is unique. Here, M € R(em2) g
a square repair (maintenance) matrix.
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For k repairs at times T = [Tl, e Tk] T, the system probabilities can be expressed
at any time ¢ by the following piecewise model

Ty

J fla,t)dt

To

ZIB(T()) =xy if To<t<Ty

T>

J flx,t)dt

T

z(t) = Ya()=2"(Ty) if T <t<Ty

Ty

J f(z, t)dt

Ty

x(Ty) = w+(Tk) if Tp, <t<Ty

yt) = glx,t) (7.15)
where
T;
z (T;) = f(z, t)dt (7.16)
J
e (T;) = M(T;) = (T)). (7.17)

Again, because f is Lipschitz, all the pieces of the piecewise x(t) are well defined.
M(t) : R" — R(™=m) is a repair function. This allows different maintenance
policies to be used at different points in time.

We can differentiate the above model to obtain

dx

& = f(x,t) + Rr(t) (7.18)

where

o @5 ) -

=1
= t)eTé(t — T). (7.20)
Here § is the Dirac delta function, and eT = [1, ..., 1] is the unity vector, and
M = (I+RSH®)7). (7.21)
where I € R("="=) is the identity matrix. R € R(""=) is the maintenance and
repair policy matrix. Finally, § : R! — R("") is a selection function, which at

times ¢;,Vi € {1,..,.k} selects the origin states, i.e. which correspond to negative
entries in R.
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Example 7.4 (Structure of R and S):

For example, for a four state system where the first state corresponds to a com-
pletely new system, and the fourth state corresponds to the failed system, an As-
Good-As-New (AGAN) maintenance policy corresponds to the following R matrix

Racan = (7.22)

S O =

-1

which resets the system state to the first state (as good as new).

The corresponding selection function S(t) that selects which state to reset, is

Sacan(t) = (7.23)

_— o O O

Similarly, if the third state corresponds to a barely functioning system, the As-
Bad-As-Old (ABAO) maintenance policy can be expressed as

0
0
Ragaro = 1 (7.24)

-1

Since the origin state is the same as for the AGAN policy, the selection functions
Sacan(t) and Sapao(t) are identical. Note that in these two previous examples,
the selection function is static and time independent. If our maintenance strategies
involves having different maintenance policies applied at different times, this can
be expressed as

1 0
0 0
0 1
-1 -1

Ruix = (7.25)

In the case where two instances of maintenance are to be performed, one at T; and
one at To > T, we may use

0 0
0 0
Smix() = | 0 (7.26)
t*Tl t*TQ

To—T1 T —T>

to indicate that the AGAN maintenance is performed at T7 and the ABAO mainte-
nance is performed at Ty. More sophisticated maintenance policies can be obtained
by adjusting the R and S matrices continuously.
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7.4 Joint optimization of production and maintenance
times

7.4.1 General problem description

The aim of this paper is to find a strategy that jointly optimizes the maintenance
schedule and the operation of the plant. In terms of the model introduced in the
previous section, this may imply finding the optimal system load w(t), and the
times T' at which to perform maintenance, given repair policies S and R. Op-
timizing the performance of the system is a matter of optimizing the trade-off
between the expected monetary benefit of its function, and the expected mone-
tary loss of maintenance, as discussed in the introduction. This trade-off may be
described mathematically in terms of a weighted economical objective, which is to
be maximized using the available degrees of freedom.

In the following sections, a number of assumptions are made to solve this problem:

1. The system degradation is not monitored in real-time. The system must be
inspected to observe in order to determine in which state it currently is.

2. Repairs and replacements are assumed to be instantaneous.

3. The resulting optimization problem is solved initially at the start of the plan-
ning horizon to get a production and maintenance schedule which is optimal
in the expected sense. The problem is re-optimized regularly to adjust the
production and maintenance schedule according to observed plant behavior.
This re-optimization should be done as often as possible in order to make
sure that the production and maintenance schedule is always up to date and
accounting for the current system conditions.

7.4.2 Mathematical problem formulation

A general version of the optimization problem can be formulated as

T;

k—1 “
max E o(t,x,u) dt
w,k,T 7

i=

+ o(t,x,u) ) dt
/ (¢(t.2w)
—¢r(t, k) — om(t, ) (7.27a)
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.t. fli’ — f(t,u,3) + Rr(?) (7.27h)
r(t) = STz~ (t)eTé(t —T) (7.27¢)

y(t) = g(x, ) (7.27d)

0<y<l1 (7.27¢)

eTy=1 (7.271)

Umin < U < Umax (7.27g)

where e is the unity vector.

The objective function comprises three terms, as described below.

1. ¢ is the economical profit rate generated by the production, which is to be
maximized

2. ¢y is the inspection cost, which is proportional to the number of inspections
k
o1t k) o< k, (7.28)

3. ¢n is the maintenance cost, which is proportional to the integral of r(t)
(maintenance costs only have to be paid if maintenance occurs, i.e. it is
dependent on the outcome of the inspection)

ty

o (t,r) /r(t)dt. (7.29)

to

The constraints of the optimization problem comprise bound constraints on the
state variables and the intended input-induced loads, and any additional model
equations that describe the system. These model equations could describe aero-
dynamic properties of an aircraft system, or mass and energy conservation in a
chemical production system.

Remark 7.2 (Some special cases of the problem formulation from Problem (7.27)).
The problem formulation from Problem (7.27) describes a general case. However,
in some circumstances, we may alter the problem formulation slightly to obtain a
special problem formulation. Examples of such problem formulations include, but
are not limited to:

e Special case 1: Maintenance optimization for fixed operational strat-
egy
If the operational strategy is fixed, as is the case in many industries where
a system performs the same task over and over, then the intended input-
induced loads u are constant and are thus not subject to optimization. The
degrees of freedom are k and T'.

e Special case 2: Joint optimization of operational strategy and num-
ber of periodic inspections If the maintenance strategy is fixed, e.g. we
have to perform maintenance according to a clock-based or age-based sched-
ule, the inspection times T are no longer subject to optimization, and can
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1— X — Ay
1—2Xa—Au 1= Ao — A

Figure 7.2: Illustration of a typical Markov chain

be reformulated as constraints to the optimization problem. The degrees of
freedom are uw and k

e Special case 3: Maintenance optimization for fixed number of in-
spections
If the number of inspections is fixed, k ceases to be a decision variable in the
optimization problem. The degrees of freedom are v and T

These special cases are numerically easier to solve than the general case. For exam-
ple, fixing the number of inspections removes the discrete nature of the problem,
and we are left with an ordinary NLP instead of an MINLP (in other works) or an
MPCC (in this work).

Example 7.5 (What is the benefit of optimizing the inspection times and the
number of inspections?):

To illustrate the proposed method, consider the following example. A production
system has four degradation states labeled 0, 1, 2 and 3, where state 3 is the
failed state, and states 0 - 2 are progressively degraded states. An illustration of
the Markov chain is shown in Figure 7.2 The transition probabilities are assumed
constant, meaning that we can use the following model to describe the probability
of being in any of the four states at any given time

d
di: Az + Rr (7.30)

y = x (7.31)
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A is the constant transition probability matrix

00101 0 00
00100 —0.0101 0 0
A = 0 0.0100 —0.0101 0 (7.32)
0.0001  0.0001  0.0101 0
and
1
0
R = |, (7.33)
1

In this case, we have made the transition rates independent of inputs. The inputs
u do not enter in the problem formulation and are thus omitted (Special case 1).

The goal is to find the maximum expected net profit by optimizing the k inspection
times T'. The final mission time is t; = 200 weeks. The objective terms are

o(t,x) = Tz (7.34)
or(t,k) = cj-k (7.35)
ty
ou(tr) = / el r(t)dt (7.36)
to
with
27.8
20.8
139 (7.37)
2.8
c; = 30 (7.38)
cy = 300. (7.39)

Further, fixing the number of inspections to k = k*, the problem may then be
written as

k-1 Tt T t
max ; ( / (cTa:> dt) +/ (cTa:) dt +/ (cT:c> dt

—cl -k — /tf cl,r(t)dt (7.40a)

.t. ‘fo ~ Az + Rr(l) (7.40D)
r(t) = STz~ (t)eTé(t —T) (7.40¢)
y(t) = z(t) (7.40d)
0<y<l1 (7.40e)
eTy=1 (7.40f)



7. A Unified Approach for Simultaneous Optimization of Production and
Maintenance Schedules

Table 7.1: Optimized maintenance schedule for the motivating example in Section
7.5

In- Net

spec- profit Inspections times [weeks]
tions [kUSD]

E* T

1 3913.9 | 128.398

3946.0 | 103.228 149.136

3950.3 | 88.616  127.258 159.178

39429 | 78.984 112,972 140.713 165.239

3929.4 | 72.169 102.931 127.776 149.563 169.356

39124 | 67.136  95.549 118.281 138.070 155.928 172.369

O UL W N

Table 7.2: Periodic maintenance schedule for the motivating example in Section 7.5

In- Net

spec- profit Inspections times [weeks]

tions [kUSD]

k T

1 3886.1 | 100.000

2 3923.1 | 66.667 133.333

3 3930.5 | 50.000 100.000 150.000

4 3924.9 | 40.000 80.000  120.000 160.000

) 3912.5 | 33.333 66.667  100.000 133.333 166.667

6 3896.1 | 28.571 57.143 85.714  114.286 142.857 171.429

Solving the optimization problem Problem (7.27) repeatedly for different k*. We
obtain the optimal maintenance schedules shown in Table 7.1. Note that the deci-
sion variables in this optimization problem are only the inspection times T

For reference, Table 7.2 also shows the objective function values for a periodic
(equidistant in time) maintenance schedule, which is prevalent in industry today.
As expected, the time between inspections becomes shorter and shorter in the
optimal maintenance schedule, as opposed to in the periodic maintenance schedule,
where the time between inspections is constant.

Figure 7.3 shows the comparison of the net profit from the two approaches, and
shows that the optimization approach always yields higher net profits, which mo-
tivates the use for an optimization-based method for determining the inspection
times, as proposed in this paper.

7.5 Including recourse in the optimization problem

So far we used the expectation of all possible outcomes of an inspection in the
problem formulation. The reasoning behind this is that the outcome cannot not
be known ahead of time. However, after an inspection has been performed and
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Figure 7.3: Comparison of net profit for optimal and periodic inspection schedules

the true system state has been revealed, we may use this information to revise the
future decisions. For instance, if inspection reveals that the system has failed, we
perform repairs or replacements to get it working again. However, we may also use
this information to delay future inspections. We now have a different system, and
the originally scheduled inspections are likely earlier than needed. On the other
hand, if we inspect the system and find it to be not failed, we may want to use
this information to slightly expedite future inspections, knowing that the system
is "overdue”.

Mathematically, this can be formulated as a multistage optimization problem. We
distinguish between decisions that have to be made now (the next inspection date,
and the operational strategy up to that date), and decisions that are made in
the future, once more information has been revealed at future inspections (all
following inspection dates, and the operational strategies). Due to the different
possible outcomes from the inspections, this results in a tree of different scenarios.
Each branch represents a unique combination of event realizations. Since current
decisions cannot depend on unrevealed information obtained in the future, non-
anticipativity constraints are introduced, to enforce that decisions on branches
stemming from the same parent node are equal, since these branches share the
same history up to that point. See Figure 7.4 for an illustration of this.

Due to the exponential growth of the number of scenarios in multi-stage program-
ming, it is common to prevent branching of the scenario tree beyond a certain
point in the future, and consequently solve an approximation of the original prob-
lem instead. In scenario-based model predictive control, this point is called the
robust horizon [103]. It is argued by [103] that the refinement of the scenario tree
by lengthening the robust horizon has negligible effect on the solution of the opti-
mization problem, at the cost of significant increase in the computational burden.

Figure 7.4 shows a scenario tree for the case where k inspections are performed, and
each inspection has two possible outcomes. Non-anticipativity constraints ensure
that the nearest inspection times are equal on sibling branches, i.e. branches that
share a common parent node. The scenario tree shown in the figure has a robust
horizon of length two.
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Heuristic simplification

Enforcing non-anticipativity for the problem with an arbitrary number of inspec-
tions is difficult. Instead, we propose a heuristic approach to address this problem.

1. First, solve the single-scenario problem (Problem (7.27)) corresponding to a
robust horizon of length zero to find the optimal number of inspections, k*,
and initial inspections times and initial inputs w(t).

2. Second, once the solution of the single-scenario problem has been found, solve
Problem (7.41)

N, k*—1 Tiir
max D o(t,x;,uy))dt
Tj
+ ¢(t,iL'j,’U,j) dt
[ (o)
ty
+ ((b(t, iEj,’u,j))dt
Tj,[*
~61(tK") = dur (b)) (7.412)
s.t. dd% = f(t,u;,x;) + Rr;(t) (7.41b)
ri(t) = STz (t)eTé(t —T;) (7.41c)
y () = 9(2,,1) (7.414)
0<y, <1 (7.41e)
ely, =1 (7.41f)
Umin < U; < Umax (741g)
Ue (1) = up(7)
Va,b € {1,...,Ng} N
z(t<T)=xp(t < T) (7.41h)

Note that the optimization problem from Problem (7.41) is similar to the
single stage problem in Problem (7.27), except that the number of inspection
k is no longer a decision variable, but has instead been substituted by the
nominal number of inspections from the single-scenario problem, k*. Instead,
we solve the multi-scenario problem with the inspection times and intended
input-induced loads as decision variables (special case 3). Non-anticipativity
on the decision variables through the constraint Equation (7.41h)

3. Check that a local optimum has been found by solving Problem (7.41) for
k=Fk*+1and k = k* — 1 as well, and confirm that the objective is worse
than the solution found for k = k*
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Since the solution of the multi-stage problem is often similar to that of the single-
scenario problem, we assume that the optimal number of inspections does not
change. If that is the case, then this heuristic sequential approach will converge to
the true optimal solution.

distribution of T} distribution of T}
— —
AT ATy
L1,2 - L1,k Ty f
x5 /
N T2,1
AcO
&W\e \ ATy ATy
S L2,2 - — T2k T f
Z1,0
T2,0
T30
;0 ATs o ATy,
£ —— T3,2 ——---- T3,k Z3.f
e /
T3,1
Ty,1 \
—— Ly 2 - — Tk ZTy.f
ATy ATy x
(present) (mission time)
to T T T, tr

N,.: robust horizon

k: number of inspections

Figure 7.4: Scenario tree for a multi-stage decision making process with k inspec-
tions. There are two possible outcomes from each inspection (system has failed /
system has not failed), and the length of the robust horizon is two. This results in
a total of four scenarios. Note how the inspection times for the different scenarios
are not the same after the first inspection, resulting in a discrete distribution of
inspection times.

Example 7.6 (Illustrative example of multi-stage formulation):

Let us return to the example from Section 7.5 to illustrate how a multi-stage
formulation can be used to obtain a more sophisticated operational strategy and
maintenance schedule, and increasing the expected net profit.

We again solve the problem, but this time we solve for all the cases where either
Ny =2, Ny = 3 or Ny = 4 inspections, with varying robust horizons, using the
approach outlined in the previous section. The net profits and optimal inspection
times are as reported in Table 7.3.

From Table 7.3 it can be seen that the multistage formulation, i.e. when the robust
horizon is nonzero, always outperforms the case when the robust horizon is zero.
It could be argued that the extra computational burden (owing to the exponential
growth of the problem size) is not worth the very small improvement in the ob-
jective function value. A robust horizon of length one seems to give a satisfactory
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Table 7.3: Optimized multi-stage maintenance schedule for the example in Section
7.6

In-  Ro-

spec- bust Net profit [kUSD] | Branch Inspections at times [weeks]

tions hori-

zon

k N, j T;

2 0 3946.03 - 103.228  149.140
F 103.177 162.914

2 1 394625 H 103177 148.813

3 0 3950.29 - 88.6158 127.258 159.178
F 88.6553 145.733  169.329

3 1 3950.50 H 88.6553 126.967 158.923
FF 88.5761 145.697 175.652

3 9 3950 57 FH 88.5761 145.697 169.282

HF 88.5761 126.902 169.998
HH 88.5761 126.902 158.777

4 0 3942.87 - 78.9843 112.972 140.713 165.239

F 79.0959 133.404 155.795 173.068

4 1 3943.04 H 79.0959 112.758 140.443 165.061
FF 78.9957 133.361 165.775 178.858
FH 78.9957 133.361 155.717 173.013
4 2 3943.14 HF 78.9957 112.706 156.473 174.400
HH 78.9957 112.706 140.261 164.901
FFF 78.9631 133.336 165.763 182.661
FFH 789631 133.336 165.763 178.845
FHF 789631 133.336 155.702 178.914
4 3 3043.17 FHH  78.9631 133.336 155.702 172.989

HFF 789631 112.657 156.453 179.174
HFH  78.9631 112.657 156.453 174.377
HHF  78.9631 112.657 140.223 173.972
HHH  78.9631 112.657 140.223 164.827

trade-off between computational complexity and objective function value. On the
other hand, the time-scales for degradation of industrial systems are usually in the
range of weeks, months or years, such that there is enough time to perform complex
computations.

Observe as well that the different scenarios exhibit the trend hypothesized in Sec-
tion 7.5: If a system is observed to have failed, inspections are postponed slightly.
If the system has not failed, inspections are expedited slightly. For example, for
the case with two inspections, we observe that the second inspection is postponed
from Ty = 149.1 weeks to To = 162.9 weeks if the first inspection reveals failure.
Likewise, we observe that the second inspection is preponed from Ty = 149.1 weeks
to Ty = 148.8 weeks if the first inspection reveals that the system is still opera-

110



7.6. Approximations

tional. The improvement in the objective function value from 3946.03 kUSD to
3946.25 kUSD is a result of this more sophisticated schedule. The reason why the
improvement is so small can be explained by the fact that the failed branch has a
very small probability, and thus contributes little to the overall objective.

7.6 Approximations

7.6.1 Continuous approximation of repairs r(t)

Before proceeding, let us recall that the aim of this paper is to find an optimization-
based method with which we can determine the optimal operational strategy in
terms of production, inspections and maintenance. However, the expression for the
evolution of the probabilities in Equation (7.18) contains the Dirac delta function.
Due to its discontinuous nature, this is problematic for numerical optimization.
A possible solution is to reformulate the problem as a mixed integer problem, as
was done in e.g. [9, 15, 63], instead of using Dirac delta functions. Unfortunately,
MINLP problems are known to be difficult to solve, despite recent progress in
algorithmic development [149].

Instead of using a mixed-integer formulation to solve the problem, we chose to
approximate the Dirac delta function by Boxcar functions instead:

r(t) =~ 7(t) (7.42)

k
7(t) = ZBoxcar(t)

k
- S h (H(t ~T) - HEt-T, - ei)). (7.43)

Here, H is the Heaviside function, h; is the height and ¢; is the width of boxcar 1.
By choosing a nonzero € we ensure that #(¢) is bounded and Lipschitz continuous,
and consequently that @(t) is continuous (although still non-smooth).

An illustration of the approximation of the Dirac functions with boxcar functions
is shown in Figure 7.5. Observe that the approximation for x(t) is good if € is
sufficiently small. € should be chosen as small as possible in order to minimize
the approximation error, but big enough to avoid numerical problems with the
chosen solver. In practice, we have found that choosing € ~ 1555 (tf — to) yielded
satisfactory performance for our applications.

7.6.2 Smooth problem re-formulation for numerical
optimization with off-the-shelf NLP solvers

Problem (7.27) is discrete in nature due to the inclusion of the integer variable k,
therefore making it difficult to solve without the use of MINLP solvers as explained
in Section 7.6.1, or by fixing the number of inspections k, as illustrated in Example
7.5.
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In order to avoid both of these solution alternatives, we include the simplifica-
tions introduced in the previous sections. As a result, we reformulate optimization
problem from (7.27) as

ty

max / <¢(t7m7uact))dt

to

—¢1(t,z) — dm(t, 7) (7.44a)
s.t. Cfl—f = f(t,uact, ©) + RF(t) (7.44b)
y(t) = g(z,1) (7.44c¢)
0<y<l1 (7.44d)
efy=1 (7.44¢)
0<7< (7.44f)
€min
€min < € < €max (744g)
Upmin < U < Upax (744}1)

However, we still need to reformulate the inspection and maintenance costs, which
contain the integer variable k. In Equation (7.28), the inspection cost is said to be
proportional to the number of inspections, k. However, since we reformulated the
optimization problem, k is no longer explicitly included. Instead, it is ”baked” into
7(t).

In order to ensure that the reformulated optimization problem still approximates
the original discrete problem, we introduce a variable z which is complementary
to 7

0<(1—2)Ll7>0 (7.452)
0<z<1 (7.45b)

Here, the 1 operator indicates complementary, i.e. we require that at all times
either 7 or (1 — z) or both to be zero. Now we can formulate the number of
inspections as
ty
z

m@@mk%/f, (7.46)

€
to

where € is the width of the Boxcar in the approximation #(¢). A graphical illustra-
tion of this is shown in Figure 7.5

Due to the introduction of the complementary constraints into the optimization
problem, the resulting problem is classified as a mathematical program with com-
plementary/equilibrium constraints (MPCC / MPEC).

The optimization problem from Equations (7.44a)-(7.44h) is solved using direct
collocation [28].

112



7.6. Approximations

Remark 7.3 (Regarding the complementary constraints). Due to the non-convex
nature of the functions in the optimization problem, standard solvers for nonlinear
programs, such as IPOPT [185], will only provide locally optimal solutions. To
explore more of the feasible space and hopefully converge to a near-global optimum,
we solve the problem using a multi-start approach. Here we initiate the optimization
algorithm at multiple different initial points. Each optimization run yields a local
solution, and the best local solution is chosen. Of course a globally optimal solution
cannot be guaranteed, but our experience is that there are many solutions with
an objection similar to the the globally optimal value, which are only marginally
worse and are acceptable from an engineering perspective.

Another precaution that we have taken is to reformulate the MPEC to make it
tractable. Broadly speaking, these reformulations can be categorized as either re-
laxation methods or penalty methods. In relaxation methods, the complementary
conditions are temporarily relaxed. Upon repeated solving of the relaxed problem
with gradual tightening of the complementary constraints, the solution of the re-
laxed problem converges to the true solution. Similarly, penalty methods remove the
complementary condition from the constraints and penalize them in the objective
instead. Gradual increase of the penalty weight means that the complementary
condition is satisfied upon convergence. Using a relaxation and hybrid method,
Problem (7.44) with the added complementarity constraints from Equation (7.45)
can be reformulated as

ty

max o(t,x,u) |dt

u,r,€ to/ ( )
_(bf (t7 Z) - ¢M(t7 ,F) (7478,)
—y() -vec((1—2)®F) (7.47b)

s.t. C;—:f = f(t, uact, ) + RF(t) (7.47¢)

y(t) = g(=, 1) (7.47d)
0<y<l1 (7.47e)
eTy=1 (7.47%)
0<r< c 1. (7.47g)
€min é € S €max (747h)
Umin S u S Umax (7471)
0<z2<1 (7.473)
vec (F® (1 —2)) > &(1) (7.47Kk)

Here, (-) denotes the inner product and (®) denotes the outer product. This prob-
lem is solved sequentially {l} times such that

lim,& — 0,7y = o
=00
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Under assumptions of stationarity, the MPEC solution will be approached asymp-
totically [19].

7.7 Case example: Subsea oil and gas separation system

To illustrate our proposed method, we apply it to the case study of an subsea
oil and gas separation plant. We will solve the problem using the approximations
introduced in Section 7.6.2.

7.7.1 Motivation and general description

Despite the trend towards more sustainable energy production, fossil fuel will still
play an important role in satisfying the global energy demand in the foreseeable
future. Subsea technology is a technology that will increase in prominence in the
coming years due to the depletion of easily accessible oil and gas reserves, as it
enables production from remote, inaccessible locations. However, due to this in-
accessibility and remoteness of subsea oil and gas production facilities, current
industrial practice relies on infrequent inspections and conservative operation in
order to prevent unplanned maintenance. Another issue preventing real-time mon-
itoring of subsea equipment is the lack of qualified instrumentation. Our method
consequently can lead to improved economical performance of the plant by re-
ducing the conservativeness of operation and optimization of the inspection and
maintenance times.

An illustration of the plant we are studying in this case example is shown in Figure
7.6.

Compressor 2
(1=2)
Gas
outlet

Compressor 1

(i=1)

Diverter / split valve
(i=3) E§

Choke
% Separator

(i =1)

ﬁ% Liquid

outlet
Figure 7.6: Ilustration of the subsea compressor station that is studied in this case
example, with ¢ = 1...4 indicate the degrading components.
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It is a subsea gas compression station with two compression trains (referred to
as units 1 and 2) in parallel. These units are dry gas compressors, meaning that
the wet gas from the reservoir must be cleaned of water and oil droplets in a
scrubber-type separator (referred to as unit 4) before entering the compressors.
If liquid droplets enter the compressors, this will lead to rapid degradation. The
parallel configuration was chosen for the sake of flexibility. Failure of one of the
units will only lead to partial failure of the whole system, since the system can
continue production. Each compressor alone is able to provide the handle the full
load, albeit with the consequence of faster degradation.

A single separator was deemed sufficient, since an additional, second separator unit
would significantly increase complexity, cost and footprint of the overall system.
Since the separator operates statically without moving parts, its reliability is ac-
ceptably high to be in a series configuration with the compressors. A fault tree
analysis was performed for the system, resulting in the simplified fault tree shown
in Figure 7.7. A comprehensive root cause analysis is outside the scope of this pa-
per, so we instead use the encompassing events ”failure from load-induced wear”
for the compressors and ”actuator failure” for the separator.

OR-gate

AND-gate

n out of m

A
A
e 0 A A A A

Figure 7.7: Fault tree for the subsea compressor station. The gates and basic events
are described in Table 7.4

ODDDD

7.7.2 Modelling the degradation of the subsea separation
system

The degradation of each individual component can each be described by four dis-
crete degradation states. The overall system reliability vector x is created by stack-
ing the component reliability state vectors:

Lcompl

z = |Teome2| (7.48)
LTsplit

Lsep
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Table 7.4: Description of labels of events and logic gates in fault tree in Figure 7.7

Label Description
Og¢ Failure of the entire system
Os Failure of the compression subsystem
0, Failure of the separation subsystem
A Failure of compressor 1 and
! compressor 2
As Failure of compressor 1 and split valve
As Failure of compressor 2 and split valve
Oy Failure of compressor 1
O Failure of compressor 2
O3 Failure of split valve
Sensor failure, loss of communication
By .
or other unforseen failure
Compressor failure due to load
By .
induced wear
Sensor failure, loss of communication
Bg .
or other unforseen failure
Compressor failure due to load
B, .
induced wear
Sensor failure, loss of communication
Bs .
or other unforseen failure
Insufficient actuation due to load
Bg . .
induced wear of split valve
Sensor failure, loss of communication
By .
or other unforseen failure
B Insufficient actuation due to load
8

induced wear of separator valve

and the evolution of the system states can now be expressed as

dx

il falx,u, t) + fu(x,t), (7.49)

where f, is the degradation due to aging, which is dependent on the inputs u, and
fu is the sudden failure due to shock damage, which is independent from the inputs
u.

The basic events B;, Bs, B5s and B; from the fault tree in Figure 7.7 correspond
to unexpected shock failure. These events are assumed to be independent of the
operating mode, and influence the transition rates through the function f,, which
can be expressed as

fu,compl 0 0 0
0 fu comp2 0 0
(z,1) = comyp 7.50
f (w ) 0 0 fu,split 0 ( )
0 0 0 fu,sep
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where f, ; is

*)\u,i 0 0 0 Z4,0
. _)\u,i 0 0 Ti1

fui(®it) = 0 0 a0 |z (7.51)
Aui  Aui Aui 0O T3

)

The basic events By, B;, Bs and Bg are linked to aging of the component. The
aging of each of the four components is described by the function f; The Markov
chain describing the degradation of each individual component has four discrete
degradation states. The final state, i.e. x; y=3, corresponds to the failure of com-
ponent 4. The transition rates are influenced by the input-induced loads, u. We
model the transition rates as

fa,comp] 0 0 0
0 fa comp2 0 0
- : 7.52
f 0 0 fa,split 0 ( )
0 0 0 fa,sep
where
N 0 0
I [ VS VR | N
fai = 0 i ey 0 (7.53)
0 0 XAai O

s

where the transition rates of each of the four components is assumed to be propor-
tional to the load applied to it

Nacompi = Aacompt - (U3 +uy) (7.54)

Aa,comp2 Aa,compe + (U3 + uz) (7.55)
Aassptit. = Aayspiit - (U1 - (1 = Zeompr,N)

+ w2 (1= Teompz,N)) (7.56)

Aaser = Masep (U1 (1= Zeompr,N) (7.57)

+ uz- (1= Teompan)); (7.58)

Note that the transition rates of the split and the separator depend on the relia-
bility of the two compressors. The reason for this is that if one of the compressors
fails, the consequence is that the overall load on the system is reduced since no flow
goes through the failed compressor (safety shut-off systems prevent this from hap-
pening). In reality, an operator may observe that the overall flow from the system
is reduced, and may react to this by increasing the set-points to the compressors
in order to keep the total flow constant. However, this manual intervention is not
included in the optimization framework.

Furthermore, we note that the transition rates for the compressors are quadratic
functions of the flows through the compressor. Due to reduced compressor efficien-
cies at higher flow rates, compressors have to be run harder to satisfy the desired
pressure increase.
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At each inspection time, there are two options available for maintenance interven-
tions:

1. If the component is found in the failed state j = N = 3, then it is replaced
by a new component (as-good-as-new)

2. If the component is found in the degraded state j = 2, then preventive
maintenance may be performed to restore the component. Due to imperfect
repairs, the health component will end up in state j = 0 in 80% of the time,
and in state 7 = 1 in 20% of the time.

Remark 7.4 (Difference between intended and actual input-induced loads). Note
that in the above problem formulation, we distinguish between the intended input-
induced load, u;,, and the actual, realized load on the system w,.;. These two
are not the same for several reasons. Firstly, the actual load on the system may
be stochastic, and not known exactly. For example, the load may be normally
distributed around the intended mean load. Secondly, in a multi-component system,
the actual load on the system or on individual components may change due to e.g.
the failure of other components. For example, a load-bearing component in parallel
configuration might experience a higher load than what was intended upon the
failure of one of the parallel components.

7.7.3 Expressing the system states

The condition of the overall system can be formulated as algebraic relationships of
the component reliability states. We are interested in the following four states

y1(t)

_ (%)
y(t) = yz(t) (7.59)

ya(t)

where, y1, ..., y4 denote progressively deteriorated condition of the overall system.
Specifically,

1. No failed units, system is working at full capacity
Y1 :P(OJCHOQCQ 035N 040) (760)

Here, P indicates the probability operator, O, refers to the corresponding
events from Table 7.4, ¢ indicates the complement operator, and N is the
intersection operator.

2. Either compressor 1 has failed or compressor 2 has failed, but split valve and
separator are still operational. The system is running at reduced capacity.

Yz = ]P)((O] D 02) N 03N 046) (761)

where @ is the exclusive OR operator.
3. The split valve has failed, but the separator and both compressors are still
operational. The split ratio can no longer be adjusted. System is running at

reduced capacity.
Yz = P(O]C n OQC n 03 N 046) (762)
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4. System has failed. No production.

ys = P(Op) (7.63)

Note that logically, the assertion
eTy=1 (7.64)

must hold because the system must be in one of these states. Either the system has
no failed components, some non-critical failed components, or the overall system
has failed. To get expressions for y(t), we consider at the fault tree and derive the
expressions for the probabilities of all four composite events.

First, we define x; as the probability of component/subsystem i being in the failed
state IV, to shorten notation slightly

P(O1) = x1 = Zcomp1,N (1) (7.65)
P(02) = X2 = Tcompa,n (t) (7.66)
P(03) = x3 = Taprit, N (t) (7.67)
P(O;) = Xa = Toep,n (1) (7.68)

Which allows us to express

P(A;)=P(0; N Oy)

=P(01)P(0z)

= X1X2 (7.69)
P(42) =P(0; N O3)

=P(0;)P(0s)

= X1X3 (7.70)
P(As) =P(02 N O3)

=P(02)P(0s)

= X2X3 (7.71)

We can now express the probability of a failure of the compression subsystem as

P(O5) =P(A; UA2 U Ag)
=P(A;) +P(4p) +P(43) —P(A; N Ap)
—P(A;NAg) —P(AgNAg)+P(A; N AN Ag)
= X1X2 + X1X3 T X2X3
— X1X2X3 — X1X2X3 — X1X2X3 T X1X2X3
= X1X2 T X1X3 T X2X3 — 2X1X2X3 (7.72)
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Consequently, the probability of system failure can be expressed as

P(Og) =P(0; U O5)
=P(0;) +P(05) —P(05 N Oy)
=P(0;) +P(05) —P(0,)P(05)
= X4 + (1 — xa) (X1 X2 + X1X3 + X2X3 — 2X1X2X3)
=y (7.73)

Similarly for the other three composite events

i = P(0;°N 0551 05° 1 0,°)

=1 =x1) 1=x2)  (1=x3) - (1—xa) (7.74)
ys = P((0; @ 05) N 05°1 0,°)

— P(((01 U 05) — (01 1 03)) N 055 N 0,°)

=(x1+x2 = 2xax2) - (1 —x3) - (1 —x4) (7.75)
—P(0;°N 055N 051 0,°)
=1 —x1) (1—x2) x3(1—xa) (7.76)

Finally, we check that the sum of the four composite events is

Zyi=y1+y2+y3+y4

=(1-x1) (1=x2) - 1—=x3) - (1-x1)
+ (1 +x2 —xaxz) - (1 —x3) - (1 — xa)
+ (1 =x1)- (1 —x2) x5 (1—x4)
+ x4+ (1 — xa) (xaxz + x1xs + x2X3 — 2x1x2X3)
1

(7.77)

as expected.

Now that we have the expressions for the four system states y as a function of the
component states x, we may formulate the following optimization problem.

7.7.4 Economic objective

The objective is to maximize the throughput through the compressor station. Si-
multaneously, we want to minimize the inspection and maintenance costs. The
economical objective is the sum of discounted cash flows.

ty
1 _¢ + d)l + ¢M
w(tyr) / (W)dt (7.78a)

where
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e The first term ¢ is expected the production, which is proportional to the
system probabilities y(t) via the weighing vector / productivity vector c,.

oty u) = (] - y(t) - (eT - u(t)) (7.78b)

cp,i indicates how well the system is able to perform its desired task in the
corresponding state y;.

e The second term ¢; is the inspection cost, which is paid every time an in-
spection is performed. It is proportional to z(t), the variable introduced to
count the number of inspections.

¢1(t,2z) = cp - 2(t) (7.78¢)

e The third and last term ¢, is the maintenance cost, which is proportional to
7(t), i.e. it is proportional to the probability of being in the undesired state
at the inspection time.

b (t,7) = T, -7 (1) (7.78d)

As mentioned previously, there are two maintenance options:
1. Corrective replacement

2. Preventive (imperfect) repairs

cy = CM,corr (7786)
CM ,prev

e The entire objective is discounted by the factor d. The discount factor is
chosen according to the economics and the time scale of the optimization.

The decision variables are the maintenance and inspection times, as well as the
maintenance type (corrective replacement or preventive repairs)

Fco’rr,compl t)

t)

)
_ 'Fcorr(t) _ Tcorr,sep(t)

(t) = [f"prev(t)] = (7.78f)

Tprev,comp t)

(
(t)
t

(
Fcorr, comp2 (
fco rr,split (t

<

1
Tprev,comp2 t
(t)

L Poreosen(t) |

Tprev,split
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and the inputs w. The maintenance matrix R is

1 o 0 0 08 0
0 0 0 0 02 0
0 0 0 0 -1 0
-1 0 0 0 0 0
0O 1 0 0 0 08
0 0 0 0 0 02
0 0 0 0 0 -1
0O -1 0 0 0 0
B=1o 0o 1 0 0 o0
0O 0 0 0 0 0
0O 0 0 0 0 0
0 0 -1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0O 0 0 0 0 0
0 0 0 -1 0 0

7.7.5 Constraints

OO DD OO O OO

0.8

SO OO OO OO OO O OO

(7.78g)

The optimization problem outlined in the previous section is solved subject to the

following constraints

dx _
s.t. i flx,u,t) + RF(t)

y(t) = g(x,1)

x(0) = xq

Umin S u S Umax

eTu < Upax

0<7<
€min
€min SEgemax
0<x<1
0<2z2<1

0<y<l

0<(1—2)lF>0

Equations (7.78h)-(7.781) describe the system model. Equation (7.78j) is the initial
condition for the states. Equations (7.78k)-(7.78q) are variable bounds. Finally,
the last constraint in Equation (7.78r) are the complementarity constraints for the
introduced counter variable z that is used to keep track of the number of inspections

k.
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Table 7.5: Parameters used for the optimization

Pa-
ram- Description Value
eter
Sudden
Au failure 107420 20 1.0 05]"
transition
rate
Base aging
Aa transition 1072 [1.0 1.0 0.5 0.5]"
rate
d Discount 0.001
rate
Productivi-
cp ties in each [10 5 5 O]T
state
Mainte-
en lepee. 10%0[50 50 10 20)7
ment)
Mainte-
Cp  MABCCCOSt a0 150 50 10 20]T
(preven- 3
tive)
¢; Inspection 451 19 10 1.0 1.0]7
cost
to Initial time 0 weeks
ts Final time 200 weeks

7.7.6 Simulation results

The model described in Section 7.7 was discretized using direct orthogonal collo-
cation and implemented in MATLAB and CasADi 3.4.1 [11]. IPOPT 3.12.3 [185],
an interior point solver for NLPs, was used to solve the problem. The parameter
values for the problem are given in Table 7.5.

The optimal system probabilities obtained from the optimization are shown in
Figure 7.8. The corresponding decision variables (u(t) and #(t)) are shown in Figure
7.9.

We observe that the optimal solution obtained for this case study is very complex.
The maintenance times are non-periodically distributed, and not all components
are maintained at every inspection, as this would lead to higher maintenance costs.
The optimal input profile shows that one compressor is used at maximum capacity
the entire time, whereas the other is throttled and run at less than maximum
speed for some time to improve the overall economic performance by lowering the
probability of system failure and thus the expected maintenance cost. The input-
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induced loads increase temporarily at the times when inspections are performed,
but these are only numerical artifacts and do not alter the solution significantly.

Initially, the system is inspected and maintained quite often, as the net present
value formulation implies a preference for high availability early on. At T} = 32,
Ty = 60, T5 = 85 and T, = 137 weeks, inspections are performed on all four com-
ponents. However, various equipment is maintained more often than others. For
example, compressor 2 is scheduled to be maintained reactively the first two main-
tenance interventions, and preventively the first three interventions. The separator,
on the other hand, is only scheduled to be repaired reactively on the second and
fourth intervention, and preventively at the second inspection. This is due to its
overall slower degradation rate and higher reliability. Following the final inspection
and maintenance intervention, the system is allowed to degrade and fail, as it is of
no economic benefit to keep the availability of the system high when the intended
mission time of the system has been reached.

It should be noted that the solution obtained here is only a local solution, as
discussed earlier. We performed multi-start optimization until the improvement in
the objective function value did not improve significantly for a couple of iterations,
at which point it was assumed that a near-global solution was found. At that point,
our method had managed to improve the initial guess, a periodic schedule with four
inspections and both compressors running at maximum, by about 10%, which we
deem to be a significant improvement for engineering applications.

7.7.7 Re-solving the problem using the multi-stage formulation

Now that we have found the optimal inspection, maintenance and operational
schedule has been found, we want to investigate whether including the value of
future information (i.e. the outcome of inspections) has any significant effect on
the solution of the optimization problem. To do so, we lock the number of inspection
and maintenance interventions and resolve the optimization problem. The decision
variables are now the inspection times and the inputs. By fixing the number of
inspections, we can formulate a multi-stage version of the problem, which includes
the outcomes of future inspections, as described in Section 7.5. Inspection of a
component reveals one of three possible outcomes. Either the component it is as
good as new or lightly degraded, i.e. is in one of the discrete degradation states
j =0or j = 1. Alternatively, it is found to be severely degraded, i.e. in state j = 2.
Finally, the component may be found to be broken down, i.e. it is in degradation
state 7 = N = 3. Consequently, if all four components are to be inspected, we
have m = 3% = 81 possible outcomes. In other words, the scenario problem has
1 scenario if we choose to use a robust horizon of length n, = 0, 81 scenarios if
we use a robust horizon of length n, = 1, and 6561 scenarios if we use a robust
horizon of length n, = 2. The optimal objective function values for the three cases
where we solve the multi-stage version of the problem with either n,, = 0, n,, = 1 or
n, = 2 are summarized in Table 7.6. For the sake of brevity, the optimal inspection
times for the individual scenarios are not shown. As can be seen from the table,
the multi-stage formulation with a robust horizon n, > 0 gives better results than
the expected value formulation corresponding to n,, = 0, although the difference is
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Table 7.6: Comparison of different robust horizon lengths

Robust Number
obus of Objective function value [kKUSD]
horizon .
scenarios
N, N,
0 1 1473.2
1 81 1474.1
2 6561 1474.2

marginal. The exponential increase in problem size and consequently computation
time leads us to conclude that the multi-stage formulation is not necessary for this
particular case example.

7.8 Conclusion

We have presented a method for solving the problem of combined maintenance
scheduling and production planning for arbitrary degradation models and arbi-
trary maintenance strategies. The obtained maintenance schedule is non-periodic,
and may include multiple different maintenance actions, if included in the model.
We derived a general differential model and showed how the resulting optimiza-
tion problem can be approximated to yield a continuous, although non-smooth,
optimization problem that can be solved using standard, off-the-shelf tools for nu-
merical dynamic optimization. Non-convexity of the problem required a multi-start
approach to obtain a reasonable, near-global solution. Complementary constraints
were handled using a relaxation and penalty method. We also showed how a multi-
stage formulation can easily be incorporated in the problem formulation, and may
result in better solutions.

Finally, we illustrated the method on a small illustrative example and a more com-
plex case example from the subsea oil and gas industry. For the case study, the
method managed to produce a non-periodic and non-intuitive inspection and main-
tenance schedule, which was found to be better than a simple periodic inspection
and production schedule.

Future work within this area should focus on improving the numerical aspects of
the problem formulation. Due to non-convex nature of the problem, convergence
can be quite slow. A more sophisticated multi-start approach, in combination with
a more sophisticated method for handling the complementary constraints, could
potentially improve performance. It is known that interior-point solvers such as
IPOPT are not well suited to solve MPCCs without reformulations, as the solution
has no interior [28]. Active-set methods such as the one in CONOPT [46], which
implements a sequential quadratic programming (SQP) method for solving the
NLP, may converge quicker due to the efficient detection of active sets and handling
of dependent constraints. On the other hand, IPOPT is efficient at solving large-
scale optimization problems with many inequality constraints, which is the case
when using a direct collocation method to reformulate the dynamic optimization
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problem, as we did in this work. A comparison of different NLP solver strategies
would be interesting. Furthermore, a comparison with global MINLP solvers such
as BARON [149] would also be highly interesting to see the whether the MPCC
reformulation is advantageous over solving solving the MINLP directly.
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Chapter 8

Summary and future work

8.1 Summary

The topic of this thesis is the combination of reliability and process control for
subsea production and processing plants. In the introduction, we posed five research
questions, which were addressed in this thesis through a series of peer reviewed
conference and journal articles. We repeat the research questions and give a short
summary of what was found:

Research question 1. How do we best utilize the novel degrees of freedom intro-
duced by advanced processing equipment such as compressors, pumps and control
valves?

e Several control strategies for various subsea production and processing cases
were developed. For new equipment such as compressors, the degrees of free-
dom were used to operate in a stable region, while ensuring high economic
profit without endangering the reliability. A control strategy for choke valves
subject to choke erosion was also developed, which ensured that the produc-
tion of hydrocarbons was maximized while the erosion stayed within accept-
able limits.

Research question 2. What is the current status of subsea PHM technology?

e The status of subsea PHM technology was discussed in Chapter 2. It was
found that monitoring solutions for subsea equipment exist and are used, but
that the information from the monitoring solutions is very rarely used to make
control decisions in an automated fashion. It was also found that predictive
models for degradation of subsea equipment are usually poor and not well
documented in literature. The lack of data to construct such models was also
found to be an issue. Data is either proprietary, sampled too infrequently or
non-existing.
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Research question 3. How can we systematically integrate PHM data into our
existing control structures to ensure that we have a control structure that adjusts
production such that equipment RUL is not exhausted prematurely?

e Systematic step-by-step approaches for developing health-aware control struc-
tures were presented in Chapters 3 and 4.

Research question 4. Knowing that equipment will have to be be maintained in
the future, what is the optimal way of operating between maintenances, and what
is the optimal schedule for maintenance of the equipment?

¢ A new method for simultaneously optimizing production and maintenance
schedules was developed in Chapter 7 and Appendix B. The problem is
formulated as a non-linear problem with complementarity constraints, and
solved with IPOPT. Using a multi-start approach, it was found that the
method gave near-globally optimal solutions. In comparison to existing peri-
odic maintenance scheduling strategies, which are commonly used in industry,
the non-periodic maintenance schedules obtained with this method performed
significantly better.

Research question 5. How can we ensure that our strategy is still optimal in
the presence of uncertainty and stochasticity?

e Uncertainty and stochasticity were addressed by formulating robust formu-
lations of the optimization problems. Several methods were investigated. It
was found that scenario-based approaches were robust towards modelled un-
certainties, were easy to implement, and had good performance when used
with sparsity-exploiting solvers such as IPOPT.

8.2 Future work

Future work should focus on developing better prognostic degradation models for
subsea equipment. Very little data exists for how equipment degrades under varying
operating conditions, as would be the case for a process with active control. If such
models can be developed, the uncertainty of the models will be reduced, leading
to less conservative operation.

The method for combined optimization of production and maintenance scheduling
should also be improved. The multi-start approach used to ensure near-global opti-
mality is somewhat crude in its implementation, and calculation times can be sped
up significantly by using a more advanced method. More sophisticated algorithms
for solving complementarity-constrained NLPs should also be used, e.g. branch and
bound algorithms or evolutionary algorithms.

Finally, the ideas discussed in this thesis should be applied to a real world case
study, either from the area of subsea production and processing, or from other
processes in chemical industry.
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8.2. Future work

As a continuation of this project, we have designed and built a small lab rig at
the department of chemical engineering at NTNU. The experimental setup allows
us to test the algorithms developed for particle erosion from Chapter 6, as well
as algorithms developed for gas lift optimization. Preliminary experimental results
look very promising.
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Appendix A

Robust Health-aware operation of
a subsea gas compression system

This chapter is from the article

e A. Verheyleweghen and J. Jdschke. Robust Health-aware operation of a subsea gas
compression system. Proceedings of the 2017 Conference of Foundations of Com-
puter Aided Process Operations / Chemical Process Control (FOCAPO/CPC). 2017

A.1 Abstract

In this paper we apply health-aware control ideas to the optimal operation of a
subsea gas compression plant. Subsea systems operate in harsh environments and
under uncertain and varying operation conditions. Because they are very difficult
and expensive to access, an optimal operational strategy that tries to maximize hy-
drocarbon production must ensure that no unplanned shutdowns due to premature
equipment failures occur. In this paper we apply two approaches for optimization
under uncertainty in order to maximize the economic profit, while ensuring that the
subsea compression plant remains operational until the next planned maintenance.
We consider a min-max robust optimization and a scenario-based optimization with
recourse. Although both methods avoid unplanned shutdowns, the scenario-based
method results in a less conservative solution at the cost of a larger problem size.

Introduction

Most oil and gas fields that are easy to develop have been exhausted, forcing the
petroleum industry to produce from more difficult fields with larger water depths,
longer tie-back distances and harsh climate conditions. Subsea processing technol-
ogy is an enabling technology for development of such fields, although several new
challenges arise when production and processing facilities are put on the seabed
[140]. One of the challenges is that the process is not easily accessible for main-
tenance. Since maintenance interventions require specialized lifting vessels, fair
weather conditions and available spare modules, unanticipated breakdowns can
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lead to long production halts and large production losses. The lifting vessels some-
times cost several tens to hundreds of millions of dollars to rent, and must be booked
several months in advance. For this reason, stringent requirements on safety and
reliability are imposed on operation of these processes. This in turn often leads to
conservative design and operation strategies and the economic potential of the field
is often not fully realized.

In this paper, we propose to combine reliability and operational considerations in
an model predictive control-like framework with shrinking horizon. In particular,
we present an approach that ensures that the remaining useful life (RUL) of the
equipment is not exhausted before the next planned maintenance stop, while at
the same time maximizing the expected operational profit.

A few other authors investigated the combination of the prognostics and health
monitoring (PHM) with advanced control methods such as model predictive con-
trol (MPC). MPC is a control strategy based on repeated optimization of a pro-
cess model to obtain optimal input trajectories. Due to its ability to deal with
multi-variate, constrained problems, MPC has gained popularity in industry in re-
cent years [115]. Health prognostics information is usually not taken explicitly into
consideration when calculating the optimal control moves, and this can lead to
sub-optimal operation [151]. If a prognostic model is available, the system health
state can be included as constraints in the optimization [134, 151], or as terms
in the objective function [56]. The term health-aware control was introduced by
[56] to describe a control structure that pro-actively adjusts the inputs to prevent
a fault from occurring. The health-aware control structure thereby distinguishes
itself from the more established fault-tolerant control (FTC) structure, which only
takes corrective action once a fault has already occurred. Similar ideas are discussed
in papers by [134], who include PHM in an MPC framework to redistribute the con-
trol efforts among redundant actuators to prevent actuator breakdown, and [151],
who model the reliability of pumps in a drinking water network using Bayesian
networks and include the system reliability in the MPC formulation.

In this work we present a comparative study of two robust approaches applied
to a subsea gas compression system. We model a subsea gas compression station
and define the optimal control objective. The reliability of the system is ensured
by constraining the health-state of the compressor, which is assumed to be the
critical component. The degradation of the compressor health is assumed to be a
function of the input usage and uncertain parameters. In particular, we assume
parametric uncertainty in the compressor health degradation model and calculate
the robust solution using both a scenario-based MPC approach, and a worst-case
MPC approach.

Combining Prognostics and Control

To start with, we assume that the health state, h, of the system is observable, and
we define a minimum health limit, h.,;,, above which we have to operate. Violation
of this constraint corresponds to an unacceptable risk of failure. We assume the
health to be monotonously decreasing, i.e. the system is not repaired or maintained
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before the final time ¢; is reached. Because of the fixed final time, the MPC has a
shrinking horizon rather than the more common receding horizon.

Due to the inherent uncertainty in the model, the optimization problem solved at
each time step in the MPC is usually stochastic, because most prognostic models
are statistics-based. The stochastic optimization problem can be written as

gi(uv p) =0 i=1,...,ng
m&n E(fo(u,p)) s.t.q fj(u,p) >0 j=1,..n; (A1)
he(a,p) >0 k=1,...,n4

where p € P. In the above expression, we use u to denote the inputs and p to
denote the uncertain parameters, which are contained in the (bounded) set P.
fo is the objective function, g are the equality constraints, f are the inequality
constraints and h are the constraints on the equipment RUL. The operator E is
used to signify the expected value of the objective function. Below, we discuss two
approaches for addressing the uncertainty.

Min-Max Model Predictive Control

One way to handle the uncertainty is the ”min-max”-approach, in which the objec-
tive function is optimized given a worst-case realization of the uncertain parame-
ters. The min-max-approach, sometimes also referred to as the "robust” approach,
was implemented in a receding horizon MPC framework in [196].

In the non-linear case, identifying the worst-case realization can usually not be done
explicitly. Rather, the worst-case realization is found through maximization of the
inequality constraints, subject to bounds on the norm of the random parameters.
Consequently, a bi-level optimization problem has to be solved at each stage of the
min-max MPC.

min  E(fy(u,p)) s.t.{q&i(u)zo i= 1, g4 (A.22)
where

G(Wp) =0 j=t.m,

A.2b
PEP ( )

pi(u) = max fi(u,p) s.t.{

and f = [fl, v fngiha, e hnh] T. Bi-level problems are difficult to solve, as they
quickly become numerically intractable. [42] propose an approximated robust coun-
terpart of the nonlinear optimization problem, which is numerically efficient. The
min-max-approach is often very conservative [159], because the possibility of fu-
ture information about the realizations, i.e. feedback, and the possibility of other
realizations than the worst-case, are ignored when solving the problem.

Scenario-based Model Predictive Control

As a remedy, [159] propose a multi-stage approach with recourse. Scenario-based
MPC has its roots in multi-stage stochastic programming. The core idea in scenario-
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Figure A.1: Illustration of a scenario tree with robust horizon of length n,0pust = 2
and prediction horizon of length n. At each stage there are three possible realiza-
tions of the uncertain parameter, p*, p° and p~.

based optimization is to assume a discrete probability distribution for the uncertain
parameters. A finite number of scenarios are then generated to represent how the
uncertainty may develop over time. For the resulting scenario tree, the expected ob-
jective function value is then minimized subject to non-anticipativity constraints,
which require that the decisions only depend on the past realizations of the ran-
dom parameters and their probability distribution. Future realizations cannot be
anticipated, and are therefore not included in the decision making process [48].

Due to the need for additional variables and constraints, the complexity of scenario-
based MPC increases with the number of scenarios. In order to keep the problem
tractable, the scenario tree only branches up until a certain stage, called the robust
horizon [102]. After the robust horizon, the realizations of the uncertain parameters
are kept constant.

An illustration of a scenario tree with a robust horizon with length n,opyst = 2 and
a prediction horizon with length n is shown in Figure A.1.

A challenging task is the selection of a representative scenario tree. Especially when
the dimensionality of the problem becomes large, it is nontrivial to reduce the
scenario tree to a manageable size. One way to generate the scenario tree by using
combinations of the maximum, minimum and nominal uncertain parameters. A
scenario tree generated this way will result in a feasible solution for linear systems,
and typically works for non-linear systems in which the degree of non-linearity is
not too large [102].

Case study

Process description

A subsea gas compression station (Figure A.2) is used to illustrate the robust
health-aware control strategy in this paper. The process is similar to the gas com-
pression stations installed on the Asgard field and the Ormen Lange pilot.

The plant consists of a single choke, which regulates the flow of oil and gas from the
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Figure A.2: Process diagram of the subsea gas compression station.

reservoir, a scrubber which separates the gas from the oil, and a wet-gas compressor
to achieve sufficient gas pressure for transport through the pipeline. Due to non-
perfect separation, some liquid droplets are carried over in the gas stream. The
separation efficiency of the scrubber is assumed to be a function of the gas velocity
and the fluid density [16]. The compressor in our system is a wet gas compressor
which can handle moderate liquid carry-over, with a suction gas-volume-fraction
from 0.95 to 1. A full description of the compressor model, including the compressor
maps, can be found in [4]. The liquid stream from the separator is boosted before
being recombined with the compressed gas stream. Finally, the multiphase flow is
sent to the receiving facility through a long subsea pipeline.

We assume that the wet-gas compressor is the critical component in terms of overall
system reliability. We therefore make the simplifying assumption that the wet-
gas compressor is the only component whose reliability will decrease on the given
time horizon. As rotating equipment is prone to wear damage, leakage and signal
failure, due to its complexity and many moving parts [99], this assumption seems
reasonable. Tests from the Ormen Lange pilot have shown that the RUL of the
compressor is strongly linked to the operating conditions [53], which makes it a
good choice for showcasing a health-aware operating strategy.

Modelling the compressor degradation

In general it is hard to predict exactly when or how a compressor is going to fail.
[99] lists some common causes for compressor failure, including how they can be
monitored. Both [53] and [99] report that the magnetic bearings of the compres-
sor are critical components and prone to fatigue failure. [53] also found that the
health state of the active magnetic bearings is observable through their power con-
sumption. The reason for this is that damage to the compressor innards causes an
imbalance of the driving shaft. Consequently the magnetic bearings require more
power to stabilize this imbalance.

We propose to model the health degradation of the compressor over one month
of operation, Ah, as a result of wear, which is proportional to the dimensionless
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compressor speed N, and shock damage, which is caused by set-point changes in
the compressor speed, |AN].

Ah:—( pyN" 4+ palAN]S )-f<y> (A.3)

Wear and tear  Shock damage

Here, h is the compressor health, which ranges from 1 to 0 (breakdown). p =
[pNpa] denotes the random parameters that affect the degradation. We assume
that p follows a Gaussian distribution. The function f, which is a function of the
measurements y, is introduced to take into account the increased rate of wear in
multiphase fluids. [53] report that the compressor life scales cubically with the
compressor speed. We therefore chose the coefficients n = na = 3. Furthermore we
assume that the compressor degrades exponentially with the liquid content in the
gas.

Ah = — (pyN? + pa|AN?) - exp(1 — GVF) (A.4)
where GVF is the gas volume fraction at the inlet of the compressor.

Since py, N, pa and |AN |are nonnegative, the compressor health is monotonously
decreasing, and failure is defined as the event when & goes below a failure threshold
value h,,;,. We assume that h is measurable.

Defining Optimal Control Problems

The objective of the plant operation is to maximize the profit of the plant between
planned maintenance stops. As a simplification, we assume that the variation in the
variable operational expenses (in particular the power usage of the compressor) are
negligible compared to the income due to gas production. Furthermore, we assume
that gas is the only valuable product, and the contribution of o0il can be neglected
in the objective function. Taken into account that gas that is produced today, is
worth more than gas that is produced in the future, we use the net present value
(NPV) of the gas in the objective function.

The discharge pressure from the compressor is bounded from below to make sure
that the carbohydrate stream has enough pressure to overcome the flow resistance
in the transport pipeline. Moreover, we add constraints to prevent compressor surge
and compressor choke/Stonewall conditions. Both these phenomena are undesired,
so this operating region must be avoided. All bounds are listed in Table A.1.

Deterministic formulation

We formulate the objective function for the optimal control problem as

ty
Folthgass t7) = — / NPV (1hgas )dt, (A5)
0
where t; is the time until the next planned maintenance stop.
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Table A.1: Bounds for the variables

Variable Lower Upper
Discharge pressure 15 bar -
Compressor health 0.8 1.0
Compressor surge 0 -
Compressor choke 0 -
Compressor speed 0.6 1.05

Choke opening 0.0 1.0

Table A.2: Values of the uncertain variables py and pay in the scenarios used to
generate the scenario tree.

Scenario PN PAN
LL 0.006 (u—20) 0.6 (u—20)
LH 0.006 (u—20) 1.8 (u+20)
HL 0.018 (x+20) 0.6 (n—20)
HH 0.018 (n+20) 1.8 (n+20)
mean 0.012 (u) 1.2 (n)

The optimization problem is solved using Casadi 3.0.0 [10] in MATLAB R2015a.
The problem is discretized using a third order direct collocation scheme and solved
with Ipopt 3.12.3 [185].

Stochastic multi-stage approach

Robustness towards parametric uncertainty in the parameters py and pay in the
compressor degradation model from Equation (A.3) is achieved by discretizing their
probability density function and applying the scenario-based method. Five different
scenarios are considered: HH, HL, LH, LL and mean. These are the combinations
of the maximum, minimum and nominal realizations. See Table A.2 for the specific
values. All five scenarios are equally probable. An initial prediction horizon of
length n = 20 and a robust horizon of length n,,pust = 1 is used to speed up
the calculation. Higher robust horizons were tested as well, but were not found to
improve the solution significantly while resulting in a much higher computational
cost.

Min-max approach

Robustness can also be achieved by considering a worst-case scenario in the opti-
mization. For a general, non-linear case, the approximate robust counterpart prob-
lem may be solved using the method described in [42]. For the current system, it is
not strictly necessary to define the robust counterpart, as it can be determined a
priori that the HH-scenario from Table A.2 will always be the worst-case scenario.
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Figure A.3: Deterministic open-loop solution when py = 0.015 and pa = 1.5.

Results

Deterministic open-loop solution

The deterministic open-loop solution can be seen in Figure A.3. It can be seen that
the constraints are satisfied, and that the compressor health constraint is active at
the end of the horizon. Since the NPV of the gas production is considered, early
production is favored over late production.

Closed-loop results

The closed-loop responses of three control structures are shown in Figure A.4.
Firstly, notice that the non-robust approach, in which expected values are consid-
ered for the uncertain parameters, leads to repeated violations of the constraints on
the discharge pressure and the final health constraint. In contrast, the two robust
approaches both satisfy all constraints, as is to be expected. In both cases, there is
a back-off from the constraints to account for uncertainty. It can be seen that the
scenario-based approach is less conservative than the worst-case approach, since it
results in overall higher gas production, 771 4q4s.

The values of the cost function for the three different cases are shown in Table A.3.
Note that the scenario-based method yields a higher net present gas production
than the worst-case method, but lower than the non-robust method based on ex-
pected values. The higher gas production for the non-robust case comes at the cost
of constraint violation (i.e. an unplanned maintenance stop). The 2.6% higher net
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Figure A.4: Comparison of closed-loop performance of three different controllers in
the presence of uncertainty. The realizations of the uncertain variables are py =
0.015 and pa = 1.5.

Table A.3: Normalized profit, i.e. net present gas production, for the three methods

(in closed-loop).

Method

Discounted closed-loop profit

Scenario-based
Worst-case
Nominal case

1.026
1.000
1.056*

present gas production of the scenario-based method, compared to the worst-case
approach, may be a substantial increase in profit.

Conclusion

We have developed a model for a subsea gas compression system and shown how
prognostics can be included in the decision-making process to obtain a control
structure that gives economical and safe operation. Robustness towards parametric
uncertainty is very important in this application, since the health-constraint always
will be active. To achieve robustness, we employ a scenario-based optimization
method, which is shown to be less conservative than a worst-case approach.

Future work will focus on measurement feedback and health state estimation, more
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detailed degradation models and extension to system-wide health-aware operation.

146



Appendix B

Combined Maintenance Scheduling
and Production Optimization

This chapter is from the article

e A. Verheyleweghen, H. Srivastav, A. Barros and J. Jaschke. Combined Mainte-
nance and Production Optimization (European Safety and Reliability Conference
(ESREL), Hannover, Germany). Proceedings of the 29th European Safety and Reli-
ability Conference. pages 499—506, 2018

B.1 Abstract

Optimal operation of complex production and processing plants is important, but
challenging to achieve in practice. The reason for this is that decisions in different
disciplines, such as design, operations and maintenance, are made independently
of each other. This can lead to a large degree of conservativeness. In this paper,
we present a unified approach for maintenance- and production planning, which
reduces the conservativeness and leads to more economical operation. We model
the system using differential equations and then formulate the problem of optimal
operation as a numerical optimization problem. The problem is a mathematical
program with equilibrium constraints (MPEC), which we solve using off-the-shelf
optimization software. Some model approximations were made to make the sys-
tem numerically tractable. We demonstrate the method on a subsea-inspired case
example.

B.2 Introduction

For certain classes of production systems there exist a trade-off between producing
as much as possible, and prematurely wearing the system out. For example, in
subsea oil and gas production systems the revenue is directly related with the
amount of produced hydrocarbons, while a too high production rate may lead
to fast system degradation, with expensive maintenance operations and possible
production loss due to downtime.
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From an economical point of view, there exists an optimal trade-off between the
maintenance cost, the inspection cost and the operational profit. Moreover, when
the system has degraded, the operator needs to make a decision relating to what
degree the system should be restored. Using commonly employed Monte Carlo
methods to obtain the optimal production profile and the optimal maintenance
schedule, represents a significant challenge due to the sheer amount of possible
scenarios that need to be explored. Numerical optimization seems like an attractive
alternative to Monte Carlo methods due to the potential for faster convergence to
an optimal solution.

In this paper we propose an integrated approach to operate the system optimally,
that is, we propose to integrate the decisions on 1) the system load (how much to
produce), 2) when to perform a maintenance operation, and 3) to what degree the
system should be restored, in a unified framework.

To demonstrate our approach, we model a subsea oil and gas production system
using a four-state Markov chain, where state A represents the new, healthy sys-
tem, states B and C represent progressively degraded systems, and state D rep-
resents the failed, inoperable system. Arrival at the failed state D can be caused
by unexpected sudden failure, or due to progressive degradation. The time depen-
dent transition rates are a function of the input usage, thus yielding a multiphase
Markov decision process. The production system model is described by a non-linear
differential-algebraic equation system (DAE).

Optimal production and operation planning is defined as the case when the sum of
the expected value of the revenue minus the inspection cost and the maintenance
cost, is maximized. As decision variables in the optimization problem we assume
the inspection times and the input profile. By inputs, we here mean the operating
mode that the plant is running at. For example, the inputs of a compressor could
be its throughput and frequency.

At each inspection, all systems found in the failed state D are restored to state
A (if we follow the as-good-as-new (AGAN) policy). If the system is not found in
state D, the system does not reveal whether its true state is A, B or C, and no
maintenance is performed. Consequently, the model becomes a switched differential
algebraic model, and the optimization problem can be formulated as a non-smooth,
non-linear program. We solve this problem using state of the art methods for non-
smooth optimization.

Authors of previously published work on the topic of combined maintenance and
production planning typically formulate the problem as a lot-allocation problem
[58, 77, 188]. This often results in a mixed-integer (non-) linear program (MI(N)LP).
Our proposed method is different as we do not consider ”lots” of products, but
rather the case where production can be adjusted in a continuous fashion. We also
avoid the use of integer variables by formulating the problem with complementary
constraints instead.

The remainder of the paper is structured as follows; in Section B.3 we show how a
continuous differential equation can be derived for the case of a degrading system
with discrete inspection- and maintenance times. In Section B.4 it is shown how
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the derived model can be used in the context of optimization, where the aim is to
manipulate inputs and the maintenance times to minimize some objective function.
In Section B.5, the method is demonstrated on the subsea case example. Finally,
concluding remarks and thoughts on future work are given in Section B.6.

B.3 Modelling the degrading system

Given a four-state Markov process as shown in Figure B.1.

17/\117)\11 1_)‘11_/\11, 1_>\a_>\u

Figure B.1: Markov chain for a system with four discrete degradation states

Let p(t) = [pa(t) ps(t) pc(t) ,uD(t)]T denote the probabilities for being in
any state at time ¢. Assuming time-invariant transition rates A\, and A, between
the states, the change in probabilities between two inspections is given by

dp
- - A 1
- (1) (B.1)
= (Ag+Ay) - p(t) (B.2)
where
- 0 0 0
Aa  —Aa 0 0
A, = 0 A A, 0 (B.3)
0 0 Ao O
and
—Au 0 0 0
0 —Xu 0 0
A, = 0 0 -\, 0 (B.4)
Au Au A O
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In the above expressions, A is known as the transition matrix. A is decomposed into
A, which is describing the transitions due to aging, and A,,, which is describing
the transitions due to unforeseen failures.

Integrating Equation (B.1) gives
u(t) = exp(A - (t —to))p(to) (B.5)

B.3.1 Probabilities between two inspections

Upon inspection of the system at time 1, we reveal if the system is broken down
(in state D), or not (either in state A, B or C'). This leads to two different cases,
depending on the outcome:

Case I:

Upon inspection, we find the system is in state D. Thus, we restore the system by
performing maintenance (without time lag). Assuming perfect repairs according to
the AGAN policy, the new initial conditions t; are

Base (b)) =1 0 0 0]7 (B.6)

and
Hcase I(t > tl) = exp (A : (t - tl)) IJ’JCrase I(tl) (B7)

Note that we use the notation g™ (¢1) to indicate the right-handed limit of p(t1),
i.e. directly after the inspection at ¢, and pu~ to indicate the left-handed limit of
u, i.e. directly before the inspection at ¢;. Because p is discontinuous at t1, these
two limits will generally not be equal.

Case II:
Upon inspection, we find that the system is not in state D. However, we do not
know if the system is in state A, B or C'. The new initial conditions at t; are:

+ _ [ _may) b (t) g (1) T
Hcase II(tl) - [1—25(t1) 1_5B(t1) 1—55(1&) 0 (B8)

and
HcCase II(t > tl) = exp (A : (t - tl)) IJ’JCrase II(tl) (Bg)

Expressing the probabilities from the perspective of ¢,

However, we cannot know ahead of time which of the two cases will be observed
in the future (non-anticipativity). We must therefore forecast the probabilities into
the future by taking the weighted average of both cases.

I’L+(t1) = I’l'gase I(tl) ' ME)(tl) (BlO)
+ u’gase Il(tl) ! (1 - uB(tl)) (Bll)
pa(t) + pp(t)
Zggi; (B.12)
0
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Or, in matrix notation:

pr(t) = M -exp(Ag(t —to)) - p(to) (B.13)
M - p~(t) (B.14)

where we further decompose M as
M = (I + RST) (B.15)

where I is the identity matrix, R is the repair matrix, and S is a selection matrix.
The selection matrix chooses the failed state D.

S=[0 0 0 1]7 (B.16)
For AGAN repairs, we have
R=[1 0 0 —-1]". (B.17)

In Section B.3.2, we will come back to why the decomposition of M into R and S
is useful.

The evolution of the probabilities for case 1 and 2, and the weighted average of the
two cases is illustrated in Figure B.2.

Case 1l Case 2 Weighted average
1 iy 1 T 1 T
\\ A
09Ff \ 09Ff 09+ B
\\ C
0.8r 0.8r 0.8r D]
0.7 0.7 0.7
\
\
0.6 0.6 N 0.6 \
N\ N
AN AN
205} 205¢ N 205¢ S
AN
0.4 Inspection 04 Inspection 04 Inspection AN
0.3r 0.3r 0.3r o
// // //
0.2} 0.2 0.2 y
/ -~
0.1f 01f o1t / P
/ / ~
/ /- - _
_ - ~
0 s 0 = 0 =

Figure B.2: Tllustration of evolution of the probabilities u before and after inspec-
tion. Left: system is found to be in the failed state D upon inspection, and is
repaired without time lag. Middle: system is found to be in working order upon in-
spection, and no repairs are performed. Right: weighted average of the two previous
cases.

Generalization
Using the general expression for the probabilities between two maintenance stops
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from Equation (B.5), we can express the probabilities at any time ¢ as the piece-wise

function
_Jexp(A-(t—to)) - pt(to) if t<t
ult) = {exp (A-(t—11)) pt(ty) if t>1 (B.18)
where
pt(to) = p(to) =po=1[1 0 0 0] (B.19)

is the specified initial condition.

Taking it one step further, we can have an arbitrary amount of inspections and
maintenances, k, between two times g and ¢y and express the probabilities as

exp (A~ (t —to)) - u* (to)
if to<t<ty
exp (A - (t—t1)) - pt(tr)
[J,(t) = if ¢t <t<ty (B20)

exp (A~ (t —tx)) - p* (1)

if tp<t< ty
where
p(t) = M- p=(t) (B.21)
po(ti) = exp(A-(ti —tim1)) - ph(tio1) (B.22)

B.3.2 Differentiating to get the differential model

Equation (B.1) described the evolution of the state p between two inspection times.
However, as we have shown, we can express the state at any given time by the piece-
wise model from Equation (B.20). If we differentiate Equation (B.20), we get

k
%’: =A-p(t)+ RS p(t) - (; ot — u)) (B.23)

where ¢ is the Dirac delta function.

Let us now introduce the variable

r(t) = STu(t) - (Z 5(t — m) (B.24)
to obtain the form

%" =A-pt)+R-r(t). (B.25)

We choose to work with this form of the reliability model as it allows us to distin-
guish between the degradation of the system due to aging and unforeseen failures
(first term of Equation (B.25)), and the maintenance of the system (second term
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of Equation (B.25)). Our aim is to do numerical optimization of the maintenance
times, which can be achieved by optimizing the breakpoints ¢; of the function r(¢).
More on this in Section B.4.

Furthermore, we can easily change the maintenance strategy from as-good-as-new
(AGAN) to as-bad-as-old (ABAO) by changing R

Rycan = [1 0 0 -1 (B.26)
Ripao = [0 0 1 —1]T (B.27)

An illustration of how u(t) changes as a function of r(t) is shown in Figure B.3.
Note that 7(t) is a sum of Dirac functions. In addition, we show the integral fgf r(t),
which is proportional to the maintenance cost.

B.3.3 Modelling the effect of inputs

The second contribution of this paper is the inclusion of the effect of inputs w(t),
which influence the degradation rate of the system. Thus by changing w(t), we can
actively steer the rate of degradation of the system. This is very useful, as it allows
us to optimize the performance of the system by co-optimizing w(t) and r(t). We
model this behavior by letting A, be a function of the inputs and time, instead of
a constant matrix like before. A, remains constant, as we assume that unexpected
failures cannot be influenced by changing the inputs. The differential model now is

W (Malonst) + A - l0) + R () (B.28)

Note that if Ay(u,t) is a piece-wise constant function, meaning we can write it as

Aa,l if tg<t<ty
Ao if 1 <t<t
C) R S (B.29)

Ao it <t <ty

the system becomes a Multiphase Markov process. However, we do not require this
assumption, and are free to choose whatever form of A, (u,t) we need.

B.4 Formulating the optimization problem

In order to find the optimal combined production and maintenance strategy, we
first formulate an optimization problem in terms of an objective function and con-
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straints. !
ty
min () )t
u,r 1! ( )
+filt, 1, ) + f(t, 1, 7) (B.30a)
s.t. du _ A(t,u) - p(t) + R-r(t) (B.30b)

0 w(
k
r(t) = STu(t) - (Z 5t — m) (B.30c)

0<p<l1 (B.30d)
Z i =1 (B.30e)

i€{A,B,C,D}

0<r<oo (B.30f)

Umin < U < Umax (B.30g)

In the above optimization problem, f denotes some economical objective which is
to be maximized (typically profit or production), f; denotes the inspection cost,
which is typically proportional to the number of inspections k,

filt, p,u) o K, (B.31)

and f,, denotes the maintenance cost, which is assumed to be proportional to the
integral of r(t)
tr

fm(t, pyu) /r(t)dt. (B.32)

to

B.4.1 Problem re-formulation for numerical optimization

The optimization problem from Equations (B.30a)-(B.30g) can be solved in a mul-
titude of ways. A common approach is to approximate the dynamic problem by
a static non-linear programming (NLP) problem through the use of so-called di-
rect methods, where direct multiple shooting and direct collocation are common
approaches [28]. In this work, we use the direct collocation approach.

One issue with Problem (B.30) is in 7(¢). Since it is the summation of Dirac func-
tions, it is unbounded as shown in Equation (B.30f). An alternative to using the
formulation adopted in this paper is to formulate the problem as a mixed integer
problem, as was done in [15]. Due to the nonlinear nature of the problem, we have
to solve a mixed-integer non-linear programming (MINLP) problem, as done in e.g.
[9, 63]. These MINLP problems are however known to be very difficult to solve in
the general case, despite recent progress in algorithmic development.

INote that the constraint in Equation (B.30e) is implied by Equation (B.30b), but we include
it for completeness.
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Instead, we approximate 7(t) using Boxcar functions as

r(t) ~ 7(t) (B.33)
k
7(t) = ZBoxcar(t) (B.34)

k
= Z hz (H(t — ti) — H(t — ti — 61‘)) (B35)

where H is the Heaviside function, h; is the height and ¢; is the width of each
”bOX”.

An illustration of this approximation is shown in the middle plot in Figure B.4.
Note that the approximation for p is good if € is sufficiently small, and that the
approximation gives the same cumulative maintenance cost [ #(t)dt. Furthermore,
we observe that p is now continuous (although nonsmooth), which makes the
optimization problem easier to solve.

Another numerical issue is posed by the inspection cost from Equation (B.31). In
the original formulation with Dirac functions, one might be tempted to find & as

tf L
ko= S(t—t;))dt (B.36)
[ (oe-w)

/ ((57u() ™" v (1)), (B.37)
to
but for this to work, we must assert that

mp(ti) = pp(ti) (B.38)
to avoid division by zero. Such a condition might be difficult to impose numerically.

Instead, we propose to solve the problem by introducing the additional variable y,
which we use to formulate additional constraints:

0<(1-y)LlFr>0 (B.39)
0<y<l1 (B.40)

Here, the 1 operator indicates complementary, i.e. we require that at all times
either 7 or (1 — y) or both are zero. The inspection cost can then be written as

filt mw) o 2 (B.41)

In order to minimize the cumulative inspection cost, y(t) will be a function that is
either at its lower bound (zero) when no inspection is performed, or at its upper
bound (one) when inspection is performed. By integrating we get

ty ty

k_/(zkza(t—ti))dm/’:dt (B.42)

to to
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B.5 Case study

As a case example, we consider a system inspired by subsea oil and gas produc-
tion. Subsea technology is key to satisfying the energy demands of tomorrow, due to
the intermittent nature of renewables and the continued need for petroleum prod-
ucts also in a green society. Reliability is a major issue for subsea installations,
as maintenance interventions are very costly. Consequently, it is important to op-
timize both production from the subsea installation, as well as the maintenance
interventions.

Assume that production from the subsea installation actively degrades critical com-
ponents such as pumps, valves and heat exchangers. The transition rates can there-
fore be assumed to be proportional to the inputs w that we apply to the system. In
our case, u(t) represents the production rate of oil and gas. A higher production
rate will give more immediate profit, but also increased degradation.

Poor instrumentation and a lot of measurement uncertainty mean that a system
may not be properly diagnosed to have failed without inspection. An example of
this could be the failure of a single well going to a manifold with several other wells.
The failure of the single well may be masked by the large variability in production
of the other wells. Well tests (which can be thought of as inspections) are thus
required to reveal the state of the single well.

B.5.1 Objective function

The objective is to maximize the average production from the well over the lifetime
of the field, while simultaneously minimizing the inspection and maintenance costs.
This economical objective can be written as

| [ (=1 fnt 1,
u(rtr)lgl(t) / (W)dt (B.43a)
where
f0) = elp) - u) (B.43b)
fm(@) = ¢ -7(¢) (B.43c)
fi(®) c] -y(t). (B.43d)

Here, c, is the productivity in each state, ¢, is the maintenance cost, ¢; is the
inspection cost. The entire economic objective is discounted by a factor d to reflect
the decreasing value of future income streams compared to present income streams.
Note that the objective is non-linear due to the bi-linear term in f(¢).
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Table B.1: Parameters used for the optimization

Parameter Description Value
Au Sudden failure transition rate 10~4
Aa Base aging transition rate 1072
d Discount rate .001
Cp Productivities in each state ~ [28 21 14 28] T
Cm Maintenance cost 300
c; Inspection cost 30
ty Final time 200 weeks

B.5.2 Constraints

The objective function is optimized subject to the following constraints

s.t. le—l; = A(t,u)p(t) + R7(t) (B.43e)
Alt,u) = Ag - u(t) + Ay (B.43f)
1(0) = pg (B.43g)
01<u<1.0 (B.43h)
0<7< (B.431)
€min
€min S € S €max (B43.])
0<p<1 (B.43k)
0<(1-—y)LF>0 (B.431)
0<y<1 (B.43m)

Note that the transition matrix A(¢,w) is linear in u. Since we require u(t) to be
a piece-wise constant function, A(t,u) is also a piece-wise function. Consequently
we are dealing with a Multiphase Markov process, as discussed in Section B.3.3.

The parameters for the problem are summarized in Table B.1.

B.5.3 NLP formulation

Multiple approaches exist to solve dynamic problems like Problem (B.43), but
we choose to use orthogonal collocation on finite elements. The original dynamic
problem is reformulated as an NLP, which can be solved using standard non-linear
optimization algorithms. We will not go into details about how to discretize the
problem, see e.g. [28] for a summary.

The resulting NLP is implemented in MATLAB using Casadi 3.4.1 [11]. The
interior-point solver TPOPT 3.12.3 [185] is used to solve the optimization prob-
lem.
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B.5.4 Solution strategy

Our problem is non-convex and local solvers such as IPOPT will consequently
only find local solutions. In other words, we cannot guarantee global optimality of
the solution. In order to ensure global optimality, global solvers such as BARON
[149] have to be used. Global solvers come with some drawbacks, such as being
computationally intractable for large problems.

To remedy this, we use a multi-start approach where the problem is repeatedly
re-optimized with different initial guesses. After a certain number of optimizations
(1000 in this case), the best local minimum is returned. Fewer than 1000 optimiza-
tion runs could suffice, but as they are computationally cheap, we choose to run
1000 to ensure that a good solution is obtained.

B.5.5 Solution

The optimized production and maintenance strategy is shown in Figure B.5. As can
be seen, the optimal strategy is to operate at maximum w all the time (a typical
property of almost-linear optimization problems), while inspections / maintenance
is performed at ¢ = 88, 127 and 160 weeks. The objective function value is 3924
MS$. Note that the first inspection is quite late. The reason for this is that the
probabilities of being in the degraded states are initially low. As a result, performing
inspections and maintenance at an early stage in the race is sub-optimal.

In an actual implementation, one would re-optimize the problem upon obtaining
new information about the system state (such as after an inspection). This is known
as model-predictive control (MPC) or rolling horizon optimization [28]. However,
the optimization problem itself remains the same with only the initial conditions
from Equation (B.43g) changing. We therefore chose to skip the closed-loop results
in the interest of time and space.

B.6 Conclusions and future work

In this paper, we have introduced a method for simultaneous production- and
maintenance optimization. The problem was motivated by a Markov-chain repre-
sentation of a degrading production system, which would have been difficult to
optimize using the traditional Monte Carlo based approach. We reformulated the
problem as a algebraic-differential equation system, which we solved using a non-
linear optimization approach. While not all problems can be solved like this, we
showed how for the specific problem at hand, the problem could be cast into a form
which could be solved using off-the-shelf solvers. The concept of input-dependent
transition rates can easily be included in the framework. Some approximations were
introduced to make the problem numerically tractable. The method was demon-
strated on a case example inspired by subsea oil and gas production.

Possible future research directions include:

e Detailed comparison to Monte Carlo-based methods for optimization.
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Inclusion of more maintenance strategies by modification of R and optimiza-
tion of the trade-off between the different maintenance strategies.

A distributionally robust problem formulation to safeguard the solution against
uncertainties in the transition rates.

A multi-step approach to include the value of future information in the open-
loop optimization problem.

Looking at the case where maintenance is not instantaneous, i.e. when there
is lag-time.

Analysis of the losed-loop performance.

A more complex case study with multiple simultaneously degrading units
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Figure B.3: Illustration of how 7(¢) influences p(t). The cumulative maintenance
cost is proportional to the integral of r, shown in the bottom plot, while the
inspection cost is proportional to number of spikes (three, in this case)
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Figure B.4: Illustration of how r(¢) (dashed line, circles) can be approximated by
7(t) (solid line) to obtain a continuous .
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Figure B.5: Optimal solution of the case example
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