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Abstract

State of the art strategies to achieve optimal process tpeitspically employ a hierar-
chical control structure, where different tasks are destiggh to different control layers.
In the simplest case there is an optimization and a contyefrlaThe optimization layer
computes the optimal setpoints for the controlled varigbléhich are then implemented
by the control layer. While the control layer is designedeej the controlled variables at
given setpoints, the optimization layer changes thesesgfto adapt operation optimally
to varying conditions. For simple implementation, we wanthange the setpoints only
occasionally while still obtaining acceptable performanader varying disturbances.

The focus of this thesis is to study how to find good controlladables, whose op-
timal value is invariant or near invariant to disturbancélsese invariants are calleslf-
optimizingvariables, and keeping them constant will result in an atad®e, or in the ideal
case, zero loss from optimality.

In the first part of this thesis, we consider controlled Valea, which are linear com-
binations of measurements. The loss is used as the critemigelecting the best set of
controlled variables. Applying the inverse Choleski facibthe Hessian with respect to
the inputs as a weighting factor, we derive a first order ateuexpression of the loss in
terms of the weighted square norm of the gradient of the opdition problem.

Next, we present a method for finding controlled variablesibglyzing past optimal
measurement data. Selecting combinations of measurembiais correspond to direc-
tions of small singular values in the data, leads to corgdbllariables which mimic the
original disturbance rejection.

Furthermore, the relationship between self-optimizingtoa and necessary condi-
tions of optimality (NCO) trackingis studied. We find the methods to be complementary,
and propose to apply NCO tracking in the optimization laged self-optimizing control
in the control layer. This will reject expected disturbasmbg self-optimizing control on
a fast time scale, while unexpected disturbances are egjéxst the setpoint updates from
NCO tracking.

In the second part of the thesis, we extend the concept ofopélhizing control
to polynomial systems with constraints. By virtue of thersparesultant, we use the
model equations to eliminate the unknown variables fronojbtgmality conditions. This
yields invariants which are polynomials in the measuresiarantrolling these invariants
is equivalent to controlling the optimality conditions.

This procedure is not limited to steady state optimizatarg therefore, we demon-
strate that it can be used for finding invariants for polyrariniput affine optimal control
problems. Manipulating the inputs to control the invarintero gives optimal operation.

1Frangois, G., Srinivasan, B., Bonvin, D. 2005. “Use of measients for enforcing the neces-
sary conditions of optimality in presence of constraintd ancertainty”. Journal of Process Control
15 (6). 701-712
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Chapter 1

Introduction

Und jedem Anfang wohnt ein
Zauber inne,

Der uns beschitzt und der uns hilft
zu leben.

H. Hesse

1.1 Motivation

Rising competition in a global market makes it increasingigessary to operate
chemical plants at a greater profit. At the same time, enmental and safety
regulations become stricter. To remain competitive in deefof these challenges
requires improvements in the process design and strategiek help to maximize
the profit for existing processes.

This work is concerned with optimal operation of procesdesys, where the
design is assumed to be given. Although the profits from negling process
operation might seem small compared to the total incomea¢bhamulated effect
over time is often significant for success on the market.

A common strategy for obtaining higher profits is to raise degree of au-
tomation in a plant by using automatic controllers. Thes#rotiers are used to
control process variables to their setpoints, which arerglyy operators or have
been obtained by some optimization routine. Depending enofterating con-
ditions and the control structure, these setpoints may tawe adjusted to the
current operating conditions, such that the income geeeay the plant, is max-
imized.

In practice, however, one wants to avoid changing the setipddr the con-
trolled variables frequently, to keep operation simplelevktill achieving optimal
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or near optimal operation.

A successful method for achieving near-optimal operat®geilf-optimizing
control [Skogestad, 2000]. This term refers to finding colted variables which
remain constant at optimal operation, and which can beyeesiitrolled using a
simple feedback structure. An example for self-optimizawtrol is controlling
the temperature in a kitchen oven at a given temperatureingatour favourite
cake in the oven at the given temperature gives good reswés) for different
ovens and if the kitchen temperature varies because a wihdeween opened. A
different (non self-optimizing) strategy would be to difgaontrol the heat input
to the oven. Due to changing heat loss, the optimal valueigfriable will not
be constant with changing kitchen temperatures, or foeufit ovens. In addition,
the second strategy is more difficult to implement, and meguknowledge about
the kitchen temperature, the heat loss from the oven, anbgatcapacity of the
cake.

In other cases, the best strategy is to control some conmrinaf measure-
ments to a given constant setpoint, for example controllieflow ratio of two
streams entering a reactor, or the air/fuel ratio into a agtibn engine.

Controlled measurement combinations, whose optimal gadwe invariant to
disturbances, are the leitmotif in this thesis. We show hioiw toncept can be
derived, how data can be used for finding controlled vargtiiew using invariants
and other methods interact, and we explore new ways for finithiese invariants.

In the last decade, there has been much work on finding sgifiizing con-
trolled variables, which are linear combinations of measents. However, re-
stricting controlled variables to be linear combinatiohsn@asurements can give
unacceptable performance, if the process behaviour isneaml In these cases it
is desirable to allow nonlinear combinations of measurdéséoo. Thus, the main
contribution of this thesis is the extension of the nullegpanethod [Alstad and
Skogestad, 2007], which gives a linear combination of measants for an un-
constrained problem to systems which are constrained arghwhn be described
by polynomial or rational equations (Chapter 7). This esitem to polynomial
systems makes it possible to apply it to certain dynamicesyst(Chapter 8).

1.2 Thesis overview

After an introduction to different methods for achievingiogal operation, the first
part of this thesis (Chapters 2 — 5) deals with controlledatdes, which are linear
combinations of measurements. The second part (Chapte® @escribes how
polynomial invariants can be found for systems which are efied by rational
or polynomial equations. Except for Chapter 8, all this ih1és concerned with
finding controlled variables which optimize plant performa at steady state.
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Part | Preliminaries and linear invariants for optimal oper ation

Chapter 2 gives a short introduction to optimal operatioaitsgies for chem-
ical plants. Some important strategies are briefly mentipaad the thesis
is placed in a wider context.

Chapter 3 points out the connection between the loss froimafity used
in linear self-optimizing control, and the gradient of thederlying opti-
mization problem. In particular, the loss is shown to be agiwieid norm
of the gradient. We show that weighting is important when parmg dif-
ferent control structures, because using the unweightadigyrt norm as a
criterion may be misleading.

Chapter 4 presents a method for finding linear invariantatdei combina-
tions in the case where a model is not available. Optimalaijoer data is
analyzed for finding invariant variable combinations whiem be used for
control.

Chapter 5 shows how self-optimizing control and NQcking [Frangois
et al., 2005] can be placed in the general concept of an bldcal real-

time optimization control structure. We show that the apphes can be
considered complementary, with NCO tracking updating #tpaints for

the self-optimizing controlled variables.

Part Il Polynomial invariants for optimal operation

Chapter 6 presents some very basic theory polynomial sgstéve intro-
duce some concepts to prepare the reader for the followiagtehs.

Chapter 7 extends the theory of the null-space method [Astal Skoges-
tad, 2007] to systems of polynomial equations with constsai The idea
is to formulate the optimality conditions, and then elim@all unknown
(unmeasured) variables from this expression.

Chapter 8 demonstrates that the results from the previoaptehcan be
used to find invariants for a dynamic optimization.

Chapter 9 gives our conclusions and suggestions for fuviloek.

INCO refers to “necessary conditions of optimality”



4 Introduction

Appendix

e Appendix A contains a case study of a waste incinerationtplénis in-
cluded here, because it nicely illustrates the conceptlbbpgimizing con-
trol in an industrial case study, and it shows how optimalrafien can be
implemented in a simple manner.

In the author’s opinion, the Chapters 5, 7 and 8 are the mqgsbritant contribu-
tions of this PhD work.
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1.3 Publications

During my PhD work | have generated the following publicato

1.3.1 Publications contained in this thesis
e Chapter 3

— Johannes Jaschke and Sigurd Skogestad “Optimal OperatiQoty
trolling the Gradient to Zero” Accepted for publication &etl18th
World Congress of the International Federation of Autom&wntrol
(IFAC), 2011, Milano.

Chapter 4

— Johannes Jaschke and Sigurd Skogestad “Controlled \iesididm
Optimal Operation Data” Accepted for publication at thet2&aro-
pean Symposium on Computer-Aided Process Engineering APEC
2011, Porto Carras.

Chapter 5

— Johannes Jaschke and Sigurd Skogestad “Self-optimizimir&@nd
NCO tracking in the Context of Real-time Optimization” Sulied to
Journal of Process Control.

Chapter 7

— Johannes Jaschke and Sigurd Skogestad “Self-Optimizing & as-
ing Nonlinear Variable Combinations as Controlled Vargahl Sub-
mitted to Journal of Process control.

Chapter 8

— Johannes Jaschke, Miroslav Fikar and Sigurd Skogestafidftmizing
Invariants in Dynamic Optimization” Submitted to 50th IEEEN-
ference on Decision and Control and European Control Centey,
CDC-ECC 2011, Orlando.

Appendix A

— Johannes Jaschke, Helge Smedsrud, Sigurd Skogestadk Memiim,
“Optimal Operation of a Waste incineration Plant for DistitHeating”
Proc. American Control Conference, St. Louis, USA, June92665-
670.
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1.3.2 Other publications as first author

2011

e Johannes Jaschke, Sigurd Skogestad “Measurement Poblsaasi Con-
trolled Variables” Book Chapter in: M. Huba, S. Skogestad,Rikar, M.
Hovd, T. A. Johansen, B. Rohal’-llkiv (Editors) “Selectedpics on Con-
strained and Nonlinear Control”, Textbook. ISBN: 978-88627-4-0.

e Johannes Jaschke, Sigurd Skogestad “Measurement Poblsaasi Con-
trolled Variables -Excercises” Book Chapter in: M. HubaS&ogestad, M.
Fikar, M. Hovd, T. A. Johansen, B. Rohal’-lIkiv (Editors) éfcted Topics
on Constrained and Nonlinear Control”, Workbook. ISBN: S3{B968627-
3-3.

2010

e Johannes Jaschke, Sigurd Skogestad, “Self-optimizingraloand NCO
tracking in the Context of Real-time optimization” Keyndéeture, 8th In-
ternational Symposium on Dynamics and Control of Procestefys, Proc.
DYCOPS 9 Leuven, Belgium, July 2010.

e Johannes Jaschke, Sigurd Skogestad “The Null Space Methddnding
Patterns from Optimal Data” 21st Norwegian Symposium orm@imeetrics,
March 2010 Sundvolden.

2009

e Johannes Jaschke, Sigurd Skogestad “Optimally Invariarithle Combi-
nations for Nonlinear Systems” Proc. ADCHEM, Istambul, Kay;, July
2009, 551-556.

e Johannes Jaschke Sigurd Skogestad, “Nonlinear Measurébuenbina-
tions for Optimal Operation” Nordic Process Control Worbgl2009 Pors-
grunn, Norway.

2008

e Johannes Jaschke, Sridhar Narasimhan, Sigurd Skoge&tapljcit real-
time optimization”, AIChE Annual Meeting, paper 471a, Rbiglphia, USA,
Nov. 2008.
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1.3.3 Co-authored publications

e Sigurd Skogestad, Ramprasad Yelchuru, Johannes JasclmkendD use
of Measurements for Control, Optimization and Estimatising the Loss
Method: Summary of Existing Results and Some New” Book Gérajpt
M. Huba, S. Skogestad, M. Fikar, M. Hovd, T. A. Johansen, EhaRdlkiv
(Editors) “Selected Topics on Constrained and Nonlineamt@d’, Work-
book. ISBN: 978-80-968627-3-3.

e Henrik Manum, Sigurd Skogestad, Johannes Jaschke “Conitatization
of the H2 -optimal static output feedback problem” Proc. Aicen Control
Conference, St. Louis, USA, June 2009, 1724-1729.
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Chapter 2

Optimal operation of chemical
plants

The fashion of the world is to avoid
cost. ..

W. Shakespeare

This chapter provides a short overview of different appheacto obtain opti-
mal process operation. Some concepts will be revisiteditathis thesis, however,
it was decided to include them here to give an overview of hptintal operation
can be implemented in chemical plants, and to present terlaetting in which
this thesis is placed.

2.1 Optimal operation of process systems

Control means influencing an object to behave in a desired[iageisen et al.,
1980], and in this thesis we desire to influence process pkunth that the plant
performance is optimized. Optimal plant performance heeams to manipulate
the available plant inputs in such a way that a scalar costtifum is minimized

(or equivalently, that the profit is maximized). This cOgfnamicis expressed as
[Findeisen et al., 1980]

1 tr
Jdynamic= t —to/t j(t)dt, (2.1)
0

Herety andt; denote the starting and the final time of the operation peoiod
interest, and (t) denotes the time varying integral cost. During operati@ntain
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safety and environmental constraints have to be satisfied:
h(t) <O0. (2.2)

An example forJgynamiccould be the accumulated expenses for fuel or emissions
over a year; and examples for operational constraints diecthe maximum tem-
perature in a reactor or the minimum and maximum allowablellm a storage
tank.

In practice, many plants are operating close to a steady starating point
for most of the time. In these cases, (2.1) can be approxdrat#iciently well by
introducing a quasi steady state assumption and using thesiio optimize the
steady state cost (rate),

J=j. (2.3)

The type of plants, which are optimized in industry variesarthg from
small specialty chemical reactors, where one e. g. wantsdi &xpensive off-
spec product, the applications range to large-scale atiglits as optimizing the
performance of complete large-scale plants, such as rigfinefhus, the number
of measurements and inputs can vary significantly. A coraleémical plant may
have hundreds to thousands of controlled variables [Hatréd., 1999; Trenchard
and Boder, 2005], which have to be controlled by equally mapyts. In addition,
there will be many variables which are not controlled, buichfare measured and
monitored for safety and environmental reasons.

The plant profit] is to be optimized not only at some design conditions, but
also during different kinds of external disturbances wraffect the plant. Gen-
erally, some disturbances will change slowly, or betweeg liime intervals. Ap-
plying a quasi steady state assumption, these disturbaraecebe considered as
constant. Examples for this kind of disturbances may irelcidanges in the pro-
duction rate, or the temperature of sea water which is usezbfuing in a process.

Other disturbances will be changing at a higher frequenay, aasteady state
assumption would not be valid for these disturbances. Extéhese disturbances
truly optimally, one would need to solve a dynamic optimizatproblem. How-
ever, in many practical applications the disturbances earejected well with Pl
feedback control to keep the important process variablastaat in spite of these
disturbances. An example is the temperature of the cooliagmfor a cooling
reactor. In this case, the coolant flow rate can be adjusteld that the reac-
tor temperature stays at the steady state optimal value.el#mwin general, the
guestion of whether a disturbance can be considered asaotristeady state) is
dependent on the particular plant, and on the engineensgresgent to optimality.

In order to minimize the operating cost (2.1) or (2.3) for anpbex system
like a chemical plant in spite of disturbances, a commona@gugr is to decompose
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Scheduling (weeks) |

| Site—wide optimization (day

Local optlmlzatlon (hour

\\ ’
Supervisory
control
Control (minutes)
Layers
\
Regulatory
control
(seconds)

Figure 2.1: Hierarchical control structure [Skogestad)()

the system into subsystems, which are easier to manage,aanblecconsidered
individually. In terms of achieving optimal operation fochemical plant, a hier-
archical decomposition of the control structure is sugggdtigure 2.1 [Findeisen
et al., 1980; Skogestad, 2000a], where one control lay&ives control signals
from the layer above, and passes new control signals to jfex lzelow. The
scheduling layer operates in the time scale of several weakkis based on the
economic strategy of the company. Usually, this layer issndbmated. The re-
sulting strategy and operational targets are passed toittavisle optimization
layer, which may be automated, often using steady state Ismaael numerical
optimization. The control signals from the site-wide op#ation layer are sent to
the local optimization layer, which may also be automatehis Tayer operates in
a timescale of hours.

Finally, the setpoints from the local optimization layee passed to the control
layer, which can be further subdivided vertically into tlupervisory layer and the
regulatory layer. The supervisory layer performs on a stdwee scale, while the
regulatory layer rejects the influence of disturbances @sttime scale.
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As with any abstraction, the concept of hierarchical laykrss not reflect all
issues which are present in a chemical plant. For examplintieescale separation
will not always be sharply defined. Depending on the pamwicplant in consider-
ation and the degree of optimization of the process, noagdiils are present in the
control structure. However, elements of the layer concelptbe found in most
chemical plants, and for practical purposes, the layer ineglps to organize the
complex problem of operating the plant optimally.

For obtaining optimal operation in terms of the cost (2.byiously all layers
have to act in concert. E.g. it does not help to have a peyfeaitking regulatory
layer when the scheduling layer has forgotten to order thgoraducts. To achieve
optimal plant operation, several approaches have beermgedpn literature. In
the next section we present some important concepts artd tieéan to the control
layers in Figure 2.1.

2.2 Model based approaches

To optimize the plant performance, the real-world probldrogiimizing (2.1) or

(2.3) is typically translated into a mathematical optintia problem. Depending
on whether a dynamic problem or a steady state problem igdpive have two
cases.

2.2.1 Dynamic real-time optimization (Dynamic RTO)

The in some sense simplest approach is to lump all the lageraibig, combined
layer and simultaneously optimize this layer using a dywmamodel to find the
optimal input trajectories. The optimization problem ipitally in a form similar
to this,

u(t) ts —to Jio
S.t.
X(t) = g(u(t),x(t),d(t),t 2.4)
h(x(t),u(t),d(t)) <0
T(x(tr)) <0
X(0) = Xo,

whereu(t) is then,-dimensional vector of inputs(t) the ny-dimensional state
vector with given initial valueg, d(t) the ng-dimensional disturbance vector, and
p(t) denotes known parameters concerning the prices of the giodu
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Jp(t)

Dynamic real-time
optimizer

Figure 2.2: Dynamic RTO schemd(t): external disturbance(t): prices,u(t):
input, y(t): measurements.

The functionj is the integral cost term of the scalar cost functiymg is the
right-hand side of the differential equation system whiefirtes the state evolu-
tion, h denotes the operating constraints, dndhe terminal constraints on the
states.

Because the model generally does not describe the plamigtigrfand because
the future evolution of the disturbance is seldom known gitimization problem
(2.4) is usually solved repeatedly at given sample timed tla@ input trajectory is
updated accordingly, Figure 2.2. The plant measuremeats primarily used to
update the model and model parameters. This monolithicoappris referred to
as dynamic real-time optimization [Allgdwer and Zheng, @0Diehl et al., 2002;
Grotschel et al., 2001; Engell, 2007], and it requires amgte model, which is
capable of describing every layer of Figure 2.1 in detail.

In dynamic real-time optimization there is no distinctioatlween optimiza-
tion and control. Thus, the time scale separation from eidud is effectively
undone. If the model was perfect, this approach would ledatiddrue optimum.
Because of this potential, dynamic real-time optimizatias gained much interest
in academia, but it is not used so frequently in practiceabse of several reasons.
First, obtaining an accurate dynamic model for a complegmibal plant is often
prohibitively expensive.

Second, solving the dynamic optimization problem arisirgrf a complete
plant in real-time is still challenging with today’s commg power.

Third, since optimization and control are not distingulsbea a failure in the
optimization routine will result in arbitrary inputs to tipdant. Vice versa, a small
failure, such as unmodelled stiction in a valve can lead foreseen upsetting of
otherwise unrelated parts of the plant. Moreover, noisepdarat-model mismatch
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may make operation infeasible.

Fourth, it is very difficult to include unforeseen operatoteraction in the
routine. If e.g. an operator sets a valve in manual modenit isnger available for
the optimizer. It is almost impossible to include all podgibs when designing
the dynamic real-time optimizer for an industrial plant.

Fifth, the optimality and feasibility of dynamic real-tinogtimization in prac-
tical applications depends critically on obtaining goodtestand parameter esti-
mates for the model. As the estimation problem is equallypternas the dynamic
optimization problem, this concept is not widely used inuisily.

However, if the model is accurate and the optimization mobtan be solved
in real-time, the concept of optimizing the whole plant sitaoeously will be
optimal. Despite the challenges listed above, dynamictiesd optimization has
been reported on industrial cases [Qin and Badgwell, 20085 Bnd Schei, 2007].
Mostly it is used for optimizing processes of inherently dgmc nature, such as
batch processes and grade transitions. With ever growingpating power and
modelling knowhow it will certainly continue to spread irdimstry.

2.2.2 Conventional real-time optimization (RTO)

Since many continuous processes make most profit at stestey thte largest sav-
ings can be made by optimizing the steady state performainttes plant. Opti-
mizing only the steady state of the process, instead of dinatpall dynamics into
the optimization problem, allows us to consider the optatian problem and the
control problem separately. This is done in conventionateady state real-time
optimization (RTO), where the steady state optimizatioobpgm is solved on a
time scale which is larger than the plant settling time.

Of course, a chemical plant is never truly at steady stateinbonany cases,
disturbances can be rejected such that important variabteain almost constant
at their optimal values. This is the ultimate reason for tkistence of process
control.

Assuming quasi steady state in all variables, the optinaagbroblem typi-
cally looks like

rrgan(u,x,d,p)
subject to
g(u,x,d) =0 (2.5)
u= f(cs,x,d)
h(u,x,d) <0,

wherec; is the setpoint for the controlled variables, and the véemb € R™,
x e R™ deRv, pecR™ are the quasi steady state input, state, disturbance and
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Figure 2.3: Conventional RTO schemel: external disturbancep: prices,u:
input,y: measurements.

price vectors, respectively]l denotes the scalar cost function to be minimizgd,
the model equations, aridthe operational constraints. The functibrdescribes

the closed loop steady state relationship between thedtl@atrvariables and the
inputs.

The conventional RTO scheme is illustrated in Figure 2.3in@Jshe price
parameters (from the scheduling layer above), the new isesgor the controlled
layer are calculated once or twice a day and passed on to thektkayer below
which controls the controlled variables to the given setfoi

Note that in practice all variables in Figure 2.3 are timeyway. However,
the real-time optimizer computes new setpoints only atrdtecsample times, and
optimal operation will only be achieved when the plant hadeskdown close to
steady state, and the quasi steady state assumption is valid

Implementing conventional RTO is easier to realize in indalspractice, be-
cause it is generally easier to obtain a good steady statelnioah building an
exact dynamic model, which describes the process suffigiemd! at all frequen-
cies. In addition, it is numerically easier to solve largeasly state optimization
problems than large dynamic optimization problems. Howetehould be noted
that solving large nonlinear steady state optimizatiorbj@ms is still far from
easy, and can be prohibitive for implementing RTO in somegsses.

As in dynamic real-time optimization, when using convendbreal-time opti-
mization, a major challenge is to obtain good parameter &aid sstimates for the
model. Since a steady state model is used for optimizatignecessary to assure
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that the plant has settled down sufficiently before updatiregmodel parameters
and calculating the new inputs. The task of identifying djestate and reconciling
the data with the model is not easy, and still a subject of omgeesearch [Lid and
Skogestad, 2008; Martinez et al., 2010].

When using RTO, some loss for the non steady state periodsépted, but
it is traded for the additional freedom of being able to dedlge control layer in-
dependently. Hence, we can for example select pairingshagiie good dynamic
performance, and we can assign different controllers fiferdint tasks. Thus, it is
possible to design a simple and robust control structurkercontrol layer, while
still achieving optimal operation at steady state. The tamthl savings which
could be obtained using dynamic real-time optimizatioreftio not justify the
increased effort of installing and maintaining the dynareil-time system.

2.3 Control structure design — self-optimizing control

A question which remains unsolved in this layer system (fEigi2.1 and 2.3) is:

Which variables should be passed on from one layer to the?n8itce e.g. the

optimization layer operates on a slow time scale where ttposgs are changed
only once or twice a day, disturbances which occur betweenplates are not re-
jected optimally before the next update. Moreover, disindes may change their
values more frequently than the optimization layer upddtesetpoints. Depend-
ing on the choice of the controlled variables, this may hasewere impact on the
overall profitability of the plant. The question of which iables to control has

been raised by Foss [1973], in his “Critique of chemical pssccontrol theory”:

Which variables should be measured, which inputs should dr@pn
ulated, and what links should be made between these two $kis?
problem is considered by many to be the most important pnolelie-

countered by designers of chemical process control syst§foss,

1973]

Since then many authors have been working on finding the lbestat struc-
ture [Morari et al., 1980; Morari, 1982; Skogestad, 2000atrBway and Perkins,
1994; Halvorsen et al., 2003; Skogestad, 2004; Cao, 2006wKla and Cao,
2009], and also this thesis is a contribution to this reseéiedd.

To keep the time scale separation, it is desirable to findrobhed variables
which remain at a constant value whenever the system istegesatimally. These
variables are called self-optimizing variables. Skogk§2800a] writes:

Self-optimizing control is when we can achieve an acceptatds
with constant setpoint values for the controlled varialfleishout the
need to reoptimize when disturbances occur).
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The idea is to keep the overall optimization problem in mirftew designing the
control structure in each layer, such that information almpiimal operation is
contained in the controlled variables By controlling c to its optimal setpoint,
the loss which comes from the time scale separation is magidhibecause small
disturbances are rejected locally on the fast time scaldéyontrol layer. It is
no longer necessary to wait for the RTO layer to compute newmapb setpoints,
because the optimal setpoints do not change with varyingrsnces. Therefore
the self-optimizing variables have been referred to as thissing link between
steady state optimization and control” Skogestad [2000b].

For many processes, operation can be improved significepthutomatically
rejecting the disturbances in the control layer, and noirtgato wait for the next
RTO setpoint update.

In Chapter 3 we show that self-optimizing control varialitas be considered
as local approximations of the gradient of the economicnaigtition problem. If
they are controlled to zero, the system is operated optpmidiince, a good choice
of controlled variables can disburden the real-time op@nin the sense that the
optimization problem has to be solved less frequently, sviill giving good per-
formance. In some cases, the real-time optimizer may eveonte superfluous.
We discuss the combination of self-optimizing control andoatimization layer
in Chapter 5.

2.3.1 Previous work on self-optimizing control

In this section we give a brief overview of previous work itf-sgtimizing control.
Since this thesis is a collection of papers, we believe,ithvetl make it easier for
the reader to see the novel developments in the subsequeiech

For a more detailed treatment and a complete derivationeainithods below,
we refer to Halvorsen et al. [2003]; Alstad and Skogestad20Alstad et al.
[2009]. The goal is to find controlled variables, whose sgestdte optimal value
is constant in spite of disturbances. We assume that quemil\sistate optimal
operation corresponds to the solution of

muinJ(u,x,d,p)
subject to
g(u,x,d) =0
h(u.x,d) <0,

(2.6)

where the variables are defined as in the conventional RTBlgrn(2.5). After
satisfying all the active constraints, the remaining umst@ined problem can be
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approximated around the nominal optimal point as

. J J u

o T T uu ud
minJ(u,d) = [uT dT ] [ e Jug ] [ q } (2.7)
Hereu € R™ andd € R™ are the unconstrained inputs and the disturbance vec-
tor, respectively, andyy, Jud, Jdu, Jad are matrices of appropriate dimensions.
Furthermore we require thadg, > 0. We assume that we have a linear plant model

y=GYu+G)d, (2.8)

wherey € R"Y are the measurements, a6d and Gﬁ are matrices of appropri-
ate sizes, which denote the steady state gain from the imglitree disturbances,
respectively, to the measurements.

In addition, we assume additive noise on the measuremerith vghgiven by
the ny-dimensional vectonY. Thus, the measured value of the plant output is

Ym=y+n’. (2.9)

It is assumed, that all uncertainty is captured in the veat@ndny.
Using the measurements, we want to select controlled Jagaih the form

c=Hyn (2.10)

which give good steady state performance. In the case of msunement noise,
nY =0, we simply write the controlled variable as

c=Hy. (2.11)

The criterion for evaluating the controlled variables is #tconomic loss in
terms of the cost function.

L =J(u,d) — J°P(d) (2.12)

We do not write the loss as a function of the control strugtbeg as a function of
the actual steady state inputs, which may be generatedh®r @itcontrol structure
or an open loop policy.

There are two subproblems, which can be addressed in thevirark of self-
optimizing control. Assuming a sét of possible disturbances we can:

1. Determine &H which minimizes the worst case (or average) lbdsr all
de 2.

2. Given different control structures (given bli,H>,...) select theH; which
for all d € 2 gives the best performance in terms of the lboss
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Minimum singular value rule

The minimum singular value rule is a criterion for the setatof controlled vari-
ables, which is based on the scaled steady state inputifogdiu We just give
the result here, for details and the derivation, we refer &abvbtsen et al. [2003];
Skogestad and Postlethwaite [1996]. Assuming that we hiffezeht candidates
(that is givenH;) for controlled variables

G =Hiym
=Hi(y+n”)
=HiG’u+HGyd+HnY (2.13)
G
=5i =Gu,i

= Gju+ Gg,d + HnY.

e Each candidate controlled variahdeis scaled such that the sum of the op-
timal range and the implementation error is unity. Alteively, we could
scale the candidate variablgssuch that

Hci(d)’ - c?p”\ ‘2 <1forde 2. (2.14)

e Each input vector elemeny is scaled such that a unit change in each input
has the same effect on the cost functibn

The scaled candidate then is
¢ = Giu'+Gyd+en, (2.15)

whereg, is the term caused by the nois& The minimum singular value rule sug-
gests to select the controlled varialgjevhich maximizes the minimum singular
value ofG{,

maxa (G;). (2.16)

For most practical applications, this rule gives good tssuHowever, since
it is based on the assumption thRyt, is orthogonal, it can yield poor results in
ill-conditioned cases, see Halvorsen et al. [2003]. Theimmim singular value
method has been applied to many case studies, e. g. Govki@0@8], Skogestad
[2000a], and references therein.

Exact local method

The exact local method [Halvorsen et al., 2003; Alstad eR@l9] is a method for
evaluating the loss caused by a given control policy. It &leon a Taylor approx-
imation of the cost function. First, the measurement namskthe disturbances are
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scaled by diagonal scaling matricdg; andW,, of appropriate sizes such that

d = Wud (2.17)
n = Wyn¥, (2.18)

d/
L

The lossl associated with a given control structittecan be written as

and
<1. (2.19)

L= Iz 2 (2.20)
where
z=Mgqd +MpynY’ (2.21)
and
Mg = —Juw2(HGY) *HFW4 (2.22)
My = —Juw Y?(HGY) THW,y. (2.23)
HereF is the optimal sensitivity matrix, which is defined as
Fe a;’;pt. (2.24)

By reopimizing a process model for different disturbanckies and using finite
differencesF can be estimated. Alternatively, it can be calculated from Iin-
earized model using

F == Gz - GyJuu_lJud. (2'25)
Introducing
M=[Mgq Mp], (2.26)
we can write /
d
z=M [ n } , (2.27)

ny’ } = (2.28)
1_
=-a(M)%
50(M)
This loss can be used to rank different candidates for chedirgariables. Alterna-
tively, as we show in the next section, the loss expressiontreaised to determine

a combination of measurements which minimizes the worst tessL ..
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Minimum loss method

The optimal linear combination of measuremenis Hy,, can be found by mini-
mizing the worst case loss (2.28):

H = arg nllinE(M) (2.29)

However, this is not an easy problem, because (2.29) is aongeg optimization
problem. Introducing

Fo[FWa Wol, (2.30)

Alstad et al. [2009] present a method, which solves (2.2%r&rysforming it into
a convex optimization problem. In particular, they showt tha

H =arg (ranE(H F)s.t. HGY = Q) , (2.31)

whereQ € R"™*™ is any nonsingular matrix, solves (2.29). Kariwala et a0(a]
have shown that

min|[HF] |
s.t. (2.32)
HGY = Q

gives solution, which minimizes both, the average and thestxgase loss. Here
||-||r denotes the Frobenius norm. We refer to Kariwala et al. [Pé@8 Alstad
et al. [2009] for a deeper discussion on the choice of the rarchmore details.

Null space method

The null-space method is a special case of the minimum lofisadewhere there
is no noise in the measurement¥,= 0. Then (2.26) simplifies to

M = My. (2.33)
In addition, we must have
Ny > Ng + Ny. (2.34)

Thatis, we have at least one independent measurement fouekaown variable
In this case we have 3
F=FWyqy, (2.35)

Ias a starting pointu is considered an unknown variable.ulf or elements iru are measured
(known), they are included in the measurement vegtoiThus they appear on both sides of the
inequality, and (2.34) can be restated to read that we ndedsitas many measurements as unknown
variables.
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and it is always possible to find a nontrividisuch thaHF = 0. We simply select
H in the left null-space oF. Then we see from (2.22) that

Mg =0, (2.36)

and the los@ (M) is zero. As we have assumed zero noiges 0, the null-space
method rejects disturbances perfectly, but does not takesitcount the effect of
measurement noise'.

Some personal comments on the previous work

The starting point in the research of self-optimizing cohts the desire to find
a control structure which minimizes the cost (or equivdietiie lossL from op-
timality). It was soon discovered that minimizing the norimtlee gradient was
not equal to minimizing the loss, therefore the gradientmaras not considered
a good criterion and the research focus moved away from theiegit as a cri-
terion. However, the author suspected that there was someection between
minimizing the gradient and the loss. In Chapter 3 this cotioe is explored,
and it is shown that the loss can be expressed as the normwetgkted gradient,
wherel,, %2 is the weighting factor. Naturally, when the loss is zere,dghadient
must be zero, too. Therefore, the controlled variable abthifrom the null-space
method can be considered as the gradient, where we havenalediall unmea-
sured variables by using the measurement model. Obvidoslthis elimination,
we need at least as many measurement equations as we hawvaskirThis is
reflected in the condition for the number of measuremepts ny + ny.

Using tools from polynomial elimination theory, this coptecould be ex-
tended systematically to polynomial systems in Chaptend,ta dynamic opti-
mization problems which are described by polynomial eguat{Chapter 8).

Originally, the optimal sensitivity matrik had to be estimated using a process
model and re-optimization, or by evaluating (2.25). Sirltis tequires a good
process model, this is often difficult. In Chapter 4 we show Iptant data can be
used to obtain an estimate l6f

2.4 Uncertainty in model based approaches

Whenever a model is used for describing and optimizing age®scthere will be
some uncertainty in the model which leads to a discrepanwydas the model and
the reality. The uncertainty can be classified into diffétgpes, which usually all
are present to some extent. This uncertainty will cause-plendel mismatch.
The first type is parametric uncertainty, which occurs whenrhodel is cor-
rect, but some parameters are not known. Consider for exatnglheat which
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is removed from a stream,
Q= MGAT, (2.37)

wherem, cp, AT denotes the mass flow, the specific heat capacity, and theetemp
ature difference between inlet and outlet, respectivelyeRample for parametric
uncertainty (a disturbance) is a varying value. Differentc, values will lead to
different amounts of removed he@t

Another example for a parametric uncertainty could be anaasured state.
Even though the model describes the state correctly, iteevial not known, and
any expression containing it cannot be evaluated.

Parametric uncertainty can often be handled by using otlearsarements to
infer the unmeasured quantity. This thesis contributebegtoblem of handling
parametric uncertainty, by showing how uncertain varislolEn be eliminated us-
ing a process model.

A second type of uncertainty is structural model mismatchis Theans that
the model equations do not describe the process correcthexample, a reaction
rater may have been modelled to follow a first order law- kc, wherek is a
constant ana is a concentration. In the real process, however, the maatiay
follow a second order law, = kc?, or some more complicated kinetics. This kind
of uncertainty tends to have a more severe impact on nomlinedels.

Many different strategies have been developed to handiet-pladel mis-
match. Maybe the simplest way to handle this kind of uncetyds to simply add
a bias term to the model, and to adapt the term such that thelrdedcribes the
reality better. For a more advanced treatment of this stuljeaefer to Marchetti
et al. [2010] and references herein. Other references ansthiject are Forbes
et al. [1994]; Forbes and Marlin [1996]; Zhang and Forbe®(@0Chachuat et al.
[2009].

In many cases the effect of the uncertainty on the plant peosiignificant; in
other cases the effect is negligible. This depends very roag¢he combination of
plant, model, the particular uncertainty and the how the ehizdused.

2.5 Other related concepts

We briefly discuss some other optimization concepts in thisian, and set them
into the context to this work.

2.5.1 Model predictive control

In model predictive control [Garcia et al., 1989; Mayne et2000; Maciejowski,
2002; Rawlings and Mayne, 2009], the controlled variabtescantrolled to their
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setpoints by using an input trajectory which has been obthby solving an opti-
mization problem online.

The term “model predictive controller” is generally useddontrollers, where
the input trajectories have been obtained by solving a @iadprogram (QP);
that is, the objective function is quadratic and the procasslel is linear. If a
nonlinear model is used, it is referred to as “nonlinear rhpdedictive control” or
NMPC. The only difference between NMPC and dynamic reaétoptimization
(Section 2.2.1) is that in the former the objective is to colra set of variables to
their setpoints, while in the latter the objective is to miike a cost function of
economic nature.

The concept of using a model for calculating the optimal tijectories was
first reported by Richalet et al. [1978], and has gained mtteim&on in the control
community since then. A nice survey about industrial use ofieh predictive
control is given in Qin and Badgwell [2003].

Due to the task of tracking setpoints, model predictive ilers are used
in the control layer of Figure 2.1. The question about whiahiables to use as
controlled variables, still remains open and needs to beenesl.

2.5.2 NCO-tracking

Necessary conditions of optimality (NCO) tracking is theddo control the neces-
sary conditions of optimality [Srinivasan et al., 2003; ldadet al., 2007; Francois
et al., 2005]. Although the NCO could be controlled by somatiomous con-
troller, such as a PI controller if they were available asmmeasurements, the
publications concerning steady state optimization (d=garjcois et al., 2005; Gros
et al., 2009]) have been applying iterative input updatdsclvare shown to con-
verge to the optimal steady state operating point.

As in numerical optimization, also in real plants, obtaghthe gradients effi-
ciently is a challenge, because the gradients (and hendéQl@d cannot usually
be measured directly. Therefore they must be estimated ppozimated some-
how. A comparison of methods for obtaining the gradientsiiergin Mansour
and Ellis [2003]. More on NCO tracking and how it can be useagktber with
self-optimizing control is found in Chapter 5.

NCO tracking is very close to self-optimizing control, srtbe necessary con-
ditions of optimality for steady state optimization haveoastant optimal setpoint.
In fact, the NCO are the ideal self-optimizing variablesfamunately they are of-
ten difficult to measure.

2.5.3 Experimental methods

Box [1957] proposed a procedure which is based on carefdbigthed experi-
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ments, and measurements of the objective function. Theiexgets are designed
such that gradient information of the profit is estimatedingshis gradient infor-
mation, new experiments are performed. This is continueil ke optimum has
been reached (the gradient is zero). However, this appneaghres the objective
function to be measurable, and if the disturbances chahgewhole procedure
has to be repeated. If the disturbance changes with a highgudncy than the
experimental procedure, the gradient information is confled with the distur-
bance, and does not give correct information about the gofface. However,
for systems with (constant) parametric uncertainties théthod may be applied
successfully. Since the number of degrees of freedom (thHables which can
be manipulated to optimize the process) has to be small #optbblem to be
tractable, this method can only be applied for small systévitge on this kind of
methods can be found in e.g. Hunter [1960]; Carpenter anceByd 965]; Box
and Draper [1987], and Box and Draper [1998].

2.5.4 Extremum seeking control

An approach which automatically drives the process to thiemm is “Extremum
seeking control”, where the inputs are excited to obtairligrat information and
this information is used to move the system to the optimumis Bpproach is
based on measurement of the objective function, or on krigel@bout how the
objective function depends on the states and the distuelsaj@@uay and Zhang,
2003]. A nice introduction to this method is given in AriyurdaKrstic [2003].

This method could be used in the optimization layer, howesee to the re-
quired excitation signal, the process is constantly digtdr This is generally in
conflict with the desire to keep the process at the steadyg efatimal operating
point, and it might cause problems in other down stream e

2.6 Conclusion

We have briefly presented some concepts for achieving optyperation in a
chemical plant, and have outlined some strategies for @cigi@ptimal operation
in continuous plants.

One concept is to use dynamic real time optimization, analwesa dynamic
optimization problem for the optimal inputs. This approé&the simplest in con-
cept, however in practice it is the most difficult to realiaeedo the complexity of
real industrial plants. In particular, problems arise lseaof modelling, numeri-
cal, and practical issues. Therefore it is not very commaskd in industry.

The second approach is to decompose the control systemallgribased on
the different timescales the layers operate in. This deoaitipn approach makes
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it possible to consider one layer at a time and to engineeiogtithize the layers
separately. It facilitates handling the complexity, bessainstead of considering
the whole control structure, we consider one layer at a tififeus it adds clarity
about what is happening in the process, and the reduced egityphakes it easier
to include possible faults and eventualities in the layesigle

The layers communicate downwards via the setpoints of therated vari-
ables, and upwards via the measurements. By selecting@tiizing controlled
variables, we guarantee that the control layers act in ddoominimize the oper-
ational cost. This will improve plant performance, whiletla¢ same time keep-
ing the control structure simple and manageable. In somescagen good self-
optimizing controlled variables are used, an RTO layer magnéecome unnec-
essary.
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Chapter 3

Optimal operation by controlling
the gradient to zero

If you cry 'forward’, you must
without fail make plain in what
direction to go.

A. Chekhov

From an optimization point of view, the gradient is the keyialle
which gives information about the optimality of a processtHis pa-
per we present how the gradient is related to the loss froimaity,
and show how determining a good set of controlled variabéeshe
considered aweightedapproximation of the gradient. We show that
even if there are setpoint changes for the controlled viasalthis can
still be considered as approximating the gradient.

Based on the paper accepted for publication at the IFAC WGidehgress 2011,
Milano.

3.1 Introduction

The overall objective of process operation is to minimizedbst] (or equivalently
to maximize the profiP = —J) subject to given constraints. However, when using
control, the objective is to keep selected controlled \deisic at their optimal
setpoints,

c(y) = cCs. (3.1)

With respect to these two goals, Morari et al. [1980] stated
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Figure 3.1: Cost and gradients for different disturbarctes

“...our main objective is to translate the economic objeiinto pro-
cess control objectives. In other words we want to find a fonat of
the process variables [...] which when held constant leatisaati-
cally to the optimal adjustment of the manipulated varighb#d with
it, the optimal operating conditions.”

However, they do not give a systematic method for finding thetrolled vari-
ables, nor do they mention that for the unconstrained chseplivious approach
to get consistency between economic and process contettolgs is to select the
gradient as the controlled variable. That is, to select

C:Ju(uvd)v (32)

and keep the setpoint constant at zete; 0. Hereu are the unconstrained degrees
of freedom,d are unmeasured disturbances, ap¢u,d) = dJ(u,d)/du is the
gradient. Irrespective of the disturbance, the optimalealfJ, is zero, (Figure
3.1). This was proposed by Halvorsen and Skogestad [19@/Ta] write that the
ideal controlled variable would be

¢ =C1Jy + Co, (3.3)

wherecy andc; are constants. The idea has also been proposed by Halvorsen
and Skogestad [1997b, 1999]; Bonvin et al. [2001]; Cao [2@0B5]; Srinivasan

et al. [2008], and intuitively it seems to be an excellenaid€he elements of the
gradient change sign when moving from one side of the optirtmianother side
(Figure 3.2), thus, it is well suited for feedback control.
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J(u,d)

uert Inputu

Figure 3.2: Cost and gradient values

However, in practice, we rarely have a measurement of théiegraand it is
often not clearly defined what it means to control the gradiemero. The gradient
is a vector, and in many practical cases is not possible ttradoall elements
exactly to zero. What should we do in these cases? A first pttéonanswer
this question will be to find a control structure, which miiges the norm of the
gradient. This is a good start; however, it is important tegkén mind that our
ultimate goal is to minimize the codt so this original criterion has to be applied
to evaluate the possible control structures.

The starting point is to write the controlled variables aarection of measure-
mentsym,

C= Hym, (34)

which is controlled to zerog = Hy,, = 0. Here,c € R™, andH € R™*"™. For
the system to be fully specified, we need as many controlledblas as we have
inputsu, that isnc = ny.

Since the gradient is optimally at zero, we can consider Hy, as an ap-
proximation of the gradient. If the approximation is exaty,,, = J, then we will
have optimal operation whenewet= 0, provided convexity. If it is not possible to
control the gradient (because of e.g. unmeasured distoeBamoise and missing
measurements), there will be some loss associated to tiserclvontrol structure.
To evaluate the performance of the chosen control policyisesthe original cost
function and define the loss from optimality

L = J(u,d) — I(u°Pi(d),d). (3.5)
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Note that the loss is deliberately not expressed as a funefithe control structure.
This is because we want to be able to use the loss to evaluatelopp strategies,
too. If we want to evaluate the loss for a particular conttnlcture, we insert the
u which corresponds to the applied control structure. Forengletails on the loss,
and its calculation, we refer to Halvorsen et al. [2003].

Considering the problem of selecting the best control sires, there are two
important questions, which we would like to address in tlipgy:

Q1. Does aH which minimizes||J,(Hym = 0)||, also minimizeL (Hyyn = 0)?
Q2. If not, is the difference significant?

In terms ofQ1. we show in Theorem 1 that minimizing the norm of the gradient i
not quite the same as minimizing the ldss

In terms ofQ2. we show that it is important in the case, when we have struc-
tural constraints oil. That is, we have control structures involving differentame
surements.

Another contribution of this paper is an extremely simplevdgion of the null
space method [Alstad and Skogestad, 2007].

Furthermore, we show we show how setpoint changes of theatieak vari-
ables can be seen in the context of minimizing the loss orcpating the gra-
dient.

This paper is structured such that the next section presemntsiain result, a
derivation of the expression for the economic loss baset®gradient. In Section
3.3 we describe how this interpretation is connected tatiegisnethods, and its
importance. Section 3.4 discusses how the case of varyipgists can be treated
in this framework. After presenting a distillation casedstun Section 3.5, we
close the paper with a discussion and conclusions.

3.2 Derivation of the loss expression using the gradient

3.2.1 Preliminaries

Consider the feedback system in Figure 3.3, where the Vasiatand cs denote
the nc-dimensional vector valued controlled variable and itpsiett, respectively,
and where the variable® € R"™,n® € R™ denote the noise and the steady state
control error, respectively. The noisy measurements anetddy,, € R™, and
we assume that the controllers have integral action so llea¢ is no steady state
error,n® = 0; then at steady statg = c.

After all active constraints are satisfied (controlled)e temaining uncon-
strained problem can be approximated by a quadratic proini¢ine neighborhood
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Cs n°=0

[ Controller 4 Comb|nat|on ]
c+nC

I .
|

Figure 3.3: Control structure (with integral actian,= c at steady stat&® = 0),
(Adapted from [Alstad et al., 2009])

of the optimal point,
. } T T Juu Jud u
mulnz[ ut d’ | [ I Jug |1 d | (3.6)

Hereu € R™, d € R™, andJyy, Jud, Jau, Jdg are matrices of appropriate sizes.
In addition, we assume thdt,, > 0. For small deviations around the nominal
optimum, the plant can be described by the linear model

y=G'u+Gld
—éﬁﬁ]v 3.7)

whereGY € R andG), € R *™ are the steady state gain matrices froand
d to the outputy. Our goal is to find controlled variables of the form

=H(y+n")

whereH € R"™*" which, when controlled to zero, yield optimal or near ogim
operation.

(3.8)

3.2.2 Approximating the gradient
The gradient of the approximated problem (3.6) is

u
Ju(u,d) = [ Juu Jud ] |: d :l :JUUU +Judd (39)
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Assuming that (3.6) matches the real plant, the necessaditam for optimality
is

Ju(u,d)=[ Juy Jug ] { y ] =0, (3.10)

As mentioned above, the ideal controlled variable is theligrd, ¢ = J,(u,d).
When it is known exactly, using it as a controlled variabléhis best choice and
works fine. In practice, however, the gradient must be estichaomehow using
measurement information. Then the controlled variablebexs

c=J. (3.11)

Obtaining the gradient estimaigcan be done in several ways, such as e.g. black
box modelling or estimating the gradient using statistioathods. In the case of
zero-mean noise, the effects may cancel out, but if therecisnatant non-zero
offset, the noise can deteriorate performance severelyg,we have to include the
noise in the analysis, too.

A first approach would be to find a controlled variable- Hy, which mini-
mizes the worst case gradient norm, e.g. to séteas

H =arg <ran mdaxHJu — Hyn| |2> . (3.12)

In the non-ideal case, whefy, # J,, controlling Hy, to zero will result in a
gradient which has nonzero elements, and therefore hagronarm,

[[9u(Hym = 0)|[, # 0. (3.13)

The norm of the gradient may seem a good criterion to evalsisbeptimality;
however it does not truly reflect the performance in term$efdriginal cost func-
tion. To quantify the suboptimality, we consider the lassvhich is defined as the
difference between the actual cost and the optimal cost §ivem disturbancel,

L = J(u,d) — J(u°P(d),d). (3.14)

Note that we are considering the loss with respect to thg typtimal instead of
the cost. The loss has the properties of a weighted norm.

Theorem 1. The local economic loss can be expressed to first order ingefm
the current gradient value as

2

I—Zé Juuil/zJu 2

1 ‘ (3.15)
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Ju(ul)

J(ug) -
L(UJ_) = \] - \]opt =
%Ju(ul)\]uu_l\]u(ul)
J(Uopt) - Ju(Uopt)

Y

c

Uopt uz

Figure 3.4: Lost imposed by non-optimal operation

Proof. From Halvorsen et al. [2003] it is known that the loss can bigevr as

L= %(u —uP(d))TJyy (U — ulP(d)). (3.16)

Solving J, = 0 (3.10) foru®P(d) = —Jy,~1Jyqed, and inserting into (3.16) yields
(note thatly, is symmetric):

1 _ _
L: E(U‘i_\)uu 1Judd)TJuu(u+Juu 1Judd)

1
= E(UT + dTJudTJuu_T)Juu(U + Juu_lJudd)

1

1
:EJJJUU_lJU

1 2
== |92

Lo

O

At the optimum,u®®, the gradient, = 0, and the loss. = 0. Around the
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optimumJ, # 0, the losd. is equal to the norm the weighted gradient, where the
weight factor isly, /2, Figure 3.4.

Remark 1 (Effect of constraints) The above analysis is locally valid for a system
where all active constraints are known and have been satjsfi@,d) = 0. If an
active constraint is not satisfied exactlyugd) = €, then the effect on the objective
function will be given by the corresponding Lagrangian riplikr [Nocedal and
Wright, 2006]

A =0J/0¢. (3.18)

A perturbation of the constraints has therefore a first order effect on the cost
function, while from(3.15), a small change inJhas a second order effect on the
cost. From an economic point of view, tight control of theatonstraints will
generally be more important than tight control of the undoaised variablec.

3.3 Minimizing the gradient vs. minimizing the loss

Theorem 1 shows that a controlled variable which minimjz&g|,, does not nec-
essarily minimize the losk. One case, wherd,,~? has no effect is, when it
is orthogonal,Ju, /2 = Ju,~Y/2", or scalar. In the next sections, we examine in
which further cases aH which minimizes||J,||, is the same that minimizes the
lossL.

3.3.1 Enough measurements, no noise, full H: same H

If it is possible to have zero loss (no noise and sufficientsueaments), optimal
operation corresponds ti = 0. Then,Ju, 2 has no effect. Assume that
contains all available information, then we require that

Ju = Hy. (3.19)

Theorem 2 (Null space method, no noisefsiven a linear model as iB.7), with
a sufficient number of independent measurements>(n, + ng) and no noise
(n¥Y = 0), selecting
~y1—1
H=[Jw Ju |[G] ", (3.20)

and controllingHy = 0 gives zero loss from optimal operation. He€ is the
gain matrix of any subset of,A- ng measurements.

Proof. The gradient from (3.9) is

du= [ Juu Jud ] [ ] . (3.21)

o C



3.3. Minimizing the gradient vs. minimizing the loss 45

We want to eliminate the variablés, d]™ using the available measurements,
~y | U
y:GV[ d } (3.22)

Solving for[uT, dT]T,
u 21 —1
[ d}:[ey] y, (3.23)
and inserting into (3.21) gives:

Ju= [ Juu  Jud ] [éy]ily

hy (3.24)

Controllingc = Hy = 0 results in zero loss. O

e This is a new derivation of the null space method reporteddistfd and
Skogestad, 2007]. It shows that the optimal controlledaide found by
self-optimizing control is identical to the gradient,

c=Jy, = Hy. (3.25)

3.3.2 Enough measurements, noise, full H: same H

The case of finding a controlled variable combination, whithimizes the loss
in presence of sufficient (noisy) measurements and affulatrix is addressed in
the “exact local method” Alstad et al. [2009]. First, we sctie disturbances and
the noise, such that

d=Wqud, (3.26)

and

where

ny =Wpn¥', (3.27)
<1 (3.28)

d/
.

andWg4 andW,y are diagonal scaling matrices of appropriate sizes. Then we

1. Expresd as a function oH, d andnY (assumingc = H(y +nY) = 0).

2. Then find an expression for the worst-case lg$$) (worst-case w.r.td and
nY); which is the maximum singular valu®(M ). Here

M = Ju Y2(HGY) HE (3.29)
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and

F=[FWgq W], (3.30)
where
F ayopt
- ad
is the optimal measurement sensitivity matrix, see Hakmrmst al. [2003].
(Kariwala et al. [2008] have shown that the average lossvisrgby||M ||,
where||-||r denotes the Frobenius norm).

(3.31)

3. Find a convex problem formulation for finditty (see Alstad et al. [2009]).

The convex problem for finding ad which minimizes the average and worst case
loss for a given set of disturbances is [Alstad et al., 2009]

minHH[FWd Wny]HF
H (3.32)
subject toHGY = Q,

whereQ is any non-singulan, x n, matrix, andrF as defined in (3.31). Here, too,
Juu is not needed for fining the best measurement combinationveker, if we
want to know the actual worst case or average loss, we figéf in (3.29).

e Inthe case of no structural constraintstdpt is found thatl,, is not needed
for finding the best measurement combinatibnThat is, a controlled vari-

2
Ju Y23,
2

able which minimizeg|Jy||, minimizes also the losls = 3 ‘

3.3.3 Structural constraints on H: not the same H

In the above cases, we used all measuremgmtsgenerate the controlled vari-
ables as linear combinations of all measurements. In petibwever, there are
often structural constraints on the controlled variabl&xamples for structural
constraints include controlling single measurements,sarguonly two measure-
ments from the rectifier section and two measurements frenstifipping section
of a distillation column. When we have to decide between twmore controlled
structures, the norm of the gradient (if it is nonzero) doedamger give accu-
rate information about what controlled variable is best. bEoable to make a
good decision in these cases, we need to consider norm ofealghted gradient
L= % ‘ Juu Y23, :
As an examplez, consider a process with

[244 222
Juu =

10
992 202] andJyg = { } , (3.33)

10
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and assume that
1 0275 10
~ 2.78 2 10
GYy=1| 5 _4013 10| (3.34)

2.1826 2 0
Assume further that we have the choice between using

Hl—[é (1) 8 8} (3.35)
and
Hz—[g 8 é cl’] (3.36)
This gives the controlled variables
o[k °Z%]u+] 2]a o)
and
Cr = [ 2.1‘?326 _4'92130] u-+ [ 100 ] d. (3.38)

For a disturbancd = 1 the resulting inputs are found by settiog= 0 andc, =0,
and solving foru. Inserting them into the gradient expression

J=[dw Ju | [ 3 ] (3.39)
gives
Ju(Hy =0) = [ 1 ] (3.40)
and
Ju(Hoy =0) = [ _11 ] . (3.41)
The norm of the gradient is in both cases
Bu(er=0)[], = [[u(c2=0)[|, = V2, (3.42)

which indicates that the two controlled variables give egl@nt performance.
However, if we consider the loss imposed by the two diffenttrol structures,
we have that 1

Le) =5 Juu—l/ZJu(cl)Hi:o.zs (3.43)

and 1 5
Lca) =7 ‘ Juufl/ZJu(cz)H2 — 11125 (3.44)
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Setpoint Pricesp
Calculation
Cs c
n
Y

Controller Combination

Figure 3.5: Feedback control structure with setpoint dat@n (with integral ac-
tion, n® = 0)

e When we want to compare sets of controlled variables witlh @dlcer, we
need to examine the loss, as the gradient does not give suoffinformation.

e When searching for the best linear combination for a givérosmeasure-
ments, it is sufficient to consider the gradient.

3.4 \Varying setpoints for the controlled variables

Many processes are operated such that the setpoints of thelted variables
are changed, when for example product prigesd specifications change, Figure
3.5. To handle this in the framework above, we consider theme for the setpoint
change as aneasured disturbanceThe relationship between the measurements
Ym and the controlled variables is

C=Hyn, (3.45)
and the relationship between the setpoint change and tbespris
cs = Hgp. (3.46)

We definel, = c—cs,

Ju:HYm_Hsp:[H _Hs][ym]

p (3.47)

= HaugYaug:
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The gain matrices are augmented according to

Gy, GY 0
GY = Ny XNy , GY — [ NpxNp } , 3.48
aug |: Onpxnua :| augd Onpxnd I NpXNp ( )

and the scaling matrices according to

Wd on xn
W = a=Te 3.49
d,aug [ Onpxnd anpxnp ] ) ( )
Wh On, xn
Wh.aug = e 3.50
e [ Onpxny Wnpnpxnp ] ( )

Here,W, and W, are diagonal matrices with the expected price variatioms an
uncertainties, respectively. If the prices are known dyadt/,, aug = 0. The
sensitivity matrixFaug may be found by re-optimization or by evaluating

Faug = Ggugd - G)elxug‘]uuilJud ,aug» (351)

[Alstad and Skogestad, 2007], whelg g is calculated by including the prige
as an additional disturbance. After the problem has beenuiated, the optimal
Haug Which minimizes the loss, is found by solving

glin |[Haug[FaugWd,.aug  Wn.augl||¢
aug (3.52)
subject toH5,4GY = Q.

De-partitioningHaug=[H —Hgl, the controlled variables and the setpoint up-
dates are

c=Hyn (3.53)
and

Ccs=Hgp. (3.54)

3.5 Distillation case study

3.5.1 Problem description and setup

A binary distillation column is used to demonstrate the itesshe column model
is taken from Skogestad [1997]. Itis controlled in the LV figaration and has 41
stages, Figure 3.6. We assume that the temperatures orfstb§e?4, and 33 are
measured and that they can be used for controlyize.[Ty, Tis, Tos, T33]". The
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Figure 3.6: Distillation column
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temperatures are calculated as a linear function of thedligomposition for the
respective stagds

T = 10(1— x). (3.55)

This corresponds to a pure product boiling point differen€40°C. In order to
be able to sell the top product, a purity of 99% is requiredtfar distillateD.
This is considered an active constraint, and is controlteitistsetpoint using the
liquid reflux L. The remaining degree of freedam{the boil-upV) can be used to
maximize the profit which is the same as minimizing the défere between the
costs for the feed and evaporation, and the profit from gglhie purified products:

J=—(poD+ psB— pvV — peF). (3.56)

Assuming the price for the feed is equal to the price of thédboiproduct,pr =
ps, and introducing the overall mass balance, the cost fumatém be simplified
to

J=py (%DJrV) — pv(PD+V). (3.57)
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The only parameter which affects the location of the minimsitine relative price
difference of the feed and the distillate,

o = (P —Po) (3.58)

Pv
and we assump’ = —64 currency units.
As disturbances, we consider the flow retecompositiorz and liquid fraction
g of the feed. These disturbances are detectable throughdhsurement model
in deviation variables:
y=GYu+GJd. (3.59)

In addition, we assume that the product prices change andnangn. We use

the prices to update the setpoint@f The self-optimizing controlled variable is
selected as a linear combination of the four tray measuresndérhe augmented
gain matrices and the augmented optimal sensitivity manex

171 —814 —367 —150 0
3.22 —1228 —1109 —2.75 0O

Glug= | 136 |, Glag=| —436 -981 -144 0|, (3.60)
0.20 —0.65 —145 —021 0
0.00 000 000 000 1

~263 -237 -049 -0.0055
~1.90 -865 -0.84 —0.0103

Fag= | 002 —878 —0.64 —0.0044 |. (3.61)
001 —1.30 -0.09 —0.0007
000 000 Q00 10000

The weighting matriXWy, aug is chosen such that all temperature measurements
have an uncertainty of 0’8, and the price uncertainty is zero. The expected
variation in the disturbances is captured in

which corresponds to 10% variation in every disturbanceatste. The corre-
sponding second derivatives are

Juu — 485

(3.63)
Judaug = [—15.64, —3.68 —2.87,0.02).

This gives a controlled variable combinatioa= Hy with

H = [0.23, 0.69, —0.28, —0.04], (3.64)
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Figure 3.7: Disturbance trajectories

and the setpoint is updated usiag= Hsp’ with
Hs=0.0071 (3.65)

2
Ju 23],

The first order loss from optimality estimate is calculatedarding to. = ‘
or alternatively according to Halvorsen et al. [2003] as

|

and equals 1.4869 currency units.

2
JuuA(HaugGlug) *Haug[FaugWd.augWn,aug , (3.66)

3.5.2 Simulations

We consider disturbances in the flow ratd; = 10%, the feed concentration,
Az = 10%, the feed liquid fractionAq = —10%, and the priceAp’ = 10%. The
disturbance scenario is given in Figure 3.7, and the resufirofit is plotted to-
gether with the inputs in Figure 3.8.

In Figure 3.9, the controlled variables are given togethigh ¥heir setpoints.
The self-optimizing controlled variable is nicely conteal back to the setpoint af-
ter a disturbance enters the process. As long as the prieesastant, the setpoint
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Figure 3.9: Controlled variables: Self-optimizing cotigd variable and top com-
position

is zero. When the price ratip’ changes, the setpoint is adapted to a new value.
The top composition is controlled well at its specificatias, can be noted from
the plotting scale.

3.6 Discussion and conclusions

We have given a first order approximation of the loss as thghted norm of
the gradient, and we have shown that if all measurementssa the weighting
is not required to find the bes$t. However, when selecting between different
sets of controlled variables, we need to consider the weigbtadient, because
neglecting the weighting can be seriously misleading. Tie®ipusly published
“exact local method” indicates how close the norm of the Whiidd gradient is to
zero when a particular set of controlled variabtes Hy, is used.

The key points are to weight the gradient when approximaitimgd include
noise in the analysis. Otherwise we may approximate thaeradell while still
suffering from unnecessary economic loss. The controlbrihbles obtained by
this method have robustness against measurement noiseveigwhe underlying
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linear model and the cost function parameters are assunieditcally exact, that
is all the uncertainty is assumed to be taken care of in thesanement noise and
disturbances.

Our analysis is based on the assumption that the activeragrtstdo not to
change. If the active constraints change, it is necessagljtst the control struc-
ture to satisfy the new active set. However, if there are nstained degrees of
freedom in the new active set, the above analysis can beliegpp

The second part of this paper dealt with disturbances whialotlenter through
the model. By considering them as additional measurems#mnsscan be formu-
lated in terms of minimizing the weighted gradient, and gwhhiques from self-
optimizing control can be used to update the setpoints torergptimal operation
for all considered process and price disturbances.
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Chapter 4

Controlled variables from
optimal operation data

Causa latet, vis est notissima

Ovid

In this paper we show how optimal operation data and condepts
self-optimizing control can be used for finding controlleariables
which give optimal operation for the disturbances includethe data
set. The method extracts the operation strategy which idehidn
the optimal data and may help analyze and improve operationei
common case where it is difficult or very expensive to obtagoad
model.

Based on the published paper from the ESCAPE-21 Proceediugto Carras,
2011

4.1 Introduction

For many processes, obtaining a good mathematical procedsl s important
for successful operation. However, obtaining a good maeften inhibited by
several factors, such as a tight budget and limited knovdexigime. Thus, ob-
taining a good process model and keeping the model up toslatesiof the major
bottlenecks for the application of advanced process cbmtrimdustrial applica-
tions [Dochain et al., 2008]. It is therefore desirable toimize the modelling
effort, while still achieving good process performancetHis work we present a
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method for finding controlled variables, which is based @uily available logged
process data. This data is used to find self-optimizing otiatt variables whose
optimal setpoint does not change with varying disturbaf8&egestad, 2000].

4.2 Motivation and problem formulation

An example for a system which is hard to model is a marathoneurHowever,
it is easy to collect data from runners, such as e.g. heast sotide frequency,
temperature, blood oxygen content and breathing frequembg data from the
best runs of the runners subject to expected disturbancisasuhilly terrain and
wind is collected in an optimal data mati¥k This data is used to determine a
linear combination of measurements, which is (almost) t@oidor all the best
runs. By running such as to keep this linear combination oiatses at their
optimal values, an optimal running strategy can be implasaterA single variable,
which may give quite good performance, would be the heagt Bl running in
such a way that the heart rate is constant at some optimad,véle running speed
will automatically adjust to the disturbances (e.g. winatlbanging slopes).

Similarly, in a process plant, some operators may be abl@é¢oate the pro-
cess more profitably than others. Analyzing the "optimalrapen data" of these
operators can reveal linear combinations of variableschvbiher operators can
use as guidance when operating the plant. Alternativesetvariables can be
used for feedback control.

We assume that optimal operation corresponds to minimaiogst], and that
the optimization problem can be approximated in deviatianables around the
optimal point as

. J J u
_ T T uu ud
minJ(u,d) = [ul dT ] [Jdu Jug } [ q ], 4.1)
whereu € R™ and,d € R™ are the inputs and the disturbances, respectively. In
addition we require that,, is positive definite. For each degree of freedome
search for a controlled variabtewhich is a linear combination of measurements
ym,
C=Hym. (4.2)

Hereyy, is defined as the sum of the “actual” measurement valuasl the mea-
surement noisa’,

ym=y+n. (4.3)

If the controlled variableg give acceptable performance when controlled at
constant setpoints, they are called self-optimizing. Téism was coined by Sko-
gestad [2000], who writes:
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Self-optimizing control is when we can achieve an acceptédis
with constant setpoint values for the controlled variab@#hout the
need to reoptimize when disturbances occur)

The loss is defined ds= J(u,d) — J(u°™ d), whereu is the input generated by
the current operating policy, for example adjustinguch thatc = Hy, is kept
constant.

4.3 Data method

The new method for finding these measurement combinatiotlisestly inspired
by the null-space method [Alstad and Skogestad, 2007] wivietpresent in the
following.

4.3.1 Null space method

This method is based on the quadratic approximation of tsefoaction (1). In
addition it is assumed that a linear noise free measuremedaéhiny = 0) is avalil-
able, soym =y =GYu + G‘éd. Here,y € R" is the vector of linear independent
measurements ar@, G are the gain matrices of the system.

Theorem 3 (Null space method)Given a sufficient number of noise-free linear
independent measurementg,hn, + ng, selectH such thatHF = 0, where

dyo pt

- od

is the optimal sensitivity matrix. Then controllimy= Hy to zero gives optimal
operation with zero loss.

Proof. Close tod"™, by definition of F we havey°P(d) — y°P{(d"°™ = F(d —
d"™). The optimal change in the controlled variablesd®(d) — c°P(d"°™) =
HF (d — d"™). SinceH is selected such thatF = 0 optimal variationc®P — ¢35t

is zero , too. Hence, controlling= Hy to zero leads to optimal operation. O

The optimal sensitivity matri¥ is usually obtained numerically, by optimiz-
ing a model or by linearizing at the nominal point, and eveigaF = G} —
GYJuu 1ug [Alstad and Skogestad, 2007].
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4.3.2 Using optimal operation data

In the case where we do not have an explicit model, we will maotwkthe optimal
sensitivity matrixF = dy°P'/dd. Now let us assume that we have “optimal” data
for y for various disturbances collected in the data matrix

Y = [y1(da),....Yi(d),- -, Yigamp Insampe) ] » (4.4)

where we have collected all measurements vegtoiwr different samples, such
thatn, +ng < nsample and we assume that all variables are deviation variabbes fr
the nominal point. Note that the disturbanckgor the different sample times are
not known. In this case we can use following result:

Theorem 4 (Optimal data method - No noiselsiven a sufficient number of in-
dependent measurements,>nny + ng, and optimal measurement data where
each independent disturbandes rejected at least once in the data Then the
optimal measurement combination can be determined bytseldd such that
HY =0.

Proof. Using the definition of the optimal measurement mdf,ixve can write the
optimal variation in the measurements as

y°P(d) = Fd. (4.5)

Since every data poiny in Y corresponds to a linear combination of “basis” dis-
turbances,

dy 0 0
0 dz 0
d=a;| O |+a,| O et Oy ) (4.6)
; z 0
| 0 | | 0 | | Gny

and we know that the data ¥ is optimal, each column i can be considered as
a linear combination of columns . Then we have

dy 0 0
0 do 0
: 0
| 0 ] | 0 | | Ony |
Therefore, we have
HF =0< HY =0. (4.8)
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In practice, the data matriX will not be consistent such that a null space
HY = 0 exists, either because of too many disturbances, or maly Ibecause
of measurement noise. One approach to handle this is to dwalai value de-
compositionY = UZVT, and select the transpose of thgcolumns inU which
correspond to the smallest singular valueX.ifThis is equivalent to approximating
Y by the closest matrix with rant,.

More generally, the minimum loss method (exact local metloddlistad et al.
[2009] may be used, to handle cases with measurement naigéjrequires that
we also have some “non-optimal” data:

Theorem 5(Optimal data method with noiselziven noisy optimal measurement
dataY and given “nonoptimal” data for the effect of the inputs (desgs of free-
dom)u on the measurements, soAy = GYAu, the optimal measurement combi-
nation can be determined by finding tHewhich minimizes|(HGY) tHY ||¢.

Proof. Given in Alstad et al. [2009] O

Note that we wantHG?Y to be large, that is we want to use “sensitive” measure-
ments. With large sensitivities and little measuremens&ahe contribution from
the termHGY is small, and then Theorem 4 is sufficient.

The obtainedd matrix may also give valuable insight into the operatiorigyol
After scaling and centering of the data, the elements indfiesingular vector of
Y can be used to analyze the operation strategy. We will detraaghis in an
example from economics below.

4.4 Case studies

4.4.1 Optimal operation of a chemical reactor (use of Theoma 4)

We consider a CSTR with a reactiédn= B, Figure 4.1 [Alstad, 2005]. The feed
contains mainly compone#, and the objective is to maximize the profit, which is
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calculated as the difference between the income from gelie producB and the
cost for heating the feed? = pgCg — pcoorl'iz. Here, T, feed temperature which can
be manipulated to optimize the performance. All model patans and equations
can be found in Alstad [2005].

The feed concentrations are the main disturbances; anatioeotrations and
the reactor temperature are measuredy so[Ca, Cg, T]. The optimal operation
data is obtained by applying the NCO tracking procedure aesriteed in Francois
et al. [2005] in combination with finite difference gradiesgtimates, where the
input is perturbed to obtain a gradient estimate, and basdtiie estimate, it is
adjusted to iteratively force the gradient to zero. Theroptidata is gathered in
sample times of 10 minutes, and collected into the data rdétrA singular value
decompositionY = UZVT gives (01,02, 03) = (86.5, 4.8, 0.28). Since there is
one input,T;, we select the column i corresponding t@z = 0.28. This gives a
controlled variable

c=Hy (4.9)

with
H =[-0.77 063 0005. (4.10)

In Figure 4.2 the simulated disturbance scenario is givelhFigure 4.3 shows
the input usage when applying NCO tracking (to generate hienal data) and
when using a PI controller to control

¢ =Hy = —0.77Cs + 0.63Cg + 0.005T (4.11)

to zero. Due to the continuous feedback control, contr@kir= Hy gives much
smoother input action than we have in the “optimal” data. @armg the final
profit in Figure 4.4, shows that controlling the invariantes practically the same
performance as re-optimization the system using input tégdaom NCO track-

ing.

4.4.2 Economy example (use of Theorem 4)

We consider economic indicators from 1991 to 2006 for Fra@=rmany, ltaly,
Norway, UK, and USA. The data is taken from the websiteswy. unece. or g,
www. i nf. org, ww. oecd. org The “measurements) = [yi,...,Ye] for
each country are interest ratg ), unemploymenty), the industrial production
index (IPl,y3), the consumer price index (CBJ,), tax revenue (% of GDRg) and
exchange rate to SDR (special drawing rights, a “lumpedfenay derived from
the Yen, US Dollars, British Pounds and Eurgg, The GDP growth, Figure 4.5,
is the criterion for optimality. The measurements of yeaomio the three years

1Accessed in March 2010
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with highest GDP growth are used fgr This results in
H=[-0.67 -0.02 0.22 ®2 032 010|. (4.12)

The magnitude of the elements khis visualized in Figure 4.6. The most influ-
ential factors are the interest rate (-0.67) and the infiatéde (0.62). This is not
unexpected, because the interest rate is used as a handlettol énflation. Of
course the economics of countries is too complex to be destraccurately by
our selected variables, but we have shown that applying @thod to economic
data can reveal some of the operation strategy behind the dat

4.5 Discussion and conclusion

The proposed “null space data method” picks out the weaktitires in the data
Y, whereas other “chemometric” regression methods coratentm the strong
directions in the data [Martens and Naes, 1992]. An impont@ason for this is
that we assume that the data is optimal, and we look for hidderbinations in this
data that characterize the optimum. On the other hand, nressmn methods one
looks for relationships between variablsandY. To show that the methods are
different, assume our data contains two data ¥ets[Y; X]T and we want to find
how the relationship betweéfj andX. We assume that difi;) = dim(u) = n,.
From our method, the problem becomes wfifH[Y1 X]] ||

Here,H is not unique, so we have thathf is an optimal solution, so iBH,
whereD is an invertible matrix [Alstad et al., 2009]. This degreefafedom
may be used to séd = [I H,], wherel denotes the identity matrix. Then we
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optimize the problem mig ||Y + HxX||r, and obtain the least squares solution
Hy = —YX'. Thus our method is equivalent to the normal regression odstfor
problems where the norm gHY || is small, such that the contribution from the
term (HGY)~1 can be neglected, that is, for the noise free case.

However, a significant difference to standard regressiothoas in the case
when we simply minimize|HY ||, is that we do not distinguish betwe¥pand
X data and try to find a relationship between these, but indtead on finding
invariant variable combinatiorns= Hy = Hyy; +Hyx = 0.

Our method has the advantage that it only uses data and doeshyhon a
model. Thus it is applicable to systems where it is very egjyenor impossible to
obtain an accurate model. Not even the cost function has kmbten as long as
the data is optimal. However, it is important that the datoissistent in the sense
that the data gives the correct optimal sensitifity: dy°P'/dd and contains little
measurement noise.

The main drawback is that we rely on optimal data, and perdoica cannot
be improved beyond the learning data. However, one couldirlhe optimal
data using some expensive method, and then analyze it to foleta@p method
which gives similar performance, as is done in the CSTR ejamlpove. Other
applications could be to find the “secret” of good operatotbe “control strategy”
of a marathon runner or of some economy.
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Chapter 5

NCO tracking and
self-optimizing control in the
context of real-time optimization

“Pooh always liked a little
something at eleven o’clock in the
morning, and he was very glad to
see Rabbit getting out the plates
and mugs; and when Rabbit said,
"Honey or condensed milk with
your bread? “ he was so excited
that he said, "Both, “ and then, so
as not to seem greedy, he added,
"But don’t bother about the bread,
please. “

A. A. Milne

This paper reviews the role of self-optimizing control (S&@d nec-
essary conditions of optimality tracking (NCO tracking)paiesented
by Francois et al. [2005]. We show that self-optimizing cohis not
an alternative to NCO tracking for steady state optimizatiout is
to be seen as complementary. In self-optimizing contrdlinef cal-
culations are used to determine controlled variables (CWkich by
use of a lower layer feedback controller, indirectly keep finocess
close to the optimum when a disturbance enters the procesgerP
ably, the setpoints are kept constant, but they may be adijlstsome
optimization layer. Good CVs reduce the need for frequetgiohet
changes. When selecting self-optimizing CVs, a set of disinces
must be assumed, as unexpected disturbances are notaejesecC.
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On the other hand, the presented NCO tracking procedurdsatiegp
inputs at given sample times without a model or any assumgtm

the set of disturbances. However, disturbances with highuiencies
or which do not lead to a steady state are not rejected. By @O

tracking in the optimization layer and SOC in the lower cohlayer,

we demonstrate that the methods complement each otherS@it
giving fast optimal correction for expected disturbanagkile other
disturbances are compensated by the model free NCO trapkirg-

dure on a slower time scale.

Submitted to Journal of Process control. Based on the Keylecture at
DYCOPS 2010, Leuven

5.1 Introduction

Most processes in industrial practice are operated in sughyahat the operators
set the setpoints for PID controllers to keep the controlladables (CVs) at the
desired setpoint. Which measurements are chosen as CVsilymecided based
on process knowledge and best practices. However, dueotagstr competition
and environmental regulations, it has become increasinghprtant to operate the
processes close to optimality. In many cases, steady spatat@on accounts for
the largest part of the operating cost, and significant evdced improvements can
be achieved by operating the plant optimally at steady .state

Depending on how this is realized, the methods for achiegptgnal process
operation generally may be categorized into one of thewtg three categories:

e Model used online (e.g. Real-time optimization (RTO))
e Model used offline (e.g. self-optimizing control (SOC))
e Explicit Model not used (e.g. NCO tracking)

In all cases, measurements are collected online, with the&driving the pro-
cess towards optimality. In the first approach, online ojatation, measurements
from the process are used together with a mathematical niodidtermine the
optimal setpoints by solving an optimization problem oeljMarlin and Hrymak,
1997].

In the offline approach, expensive online computations eo@ead, and opti-
mal operation is achieved by designing a “smart” contralcttrre. This controlled
variable (CV) selection procedures objective is to tramafthe economic objec-
tives into control objectives [Morari et al., 1980]. A pra@semodel is used to
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support decision making in control structure design, bwifilitnot be used online.
Self-optimizing control [Skogestad, 2000] belongs intis ttategory.

A third strategy avoids using an explicit process modeluseas measurements
in order to obtain gradient information about the processs information is used
to update the inputs in order to obtain optimal operationcddsary conditions of
optimality tracking (NCO tracking) [Francois et al., 20@5]d extremum seeking
control [Krstic and Wang, 2000] represent this categorysTdea is relatively old
[Draper and Li, 1951], but has recently gained increaseshtdn.

These approaches to achieve steady state optimal operaienbeen devel-
oped by research groups with different backgrounds foewkfiit kind of problems.
The authors feel that there has been some confusion abouséhénterplay, ap-
plicability and practicability of some of the concepts.

Our paper is structured as follows: The next two sectionsflgrdescribe the
ideas from self-optimizing control and NCO tracking. In tmarlar, this work
focuses on the null space method as described in Alstad angleStad [2007],
which uses a model offline, and the model free NCO trackinggqmtare for steady
state optimization as described by Francois et al. [2005].

In Section 5.4 we describe the framework in which we placewleemethods
and consider the properties of the two approaches. Basediodiscussion, we
consider the methods a®mplementanand propose to use them together. The
ideas are illustrated by simulation results for a dynamicTRSn Section 5.5,
followed by a discussion in Section 5.6, and conclusionsti@e5.7.

5.2 Self-optimizing control

In virtually all practical cases, plant operation is subjecoperational and safety
constraints, and the problem of achieving steady statenaptbperation can be
formulated as

plant: g(u,x,d) =0

rerJ(u,x,d) st {constraints:h(u,x,d)go,

(5.1)
whereu € R™ denotes the vector of adjustable input variables (e.g\eaiening
or a pump speed)k € R™ denotes the states, add= R"™ denotes the vector of
unknown disturbances and parameters. The vector valuetidneg andh denote
the model equations and the operational constraints, ctgpky.

In practice, not all constraints are active during optimagmation of the plant
and some constraints will remain inactive. In terms of ptafety and economy it
is often significantly more important to satisfy the actiemstraints than to handle
the unconstrained degrees of freedom optimally. Therefbeefirst step when de-
signing the control structure is to determine the activestramts, and to control
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Disturbances
d

Controller

c = const
set

Figure 5.1: Block diagram SOC

them using some kind of (feedback) controller. After alliactconstraints have
been implemented, problem (5.1) can be re-written as annstioned optimiza-
tion problem,

muinJ(u,d), (5.2)

where, by abuse of notation,now denotes the remaining unconstrained degrees
of freedom.

The term self-optimizing control refers to the procedureeecting the con-
trolled variables, which are controlled by some feedbaakrafier (Figure 5.1).
The focus is set on selecting the best controlled variableHy, such that the
operating cosf(u,d) is minimized. Here/,, denotes the vector of measurements,
andH is a selection or combination matrix. The criterion for exaing different
candidates for controlled variables is the loss from oplitgna

L:J(uad)_‘J(uopt(d)vd)a (5.3)

which is imposed by the disturbance and the selected control structure which
determines how is adjusted. Using the lods Skogestad [2000] defined:

Self-optimizing control is when we can achieve an acceptats
with constant setpoint values for the controlled varialfi@shout the
need to re-optimize when disturbances occur).
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The ideal self-optimizing variable candidate for this kioidcontrolled vari-
able would be the gradiemt= J,(u,d) = %, which should be zero for optimal
operation under all disturbances.

This was already formulated in Halvorsen and Skogestad7[1¢here it is
written:

... Thus the search is now reduced to find some measuremant fun
tion h(u,d) with these required properties. An example of this kind
of ideal measurement function is in fact the gradient of thiigon
function.

This idea has been also mentioned in Halvorsen and Skodd$@d], where
the authors write of the gradient as a controlled variaklsatisfies the conditions
of not being at a constraint, while the optimal value doesvaoy with changing
disturbances. Controlling invariants, in particular thadient of a process, has
been proposed by other authors, too, see e.g. Bonvin eQ@ll]Jand Cao [2005].

However, in most cases, the gradient cannot be measurezkdomle, because
it is a function of the unknown disturbancds The definition of self-optimizing
control [Skogestad, 2000] includes the special case ofgmnadontrol, while leav-
ing room for “suboptimal cases” in which the gradient canbpetdetermined ex-
actly from measurements. In some cases it might be desitabtentrol only
single measurements, or to exclude a set of measuremergs.tfié gradient will
not be zero and the logsprovides an objective selection criterion. In other words,
a self-optimizing control structure may be considered thst Ipossible (in terms
of the lossL) approximation to the unmeasured gradidntusing the available
measurements.

Several methods for finding self-optimizing variables haeen reported in
the literature [Halvorsen et al., 2003; Alstad and Skogk<2807; Kariwala et al.,
2008; Alstad et al., 2009]. All these methods are based orpeoaimating the
optimization problem (5.2) by a quadratic optimizationlem

T T | Juu Jud u
muln[u d ][ Jas Jag ] [ d }, (5.4)

and by using a linear measurement model
y =GYu+G)d. (5.5)
The goal is to find a matrik such that the controlled variabtds
c=Hym, (5.6)
where the measured quantities are defined as

Ym=Yy+nY (5.7)
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with the measurement noisg. Without measurement noise’, = 0, we have that
Ym =Y; thus we write the controlled variable

c=Hy. (5.8)

It is assumed that the inputsare adjusted by a feedback controller to keegt
its setpointcs. If the controller has integral action, then= cs at steady state. In
the case of single measurements, each rott obntains only one entry, whereas
if combinations of measurements are allowddyill be a full matrix.

5.2.1 Self-optimizing control using the null space method

In the following we describe the null space method [Alstad &kogestad, 2007]
for determining a controlled variable, which is a combioatof measurements.
We present a reformulation of the null space theorem [Alstaal., 2009].

Theorem 6. Given a sufficient number of measurementsXmy + ng) and no
measurement noise’ = 0, selectH in the null space of the optimal sensitivity
matrix F,

HF =0, (5.9)
where yopt
Fe ;’ —. (5.10)

Controlling ¢ = Hy to zero yields locally zero loss from optimal operation.

To obtain the optimal sensitivity matrix there are several possibilities. It can
be obtained numerically by re-optimization of a process ehamt calculated using

F= -Gy u+GY, (5.11)

whereJyg = d2J/(dudd) andJy, = 9%J/du?, and we use the linearized process
model (5.5). Alternatively, one could run experiments, se wptimal measure-
ment data as shown in Chapter 4.

We sketch a proof: In the neighborhood of the nominal pdiit” the optimal
change in the measurements can be expressed using (5.10) as

yoPY(d) — yoPY(d"™) = F(d — d"°™). (5.12)
The optimal variation in the controlled variableshen becomes
c®PY(d) — c®P(d"°™) = HF (d — d"°™), (5.13)

and sinceH is chosen in left null space &, we havec®P!(d) = c°PY(d"™™) for any
disturbanced, and thus we do not need to change the setpoint foHy.
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In Appendix 5.A we show that choosirld in the left null space of is in
indeed identical to selecting= J,, whereJ, = dJ/du is the gradient of (5.4).

However, when the measurements are corrupted by biaseel mgithe null
space method will not give the best possible solution. To ffiredbest controlled
variable with biased process noise on the measurementsfareto Alstad et al.
[2009].

5.3 NCO tracking

Necessary conditions of optimality (NCO) tracking is a gahéramework that
turns a (dynamic or static) optimization problem into a cohproblem. It uses
the fact that at the optimal operating point, the first ordecessary optimality
conditions must hold. Basically, the necessary conditioheptimality are the
controlled variables. This general concept has been appti¢h to dynamic op-
timization problems (e.g. Srinivasan et al. [2003a,b]Boret al. [2005]; Kadam
et al. [2007]), and static optimization (e.g. Francois ef2005]; Srinivasan et al.
[2008]; Gros et al. [2009]).

For steady state optimization, the Karush, Kuhn Tucker itmmd [Bazaraa
et al., 2006] represent the optimality conditions. If thesstvities are available
as online measurements (or estimates), they may be ceatrioyl using a contin-
uous feedback controller, such as a PI controller. Altévat the inputs may
be updated iteratively until the NCO are satisfied. To théenst knowledge, all
publications on static optimization using NCO tracking édeen applying dis-
crete input updates for iteratively approaching the stesiae optimal input value
which satisfies the NCO (at least for the unconstrained ganeoNCO).

5.3.1 NCO tracking procedure as described by Francois et aJ2005]

In this paper we will be referring to NCO tracking as desdatile Francgois et al.
[2005]. This is a truly measurement based optimization wathvhich does not
rely on any process model. Instead of controlling “normaBasurementg, the
gradient is measured (or estimated), and used as a codtr@lable. When a
disturbance enters the process, the NCO tracking contneinse adapts the inputs
iteratively such that the NCO are satisfied after some itarat The block diagram
is given in Figure 5.2.

We do not present the general NCO tracking procedure (wittcaints) here,
but we rather give a derivation of the special case withouastraints, i.e. only the
sensitivity seeking directions, as applied in e. g. Srigaraet al. [2008]. Then the
optimization problem in consideration is

muinJ(u,d), (5.14)
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Disturbances
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ke = Uyt A

Controller

Au=-Jdy

Figure 5.2: Block diagram NCO tracking

whereu andd are defined as above. Omitting to write the explicit dependem
d, the first order necessary condition for optimality is:

J(u) = aJa(uu) —0. (5.15)

To achieve optimal operation, we update the inpatt each sample timle using
the update equation
Uk+1 = Uk + Au, (5.16)

until (5.15) is satisfied. To obtain the update teon we linearize (5.15) around
the current operating poimi,
Ju(Uk+Au) = Jy(uk) + Juu(uk)Au. (5.17)

Since we want the updat&u to force the sensitivity to zero, we set the left
hand side of (5.17) to zero and solve fax [Francois et al., 2005].

Au = —Jy, " Hug) Ju (uk) (5.18)

This Newton update step is exact for a quadratic approxanatif the system
(5.14), in the sense that the NCO (5.15) are satisfied afteliteration. In prac-
tice we do not apply the full update stéoi, because this may lead to feasibility
and convergence problems as the process can move outsicegibe where the
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quadratic approximation is valid. To avoid this, the updaten Au is multiplied
by some tuning parametgre [01], such thauy,1 = ux+ BAu.

To evaluate (5.18) we need the derivatiyguy) for a given inputuk. In this
work it is chosen to make a small perturbation in the input tmdun the pro-
cess for a given time to estimate the gradient by finite difiees. The magnitude
of the perturbation is desired to be small in order not to tiffee process exces-
sively. At the same time it has to be larger than the proceise o yield sufficient
information about the descent direction.

Since the Hessiady, (uk) is difficult to obtain, it is often determined once
at the nominal operating point. Alternatively, as we chotiseo in this work,
an approximation of the inverse of the Hessian can be olitdige BFGS update
scheme. The NCO tracking algorithm is summarized in Figu8e Bhis procedure

Run plant to steady state

7
Measure the gradient
(e.g. perturbu, run plant to steady state, ob-
tain gradientJ, (uk) by finite differences)
7
Estimate inverse of the Hessian
JuuY(uy) using a BFGS update
v
Update input:
AU = —Juu_l(uk)Ju(uk)
Uks1 = Uk + BAu

Figure 5.3: Simple NCO tracking procedure

is analog to a Newton(like) method in optimization. In thalagy, the steady state
operating periods correspond to function evaluationsemeawton procedure, and
the solution is found when the NCO hold.

Just like any (quasi) Newton method, NCO tracking dependsiaity on the
availability of good gradient estimates. Beside estintatite gradients using in-
put perturbations and finite differences, there exist othethods, which do not
require frequent perturbations. In Roberts [2000], pagti® are used in Broy-
den’s formula to obtain the gradients. Other methods whizhak rely on in-
put perturbations are described in Bsdgnd Tajewski [1994] and Gao and Engell
[2005]. However, in this work, the authors choose to usedfiditferences because
of its simplicity. Avoiding input perturbations for gradieestimation will result
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in less nervous process operation, however, inputs willsiupdated iteratively,
but only at given sample times.

Remark 2 (Recent advances in NCO trackinghhe gradient does not have to be
obtained using finite differences. Any other method to nreasuestimate the
gradient is possible. The gradient may for example be estidhlay a model, as is
done in the null space method. Recently, the idea of NCOitrgdias been ex-
tended to the case where the gradient estimate is based potdaedback. Gros
and coworkers, Gros et al. [2009] use a linear measuremerdehto eliminate
the disturbance from the gradient expression. Their resailé based on the same
idea as the null space method, which uses a measurement toaghinate un-
known disturbances and internal states from the gradieptession. However,
Gros et al. [2009] goes one step further and determines thieahchange in the
inputs. This step is omitted in the self-optimizing constolicture design context,
because the focus is set on finding good controlled varialaled the generation
of the corresponding inputs, is left to the feedback controller.

The authors of Gros et al. [2009] consider zero mean noisé, sirow that if
the model is invertible and the number of unknowng (& lesser than or equal
to the number of measurements )(rthe inputs can be updated to converge to the
optimum.

In the case of biased noise, neither the null space methothediCO tracking
modifications introduced by Gros et al. [2009] will give thesbachievable opera-
tion. In this case itis necessary to use other methods whidlaftrade-off between
the loss caused by the disturbance and the loss caused byetmurement offset.
A method applicable in this case is the “minimum loss methigdstad et al.,
2009].

5.4 Self-optimizing control and NCO tracking in relation
to each other

In order to suggest how to combine self-optimizing contsotascribed in Alstad
and Skogestad [2007] and NCO tracking as in [Francois eR@0D5], we first
consider how a chemical plant is usually operated today.

5.4.1 Time scale separation of the overall control system

The control structure of a complete chemical plant can bemeosed vertically
into different layers, which operate on different time ssa[Findeisen et al., 1980;
Skogestad, 2004]. Each control layer implements the sgipaeihich are given
from the layer above, Figure 5.4.
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The top layer consists of planning and scheduling. Thisuthes management
decisions on e.g. the product specifications, and on prdfitsafety parameters,
such as utility prices and constraints. Usually this layes & time scale of weeks
or days, strongly depending on the type of process and ththuption scale.

The optimization layer is located below the planning andedciting layer and
implements the goals given from the planning and schedldiygy. In most plants
this is done by operators, but in recent years, online opttion (RTO) has been
increasingly used to find good setpoints for the controlladables of the lower
layers. However, this can become complicated as it invadeseral difficult steps
such as steady state detection, data estimation and réationi and solving a
large nonlinear optimization problem. Once the optim@atproblem has been
solved successfully or the operators have decided to chwegeetpoints, the new
setpoints are passed on to the control layer and implemehtesdtypical for this
layer that the setpoints are updated at discrete time ioassanith update intervals
in the time scale of several hours.

The control layer below the optimization layer generallysists of PID con-
trollers or model predictive controllers (MPC), which aaiedtly on the plant in-
putsu. This layer has a time scale ranging from fractions of sesamdto minutes
and to a few hours. Finally, the plant layer contains thealqgblant, but usually
with some stabilizing (regulatory) control loops.

When a disturbance enters the system, the control layertyilio keep the
setpoints of the controlled variables to their originabsatts. After the plant has
settled down and (suboptimal) steady state has been regahddletected), the
operator may adjust the setpoints based on experiencee oedlittime optimizer
may re-calculate the setpoints. Then the setpoints of thealted variables are
ramped to their new values, and the plant has to settle doain.aghe long time
delay between start of the disturbance and reaching thedpiahized operation
point is one of the challenges for the optimization layer.pémticular if RTO is
used, it is not possible to counteract disturbances whichroon a fast time scale
[Engell, 2007]. This limits successful RTO applications éases with sporadic
disturbances, which, after a short transition period, lEad new steady state,
e.g. step changes in the plant throughput or the like. Ddstuces occurring on a
faster time scale cannot be detected and rejected in RT@imgited as described
above.

Using a dynamic model in the real-time optimization with anmomic objec-
tive function would allow setpoint changes without havingMait for steady state.
However, practical obstacles have prevented the dynam@ ®RTO) from be-
coming a standard tool in process industries. The main gnablarise from the
reliability of the information used in the DRTO, because djowodels are difficult
to obtain and maintain with justifiable efforts. In additicie state estimation
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causes additional challenges. Even if a good model andssaateavailable in the
DRTO, the dynamic optimization problem itself is difficuit $olve.

5.4.2 Properties of self-optimizing control and NCO trackng

Both methods, NCO tracking and self-optimizing controlqu& the same goal,
namely minimization of the operating cost. The main differes between Alstad
and Skogestad [2007] and unconstrained NCO tracking asimchrs et al. [2005]
are that in Francois et al. [2005] the gradient is “measyradd the inputs are
updated iteratively, while in Alstad et al. [2009], a modeluised to predict the
gradient from outputs, and a continuous Pl controller isdusemanipulate the
corresponding inputs.

In self-optimizing control, we focus on finding controllednables which do
not need frequent updates, such as the gradient, for exatdpleever, since the
gradient is usually not available as a measurement, séizing control does not
in general aim for controlling the gradient of the plant tozédsut to find controlled
variables, which give acceptable operation. The selfroigtng variables are kept
at their setpoints by feedback controllers, so there is ral fier solving for the
optimal inputs explicitly.

In summary, we may say that the NCO tracking procedure bydeiaret al.
[2005] measures the gradient, and works as a controllerhwadculates the re-
quired (steady state) input chanfya directly. In self-optimizing control [Alstad
and Skogestad, 2007], we are not interested in the inputeegsare taken care of
by the controllers. We are rather interested in finding tghtrcontrolled variable
¢ = Hy, which when kept constant, leads to the correct input action

In Table 5.1 we have listed the main differences betweenuhspace method
and NCO tracking.

5.4.3 Using self-optimizing control and NCO tracking togeter

The previous observations lead us to consider self-opiigrizontrol and NCO
tracking as described by Francois et al. [2005] (or RT@asplementaryand use
them together. The NCO tracking fits better into the optitiialayer and is thus
an alternative to model based real-time optimization (R¥@ijle self-optimizing

control should be used in the lower layer and follow the setsacoming from the
NCO tracking layer, as shown in Figure 5.5.

It may be argued that if NCO tracking or an RTO system is itefalthere
is no need to select a self-optimizing control structurealbse the setpoints are
updated by the optimization layer. However, this comboratf an RTO layer
(or NCO tracking) and self-optimizing control avoids th@ghomings of conven-
tional RTO:
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Table 5.1: Summary of properties

Null space method NCO tracking
[Alstad and Skogestad, 2007] [Francois et al., 2005]
Procedure for finding = Hy Controlled variablec = J,
Ju not measured Ju measured
Set of important assumed a priori No assumptions on disturbances
F= ag—zpt obtained from model No model needed
Near-optimal for expected disturbances Optimal for unetgubdisturbance
Linearized at nom. point Linearization point moves
Fast (feedback) Slow (acts only at sample times)

Optimization

NCO tracking

as RTO
Csetpoint

PID/MPC c
controller

u C
Hym

Plant

=

(2]
O

5 o
|

disturbanceal {

Figure 5.5: Relation between NCO tracking and self-optingzontrol
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1. The use of self-optimizing controlled variables enalaldaster optimal re-
action to expected (main) disturbances, not only at santplest

2. The RTO has to change the setpoints less frequently.

Infrequent RTO updates result in fewer complex operatioch ss steady state de-
tection, data reconciliation, and solving the resultinglimear optimization prob-
lems. At the same time, the self-optimizing control stroetaan benefit signif-
icantly from an RTO system or NCO tracking controller on tdpto One rea-
son is that the null space method is based on a model and egpdisturbances,
whereas NCO tracking can also handle unknown disturbarfgesther reason is
that if a disturbance moves the process far from the linaoa point, the local
model approximation in the null space method may be poorrefbee, the self-
optimizing control structure cannot reject unexpectetldimnces or disturbances
which move the process far away from the linearization poiritey have to be
counteracted by re-optimization of the system.

In summary, it is recommended to always use a self-optimiziontrol layer
underneath the optimization layer instead of directly cotimy the plant input
u. This rejects expected disturbances on a fast timescaliée Wie unexpected
disturbances are rejected by the NCO tracking/RTO layeaigsd Applying self-
optimizing control is thus an intelligent way to implemehngtcontrol layer below
the RTO layer.

Remark 3. Even though we here have used the flavor of NCO tracking bycbian
et al. [2005], our conclusion may be generalized furtherdmbine a model based
method in a lower control layer, which can act swiftly to cangate for expected
disturbances; and to use a model free method on top reducefibet of model

mismatch and to reject unexpected disturbances by adgugtie setpoints of the
lower layer on a slower time scale. Thus, also methods sudahg@sextremum

seeking [Ariyur and Krstic, 2003] could be used in the upasfel.

5.5 Case study

5.5.1 Model

To illustrate the ideas above, we present simulation red$atta dynamic CSTR
with a feed strearfr containing mainly the componeAt and a reversible chemical
reactionA = B, see Figure 5.6. The process model is taken from Economou and
Morari [1986], and the dynamics of the system are descrilyefbllowing set of
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Figure 5.6: Schematic diagram of a CSTR

equations,
dcC 1
d—tA = —(Can—Ca)-r, (5.19)
d 1
d—CiB = ? (CB,in — CB) +, (5.20)
dT B 1 ' —AHx
i T(T, T) C, r, (5.21)

whereCp, Cg, T, andT; denote the concentrations of componefitand B, the
reactor temperature and the feed inlet temperature, riagglgc Further,t is the
residence timep is the densitygy, is the heat capacity, andAH,y is the reaction
enthalpy. The reaction rates defined by

r= kch — k2CB (522)
where . -
ki =Aert  and kp = Aer?, (5.23)

andA; andA, are the Arrhenius factors for the reaction constda@ndk,.

This process has one manipulated inpyt the inlet temperatur&. The ex-
pected disturbancelj andd, enter the process as variations in the feed concentra-
tionsCa in andCgjn, and the measured variables are

y1 =0Ca,
y2 = Cg, (5.24)
Y3 = T.

The objective is to maximize the profit function, which is th#ference between
the income from selling the produ& and the cost for heating the feed (Alstad
[2005]):

P = [pcCa — (P Ti)?, (5.25)



5.5. Case study 87

Table 5.2: Objective function parameters

Parameter Value

PCs 2.009
pT, 1.65710°3
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Figure 5.7: Disturbance trajectori€g in,Cp in

Here pc, is the price of the desired produBtand pr. is the cost for heating. The
parameter values are given in Table 5.2, and the nominabtpervalues for all
variables are listed in Table 5.3.

5.5.2 Simulations

First, we control the process for the expected disturbaunsieg) direct NCO track-
ing [Frangois et al., 2005]. Next, we use a self-optimizirantcolled variable
¢ = Hyn, obtained the null space method and compare the resultglingtt NCO
tracking. After comparing both control structures for aexpected disturbance,
we finally combine the methods as shown in Figure 5.5.

The expected disturbance scenario is given in Figure 5.fer AD0 minutes at
the nominal value, the concentrati@a i, (di) varies sinusoidal before returning
to its nominal value. Then ramp disturbance€i), are introduced, followed by
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Table 5.3: Nominal values for the CSTR model

Variable Value Unit Description

Ti 42420 K Feed temperature (input

Ca 0.4978 mol/l ConcentratioA in product §,)
Cs 0.5022 mol/l ConcentratioB in product )
T 426.71 K Reactor temperaturgs)

Caiin 1.000 mol/l ConcentratioA in feed, @)
Csiin 0.000 molll ConcentratioB in feed, @)

F 1.000 holdup min' Flow rate

A 5000 s! Arrhenius factor 1

Ay 1.10°0 st Arrhenius factor 2

Cp 1000 cakg'K~! Heat capacity

= 10000 cal mot?! Activation energy 1

E> 15000 cal mot! Activation energy 2ds)

R 1.987 calmotlK~1 Ideal gas constant

—AHy 5000 cal mot? Heat of reaction

p 1.000 kg/l Density

T 1.000 min Residence time
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Figure 5.8: NCO tracking, concentrations and temperature

large step disturbances. At 4000 minutes, the concentr@f@, (d2) makes a step
change of 0.2 mol/l. The non-steady state periods (sinwsuddamp) are included
to test how the controller behaves in these cases. NotettiGitysspeaking, the
gradient is not defined when the process is not at steady state

Direct NCO tracking

To obtain the gradient information, the inpitis perturbed with a step of 1 K.
Starting with a positive value, the sign is altered everyrtotNCO iteration.
Changing the sign of the perturbation was found to give betterall performance
of the NCO procedure. No steady state detection is implemdentthe NCO track-
ing procedure. Instead, a step test is used to determinepfitexamate time for
the system to settle down to a new steady state. At the nompaial, the system
has a time constant of less than two minutes for an input stégrio=5 K. To
let the system settle down far from the nominal point, whleesystem dynamics
are different, a sample time of 10 minutes is chosen for thecttNCO tracking
procedure. The step size parameids set to 0.4.

Figure 5.8 shows the concentration and temperature togiestfor the NCO
tracking procedure. The control strategy enables accleptalntrol. It is further-
more found that the step disturbances are very well handBdce the method
assumes steady state after 10 minutes, and uses the résalthaample time for
calculating the input update, it has difficulties handlimgusoidal and ramp dis-
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turbances which do not lead to a steady state. However, titeoler manages to
keep the system stable during these periods. The perfoeraditice NCO tracking

algorithm is very sensitive to the tuning parameethe sample time, and timing
and kind of disturbance, and of course the perturbationdomating the gradient.

Self-optimizing control using the null space method

Next, the process is controlled using the null space mettord Section 5.2. Since
we have one input and 2 disturbances to compensate for, wktinese measure-
ments for the invariant variable combinationyse [ Ca Cg T ]T. We optimize
the steady state system at the nominal operating point awdittiroduce small
perturbations in the disturbance variabtes= [Ca n CBJn]T. After re-optimizing

we calculate
—0.4862 —0.3223

ayopt
F= d = —0.5138 —0.6777 | . (5.26)
—9.9043 405807
Then withH = [ —0.7688 06394 00046 | we have thatHF = 0. Using a

PI1 controller, the self-optimizing variable= Hy,, = —0.768& 4 + 0.6394C5 +
0.0046T is controlled at a constant setpoint (zero if we use the tievidrom
nominal steady state). The concentration and temperatajectories with self-
optimizing control are plotted in Figure 5.9. Compared vilte concentrations
and temperature using NCO tracking, the trajectories ahrsmoother.

Comparing inputs and profit for NCO tracking and self-optimi zing control

As may be seen from the trajectories for NCO tracking andaatiinizing control,
the input usage for the two cases is quite different, Figut®.5While the NCO
tracking procedure needs large input variations to eséinta¢ gradient and to
iteratively update the input, the input usage of the setfroiging control structure
is very moderate and smooth. Especially during the nordgtstate disturbances,
the NCO tracking changes the input excessively.

Comparing the profits, Figure 5.11 shows that both systemseny similar
in the steady state periods, but for disturbances whereaawlgtstate is reached
within one sample time, NCO tracking is not performing aslvesl the self-
optimizing control policy using the null space method.

Using NCO tracking as RTO and self-optimizing control in thelower layer

If it can be guaranteed that the disturbances in the feedecration are the only
ones entering the process, then using only self-optimizorgrol is sufficient, and
an RTO layer is not necessary. However, the situation clafaedisturbances



5.5. Case study

91

Concentrations SOC
© o o o
N N o [e0)

Reactor temp. [K]

Input Ti

=
PN

L A -

L — CB

0 1000 2000 3000 4000 5000
time [min]

r . L

0 1000 2000 3000 4000 5000
time [min]

Figure 5.9: SOC, concentrations and temperature

470

460

450

440

430

420

410

400

390

AAAL A
VYV \A \T A AT
I —— NCO tracking
— self-optimizing control
0 1000 2000 3000 4000
time [min]

5000

Figure 5.10: Input usage for SOC and NCO tracking



92 NCO tracking and SOC in the context of RTO
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Figure 5.11: Profit for SOC and NCO tracking

not anticipated in the control structure design. Considpositive step change
in the activation energ¥, (d3) of 3% at time 3100 min. This disturbance re-
duces the reaction rate for the reverse reaction, espeeialligher temperatures.
Comparing the profits using the two control structures, FEdul2, shows that the
self-optimizing control system cannot make use of the impdaconditions caused
by the unexpected disturbance.

Adapting the self-optimizing control setpoints using RTONCO tracking
can solve this problem, and at the same time reduce RTO or Ke2King sample
time. In Figure 5.13 the instantaneous profit for direct NC&azking [Francois
et al., 2005] (sample time: 10 min) and the combined systetin aZtsample time
of 25 min is shown. The combined system operates smootherttiegpure NCO
tracking system while giving similar performance in ternfishe profit. However,
considering the input usage, Figure 5.14, we find that thebauation of self-
optimizing control and NCO tracking gives a substantialiyosther input action
than direct NCO tracking. Using online RTO, the performaoceld be improved
even further because the setpoints would move directlydootitimal values in-
stead of iteratively approaching them. However, unmodg(lmexpected) distur-
bances are not rejected in online RTO either.
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5.6 Discussion

There has been some confusion about the relationship betiveéself-optimizing”
control approach of Skogestad and coworkers and the NC®irtigaapproach of
Bonvin and coworkers. The reason for the confusion is thet bpproaches seek
to optimize operation and make the gradient zdre< 0), but there are significant
differences:

In self-optimizing control, offline calculations are useddbtain good con-
trolled variables, typically as linear combination of theasurements; = Hy,
wherec may be considered an approximation of the weighted gradieis criti-
cal to have a model of the expected disturbances when afiagniOne does not
compute the optimal inputs explicitly; they are generatga feedback controller
to makec = Hy, = ¢5 (constant).

In the NCO tracking procedure by Francois et al. [2005] onesait obtaining
the optimal inputsi that drive the measured or estimated gradient to zero. titis n
necessary to know the disturbances in advance, and no nsoaketded.

As shown in this paper, the two methods may be successfultyboted by
controlling the self-optimizing variables in the lower layer, and letting NCO
tracking adjust the setpoints= Copt based on online estimates of the gradient.

It was not easy to make the NCO tracking work in spite of the fhat we
assumed no measurement noise. This could be partly attdiotthe fact that
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we used a simple finite difference procedure to obtain thdignis, without, for
example, steady state detection. The NCO tracking parasng@erturbation mag-
nitude, step siz¢, sample time) which converge to the optimum, were found by
trial and error. Parameters which perform well for one distimce may give poor
performance for a different disturbance. Non-steady giateods make it espe-
cially difficult to find parameters which optimize the costthvacceptable input
usage.

The NCO tracking procedure hinges on good gradient estsnatel using fi-
nite differences for estimating the gradient gives poor N@©Oking updates, even
with the assumptions of perfect measurements without naise perfect knowl-
edge of the profit value. More advanced gradient estimagchrtiques and in-
put adaptation methods may give better overall performaesgecially in terms
of input usage, because poor update steps caused by wrodigrgrastimates
would be avoided. In this work, we chose to apply the simpléefidifference
method, because our purpose is to demonstrate that the dmasiepts of mea-
surement based optimization techniques, such as NCO migackind the model
based self-optimizing control concepts are complementé¥hatever technique
for calculating the gradient and the NCO tracking updateséx, combining the
two methods helps to overcome their limitations. An inténgstask for future
research might be to study the combination of self-optingziontrol with a more
advanced update/gradient estimation method and a moistieabhse with non-
zero mean random measurement noise.

5.7 Conclusion

The different characteristics of the two methods studiethis paper suggest to
consider them as complementary, not competing. NCO trgclérmost suit-
able for use in the optimization layer, as an alternativeriine RTO, while self-
optimizing control is used for selecting CVs in the contaplér.

Since almost every RTO system has a dynamic control systetmeitayer
below, using a self-optimizing control structure in the &wayer improves per-
formance and can significantly reduce need for RTO updateNEO tracking as
implemented in this paper, this means fewer perturbationgridient estimation.
For an online RTO, this means more time for complex, timenisites, computa-
tions, with few compromises on performance.

The matlab simulation files are available on the home page. @kBges-

tad,ht t p: // www. nt . nt nu. no/ user s/ skoge, or as supplementary mate-
rial from the journal.
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5.A Relationship between the gradient and the null space
method

Consider the unconstrained optimization problem

: i T aTr | Juu Jud u
muan(u,d)_muln[u d ][Jdu Jug ] [ d } (5.27)

Differentiating the cosfl with respect tai gives

Ju= [ Juu Jud ] |: 3 ] . (5.28)

The linear model (5.5) can be rewritten as
~y | U
y_Gy[ d } (5.29)

If we assume that we have a sufficient number of measuremgntsy, + ng, then
the model may be inverted, and substitution into (5.28)gjive

Ju = [ Juu Jud ] [éy]ily- (5-30)
At the optimum, we havé, = 0, or equivalentlyc = Hy = 0, where
H = [Ju Jud][6Y] 7L (5.31)

This is the same expression fdras derived in Alstad et al. [2009]. And indeed, if
we evaluateHF usingF in (5.11), we geHF = 0. This follows since- in (5.11)
may be rewritten as

o 7 -1
FoG [ JUUI Jud } . (5.32)
Also note that the losk and gradient are related by
1 -1
L — _JuJuu \]u, (533)

2

soJ, = 0 is equivalent td. = 0. In summary, we see that the null space method is
identical to controlling the gradiend, = 0.
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Chapter 6

Some background on polynomials

Happiness is ideal, it is the work of
the imagination

A. Lord Tennyson

This chapter gives some background on polynomials, algebemm-
etry and elimination theory. The purpose of this chaptes istroduce
the reader to some important concepts, which are used indiasgp-
ters.

6.1 Polynomial methods in control

Polynomials have always been an integral part of contrabrthand are closely
linked to linear algebra (e.g. the characteristic polyrarof a matrix). Because
polynomials have many nice properties (e.g. a polynomidtiplied by a poly-
nomial is a polynomial), there exists a strong theoretieaid for working with
polynomials. With the availability of computers, more cdexpsymbolic opera-
tions became possible, and in the last 5-6 decades manywctivet methods for
handling and manipulating systems of polynomial equatieng been developed.
The best-known example maybe is the Grobner basis [Bucbhet§65], which
can be thought of as a generalization of the Gaussian eliimmarocedure for
polynomial equations.

Some important newer concepts include several improvesr@nthe Grob-
ner basis calculations and the development of border b&sésdin and Kreuzer,
2006]. Border bases are a generalization of Grobner basieb ate numerically
more stable and robust to numerical calculations. Anotbkeraevelopment is the
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theory of sparse resultants, which generalize the cldsssaltants for homoge-
neous systems of polynomials to inhomogeneous systemerfgadand Sturm-
fels, 1993; Gelfand et al., 1994; Canny, 1990].

With increasing computational power, the algebraic tegies for manipu-
lating polynomial systems have become interesting for rofisdds of research
than pure algebraic geometry. Some examples are robot m@nmning [Canny,
1988], automatic theorem proving [Chou, 1988] and crympby [Ars et al.,
2004]. Algebraic methods have also been used in the corgrohwnity, e.g. for
proving stability [Forsman, 1991b,a], or for calculatingtehing surfaces [Walther
et al., 2001; Bistak, 2010]. Other applications have beesotee the parametric
optimization problem which arises in nonlinear model pcédé control [Fotiou
et al., 2006].

A slightly different direction of research has been conedrmith positive
polynomials, in particular systems of polynomials, whiem e written as sum of
squares [Henrion and Garulli, 2005]. It has been found maallpms involving
sum of squares polynomials can be solved using linear maggualities [Parrilo,
2000; Parrilo and Lall, 2003]. Handling sum of squares poiyrals in the linear
matrix inequality framework is computationally easierrtt@her exact symbolic
calculations. Polynomials, which are not sum of squarey, Inearelaxed, so that
they can be written as sum of squares polynomials, [Pag0060]. This is espe-
cially useful for finding bounds on difficult optimization gislems. Henrion and
Garulli [2005] provide a nice overview of the applicatiorfgositive polynomials
in a control context.

6.2 Some basic concepts from algebraic geometry

In this section we briefly present some basic details abolyhpmials and alge-
braic geometry. It is not meant to be an exhaustive treatwighe topic. For this,
we refer to Cox et al. [1992, 2005]. The reader familiar witisie algebraic ge-
ometry may skip this chapter and continue directly with thpli@ation in Chapter
7.

If not marked otherwise, the presentations and examplekisnchapter are
taken or adapted from Cox et al. [1992]. Let us define the vecas

X=[X1,..., %] . (6.1)
Definition 1. Amonomialin x,...,X, is a product of the form
X7 X2 X, (6.2)

where all exponentay,...,a, are hon-negative integers.
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We use the short hand notation
X% = X7t xg2 - x3n. (6.3)
Letk be a field, for exampl& =R, ork = C.

Definition 2. A polynomial f in xg,...,%y with coefficient in k is a finite linear
combination (with coefficients in k) of monomials. We write

f=Yaux? agck, (6.4)
2

where the sum is over a finite number of n-tugles: (o, ..., dn).

The set of all polynomials with variablesand coefficients itk is denoted[x].
We callk[x] a polynomial ring, andy, is called the coefficient of the monomial
x?. There are many other fields than= C or k = R, but we will consider only
cases where the coefficients aréRipand solutions can be ii. That is thek=C
covers all our requirements.

Definition 3. Let k be a field (for exampIR or C), and let {,. .., fs be polynomi-
als in Kx] = K[xa,...,%]. Then we set

V(fy,...,fs) ={(as,...,an) €k": fi(ag,...,an) =0 V1<i<s}. (6.5)
The seV(fy,..., fs) is called theaffine variety defined by f, ..., fs.

Thus, the affine variety is the setf k" for which we have

f]_(X) =0
fz(X) =0
(6.6)
E.g. the variety of the polynomial
f=x+y?—1 (6.7)

is the unit circle inR?, and is an example for a one-dimensional variety (because
it is a one-dimensional curve).

Instead of working with the set of polynomials directly, stoften useful to
work with the ideal which is generated by the polynomials.

Definition 4. A subset IC k[x] is an ideal if it satisfies
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. 0el.
i. Iff,gel, then f+gel.
ji. If f elandhek(x],then hfel.

Theorem 7. Let fi,..., fs be polynomials in [x]. Then the set

<f1,...,f5>:{ihifi: hl,...,hsek[x]} (6.8)

is an ideal. We call fy,..., fs) the ideal generated by f..., fs.

Proof. See Cox et al. [1992] O

For example if we have two polynomiafg, f, € C[x1,Xo], the ideal generated
by these two polynomial is

(1, f2) = {ha f1 + hpf2} (6.9)

for anyhy, hy € C[x1,X2]. Now, if we consider the variety (1, f2), that is the set
of all x1,x2, where we have

f1(X1,%2) = fa(X1,%2) =0, (6.10)

then we see that all polynomials in the ideal

(fl, f2> = {h]_(Xl,Xz) f]_(X]_,Xz) +h2(X1,X2) fz(X]_,Xz)} (611)
=0 =0

will vanish. Therefore, the ideal is also said to consist Ibfttee “polynomial
consequences” of the generating polynomials. Even thduglideal contains in-
finitely many polynomials, it can be shown [Cox et al., 19984t all ideals can be
generated by a finite number of polynomials. This is knowrhasHilbert Basis
Theorem. The set of generating polynomials of an ideal isin@ue, that means
that a certain affine variety can be represented by diffesetst of equations.

There is an analogy with linear algebra. The ideal has simpilaperties to a
subspace, as both are closed under addition and multiplcaln linear algebra,
we multiply with scalars, while the ideal is multiplied bylgonomials. The anal-
ogy continues in that the subspace is spanned by a set of \mag@'s, and the
ideal is generated by a set of basis polynomials.
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Figure 6.1: The varietie¥ (f1) andV (fz). The intersection points yieM( f1, f1)
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Example 1. Consider the two polynomials

fi=xy—1

6.12
f2:X2+y2—2. ( )

The variety of the ideal generated by these two polynomglhe intersection
of the individual varieties. This is illustrated in Figurel6 The variety of these
polynomials is the same as the variety given by

fi=y' -2 +1=(y-1)?
f~2:x+y3—2y.

The~se~two sets of polynomials generate the same ideal, anvaitiety isV(fi, f2) =
V(f17 fz) = {(17 1)7 (_17 _1)}

Example 1 demonstrates nicely that the same variety, irt#ss the two points
(1,1) and(—1,—-1), can be represented by completely different equationse,Not
that we have eliminated the variabtdrom the first equation. This property will
be used in the next chapter, where we want to find a speciageptation, which
does not contain a certain set of variables, while not cmayie solution (variety)
of the equations.

In linear algebra, the same subspace can be defined by maesedifbasis
vectors. Analogue to the linear algebra case, the same (de&hriety) can be
defined by many different basis polynomials.

The theory of algebraic geometry is much richer than we casgmt here. For
more details, we refer the reader to Cox et al. [1992] and G@t. §2005]. We
will now rather introduce a tool which will be used in the nekapters.

(6.13)

6.3 The sparse resultant

We will only present some basic concepts in this section. &arore detailed
exposure, we refer to Cox et al. [2005].

The resultant of an overconstrained polynomial systematiterizes
the existence of common roots as a condition on the inpuficisits.
[...] Since it eliminates the input variables, it is also Wwmoas the
eliminant [Emiris and Mourrain, 1999].

In the rest of this section, we will restrict all the elemeimisx € C" to be
nonzero. We define
C*=C\0, (6.14)
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and we consider only solutions of polynomials which are engbt(C*)". The van-
ishing of the sparse resultant is the necessary and suffaaewlition for common
rootsx € (C*)™ [Cox et al., 2005].

Remark 4. The set(C*)" is an example of a toric variety [Cox, 2003]. The con-
dition that all elements ix have to be nonzero, makes it possible to allow Laurent
polynomials (that is we allow the polynomials to have negainteger exponents)

in the ring C[x,x 1. In this notationx* = [x;%,..., x; 4.

Using the shorthand notation introduced above, we writesgegy of polyno-
mials as

m
fi=Y a;x® fori=1,..,n. (6.15)
&

Without loss of generality we assunag; # 0. For a given polynomialfi =
z?‘zlaux“iﬂi we collect the exponent vectors to form the set

@@i:{ai,l,...,aim}. (6.16)

This seté; is called thesupportof the polynomialf;. If the supports of all are
the same, the system is called unmixed. Otherwise the syistealled a mixed
system.

Definition 5. The Newton polytope of i the convex hull of;. We write
Q =comé&) C R™ (6.17)

Without loss of generality, we assume that the lattice spdrby the supports
& is n-dimensional, and it can be identified wiil? [Sturmfels, 1994]

Definition 6. We define the Minkowski sum of to polytopes A and B
A+B={a+B | acApBecB}. (6.18)

We denote ther-dimensional volume of a polytope V@[, and define the
mixed volume of polytope®: ... Qm as follows:

Definition 7. The mixed volume of polytopes,Q .,Qm, .Z(Qx,...,Qmn) can be
calculated as

(L K
T m z (=H™ Z MQiy+-+Qy).  (6.19)

k=1 1<ip<--<ixk<,m

%(le"'va)
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We refer to Cox et al. [2005]; Gelfand et al. [1994] for proafsd details for
the calculation of the mixed volume. In the case of 2-dimamei polytopes, there
is a simple formula to calculate the mixed volume:

A (Q1,Q2) = area(Q; + Q) — area Q) — area(Qz). (6.20)

Theorem 8(Pedersen and Sturmfels [1993])he sparse resultant is well defined,
separately homogeneous in its coefficients of eaemd the degree in these coef-
ficients equals the mixed volume of the other n Newton pagtop

The sparse resultant is calculated by formulating a spedigsigned coef-
ficient matrix M, and calculating its determinant. Describing how to carcitr
matrices which can be used to extract the sparse resultamt @ the scope of this
work. For this, we refer to Canny [1990]; Gelfand et al. [1p®turmfels [2002];
Emiris and Mourrain [1999] and Cox et al. [2005].

Most available methods construct matridds of which the determinants do
not give the sparse resultant directly, but a polynomialtiplel of the resultant.
Then the sparse resultant can be calculated as the greataston divisor of
dettM) and all fi, withi = 1,2,...,n+ 1. Alternatively, the determinant & can
be factorized, and the resultant can be found by examiniaguting the degree
values of the coefficients from Theorem 8.

Example 2. Consider the system of 3 polynomials in two unknowmnsx

fi=a11+ag X +a3%

fo = ap1 + A% + 33X (6.21)

f3 = az1X1+ 8.372d]2_ + 8.373d1X2.
This is a mixed system of polynomials with 3 equations in Blsbes. For generic
coefficients g the system is overdetermined and does not have a solution (in

(C*)?). The necessary and sufficient condition (6r21)to have a common so-
lution is that the sparse resultant is zero

%( flv f27 f3) =0.
The three polynomials have the supports

& = {(0,0),(1,0),(0,1)} (6.22)
& = {(0,0),(1,0),(0,2)} (6.23)
& = {(1,0),(2,0),(1,1)}. (6.24)
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The Newton polytopesi(@», Qs are triangles with the volumes (areas)

areaQ1) = 1/2, (6.25)
areaQz) = 1, (6.26)
areaQ3) = 1/2 (6.27)

The mixed volume is calculated according(620), so using the volumes of the
Minkowski sums

areaQ1+Q2) = 7/2, (6.28)
areadQ1 +Qs) = 2 (6.29)
areadQ2+Q3) = 7/2 (6.30)
we obtain
M (Q1,Q2) 2, (6.31)
M(Q2,Q3) = 2, (6.32)
AM(Q1,Q3) = 1, (6.33)

for our example.

From Theorem 8 we know that the sparse resultant is of degrea;2 and &,
and it is of degree 1 ing. Using the softwarerul t i r es1[Busé and Mourrain,
2003] to construct the coefficient matr, and calculating its determinant in
maple, yields

2 2
detM) = ag1(—az2831 + 83 2821) {82187 385, — 282181 383,381,2832
2 2 2 2
+ap1333a7 5 +a2,3a7 133, + 832,381, 1333822 — 233 pap 383,181,181 2

2 2 2 .2
— @g2a; 383 1A 2 — a3 3A1,181 2822 + 1383183331, 2822 + a273a371a172} .
(6.34)

Examining the degrees of the determinant reveals that gtedam in curly brack-
ets is the sparse resultant, so if and only if the coefficiefjteause the last term
to vanish, then the systef®.21)has a solution(xy, ) in (C*)2.

6.4 Some practical considerations for working with poly-
nomials

Even though the next chapters deal with “ideal” systemg,ithgystems without
measurement noise or model mismatch, we would like mentiahwe must be
careful when these assumptions are not satisfied. We presemt practical prob-
lems which may occur when dealing with multivariate polynais

LAvailable on: http://www-sop.inria.fr/galaad/softwérailtires/
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6.4.1 Il conditioning

Polynomial equations can be very ill conditioned. By illaciitioned, we mean
that a small change in one of the coefficients can have a I&iget en the number
and the quality of the solutions. We demonstrate this by idenisig the famous
“Wilkinson polynomial” Wilkinson [1984] Consider for exagpe the polynomial

f=(Xx-1)(x—2)...(x—20). (6.35)

This polynomial has 20 real roots, the natural numbers frorm 20. However,
perturbing the coefficient of'® (which is 210) by 223 ~ 1077 results in a large
change of the zeros. The perturbed polynomial has 5 com@eszand a real
zero atr 20.847., and the roots at 18 and 19 merge into a double roetls 62.

It generally cannot be seen directly from the polynomial®y lsensitive the
roots are with respect to perturbations in the coefficiefitsis has to be kept in
mind when working with polynomials.

To see another issue that can arise when working with polyeleroonsider

f(x,y) = 25 — 20x+ 1. (6.36)

A part of the varietyV (f(x,y)) of this polynomial is shown in Figure 6.2. When

is in the interval[—1, 1], the absolute value ofis lower than 10. However, when

x = 2 we havef(x = 2) = 161, andf(x = 3) = 616. At values ofk ~ 10, they
takes values about®- 10*. This shows in a simple example that relatively small
changes in one variabl&)(can cause other variables to vary over several orders of
magnitude.

6.4.2 Size of polynomials

A partially related issue which arises with symbolic congpigin with polynomials
is that the expressions can become very large, and can éekrg high exponents
(which in turn makes the problem more difficult to handle nuoadly). However,
as we have seen in Example 1, the same solution set can beddeficempletely
different equations, and some representations will belemahd better behaving
than others.

6.4.3 Desired properties for Polynomials

From a practical perspective, we would like the polynomialsatisfy the follow-
ing requirements.

1. The representation should be “simple”, in the sense tiaipblynomials
have
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Figure 6.2: Variety of the polynomidi(x,y) = 25x3 — 20x +1—y

(a) few terms and
(b) low degree in the variables.

2. The polynomial expression should be robust with resgegétturbations in
the coefficients.

3. The all variables should have approximately the samebity in the re-
gion of interest.

These requirements are partly related to each other. Poiat® of high degree
will generally behave more sensitive to changes in the blagathan polynomials
of low degree. Therefore it is advisable to find and use remtasions of low
degree.

However, it lies in the nature of polynomials that they canvbey difficult
to handle in a numerical context. Some of the issues may loévegsby scaling
the variables properly, or finding a polynomial represenatvhich is robust to
numerical errors. However, in general, one must be awaressttpotential pitfalls
when working with polynomials in practical applications.
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Chapter 7

Measurement polynomials as
controlled variables

The purpose of computing is
insight, not numbers.

R.W. Hamming

We present a method for finding controlled variables, whiehpmly-
nomial combinations of measurements. Controlling thesasore-
ment combinations gives optimal operation. Our work exsetia
concept of self-optimizing control to processes descrimggolyno-
mial equations. Using the first-order necessary optimabiyditions,
invariant variable combinations are determined for theonstrained
degrees of freedom. Any unknown internal variables (syated dis-
turbances are eliminated to obtain new invariant variablal@na-
tions containing only known variables (measurements). hdf dis-
turbance causes the active constraints to change, theainimmay
be used to identify, and switch to the right region. This nsaltes
method applicable over a wide disturbance range with cimangc-
tive sets. The procedure is applied to two case studies dintmus
stirred tank reactors.

Submitted to Journal of Process Control
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7.1 Introduction

For continuous processes, which are operated in steadyrstat of the time, an
established method to achieve optimal operation in spiteapfing disturbances
is real-time optimization (RTO) [Marlin and Hrymak, 1997The real-time opti-
mizer generally uses a nonlinear steady state model, whighdated at intervals
based on measurements. This updated model is used to aedm@pute optimal
setpoints for the controlled variables in the control lalgelow. This concept has
gained acceptance in industry and is increasingly usedrfpraving plant perfor-
mance. However, installing an RTO system and maintainirggiiterally entails
large costs.

A second approach to optimizing plant performance is to ys®eess model
off-line to find a self-optimizing control structure. Thedb@ concept of self-
optimizing control was conceived by Morari et al. [1980],aulirite that we “want
to find a functionc of the process variables which when held constant leads au-
tomatically to the optimal adjustments of the manipulatadables”, but they did
not provide any method for identifying this function. Theddis to use this func-
tion as a controlled variable and keep it at a constant s#tjyi simple control
structures, e.g. PID controllers, or by more complex modetligtive controllers
(MPC). Using this kind of controlled variables disburdehs teal-time optimizer,
or may even make it unnecessary [Jaschke and Skogestad, 2010

The term “self-optimizing control” was defined in the coritex controlled
variable selection with the purpose of describing the jrattgoal of finding
“smart” controlled variables. Skogestad [2000] writes:

Self-optimizing control is achieved if a constant setpgnoticy re-
sults in an acceptable logs(without the need to re-optimize when
disturbances occur).

Many industrial processes are operated using self-ogtignizontrol, although
it is not always called that. For example, optimally actienstraints may be
viewed as self-optimizing variables, e.g., maximum caplaf an air stream be-
fore entering a compressor. However, the more difficult f@wobis to identify
self-optimizing control variables associated with undmised degrees of free-
dom. In most cases, engineering insight and experiences leathe choice of
self-optimizing controlled variables, and the optimiratiproblem is not formu-
lated explicitly. An example for the unconstrained caseoistiolling the air/fuel
ratio entering a combustion engine at a constant value.

It has been noted previously [Halvorsen and Skogestad,;108d, 2003;
Halvorsen et al., 2003; Francgois et al., 2005; Chachuat e2@09], that the gra-
dient of the cost function with respect to the degrees ofdoesu would be the
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ideal controlled variable; = J,. However, the gradieni, is usually not directly
measurable, and analytical expressions for the gradiewrgly contain variables
which are unmeasured (unknown disturbances). Therefoeemethods in self-
optimizing control theory can be thought of as an approxiomatin some “best”
way) of the gradient using a measurement model.

Use of self-optimizing controlled variables enables usesate the two prob-
lems of optimizing the system and designing the controll@us, in a first step the
controlled variables are determined based on the steayfstd order optimality
conditions, and in a second step a suitable controller igyded. In most cases,
a simple PI controller will be sufficient, but also more adweah controllers can
be used to control the self-optimizing variable. The adagetof this separation
is that it makes it possible to focus completely on steadie statimal behavior
when designing the control structure, while all issues Whidse when handling
dynamic systems are considered when designing the actotrbtiers.

In the last decade, several contributions have been madbeoaystematic
search of controlled variables which have self-optimizprgperties [Halvorsen
etal., 2003; Alstad and Skogestad, 2007; Kariwala et a0828Istad et al., 2009;
Heldt, 2009], but to the author’s knowledge, self-optimgicontrol has only been
considered for cases with linear measurement models anddrajic cost func-
tion. This results in linear measurement combinatiorsHy as controlled vari-
ables. In cases where a strong curvature is present at theuopt the loss im-
posed by using linear measurement combinations may notdeptable, and the
controlled variables are not self-optimizing.

The main contribution of this work is to extend the ideas df-gptimizing
control, in particular the concept of the null-space metffddtad and Skogestad,
2007], to constrained systems described by multivariablgnmmials. This results
in controlled variables which are polynomials in the meamentsc = c(y).

We further show that, under some assumptions, the cordrolieiables can
be used to determine when the steady state set of activer@ostchanges, and
which set it changes to. Also for changing active constsaitiie separation of
the steady state optimization and the control problem applThis means that all
dynamic problems which come with changing control strieturan be considered
separately.

7.2 Overall procedure

The proposed procedure for achieving optimal operationnsrsarized in Figure
7.1. In steps 1 and 2 we formulate the optimization problethdatermine regions
of constant active constraints, also called critical ragioThis is done by offline
calculations, for example, by gridding the disturbancecepaith a sufficiently fine
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1. Formulate optimization problem

2. For the expected set of disturbances, find all regions iffarent sets of
active constraints#

3. For each region of active constraint$

a Formulate optimality conditions

b Eliminate Lagrangian multiplierd from optimality conditions to obtain
invariantsJ, req (reduced gradient)

¢ Obtain measurement invariamtg/) by eliminating unknowns, such that
C(y) — O < Jz7red — 0

4. In each region#, control the

a Active constraints
b Invariantsc(y)

Use controlled variables and measured constraints forgithgmegions

Figure 7.1: Procedure for finding nonlinear invariants agrmdled variables

grid and optimizing the process for each grid point.

In step 3, for each critical region, (a) the optimality cdiatis are formulated,
and (b) the Lagrangian multipliers are eliminated. Therte)unknown variables,
i.e. the disturbances and the internal state variablesliangated from the opti-
mality conditions to obtain an invariant variable combioatc(y) which contains
only measured variables and known parameters. Optimahbtperis achieved in
each critical region by controlling the active constraizts the invariant measure-
ment combinations.

Finally, in step 4 we monitor the active constraints and thaiiants of the
neighboring regions to determine when to switch to a neworegi
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7.3 Optimal operation using the optimality conditions

7.3.1 Problem formulation

Optimal operation is defined as minimizing a scalar costinlle, x,d) subject to
satisfying the model equationg= 0, and operational constraints< O:

g(u,x,d)=0

h(u,x,d) <O0. (7.1)

minJ(u,x,d) st {

u,x
Hereu, x, d denote the manipulated input variables, the internal statables,
and the unmeasured disturbance variables, respectivetyasdume that, in ad-
dition, we have measuremenys= y(u,x,d), which provide information about
internal states, inputs, and disturbances. To handle tlesunements in a consis-
tent way when dealing with polynomials, we will write the rsaeement relations
implicitly, as

m(u,x,d,y) =0, (7.2)
To simplify notation, we combine state and input variablea vector
u
zZ= [ x ] . (7.3)

Problem (7.1) is the same problem as the one solved on-liggvah sam-
ple times when using RTO. In this work, however, we do not vislsolve the
optimization problem on-line; instead, we analyze the [@wbusing offline cal-
culations, in order to find good controlled variables whigklg/ optimal operation
when controlled at their setpoints.

Optimality conditions

Let z* be a feasible point of the optimization problem (7.1), ansbase that all
gradient vector$l,gi(z*,d) andJ;h;(z*,d) associated witly; (z*,d) = 0 and the
active constraintsh; (z*,d) = 0, are linearly independent. #f is locally optimal,
then there exist Lagrangian multiplier vectorsand v, such that the following
conditions, known as the KKT conditions, are satisfied [Mad@nd Wright, 2006;
Bazaraa et al., 2008]

1We follow the notation of Bazaraa et al. [2006], where theligat of a functionf : R™ — R is

T

defined agl;f = [g—zfl, g—zfz, e sz:Z] . Given a differentiable vector functian: R™ — R", where

9(2) = [91(2),02(2), - - -, On, (2)]T, the Jacobian in gradient notatihg(z) is given by then; x ng
[ngl]T

matrix 0,9 =

[ngng] !

ngxn,
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0,d(z*,d) + [0,9(z*,d)]"A + [Ozh(z*,d)]Tv =0
g(z,d)=0
h(z*,d) <0 (7.4)
[h(z*,d)]"v=0
v>0.

The condition that the Jacobian of the active constraingsitdependent rows (or
full rank) is called the linear independence constraintlifjoation (LICQ) and
guarantees that the Lagrangian multiplidrsand v are uniquely defined at the
optimumz*.

When optimizing nonlinear systems, such as polynomialesyst there are
several complications which may arise. The optimality é¢tods (7.4) will in
general not have a unique solution. There may be multiplemexminima and
saddle points, so finding the global minimum is not an eady itagself. When
a solution to (7.4) is found, it has to be checked whetherdead is the desired
solution (minimum). In addition, there may be solutions ethare not physical
(complex). So before controllingly) to zero, it has to be assured that the process
actually is at the desired optimum.

These and other issues from nonlinear and polynomial opéition are not
addressed in this work. The focus of this paper is ratherasgmt a method which
gives a controlled variable(y) which is zero at all points that satisfy the KKT
conditions, and which is nonzero whenever the KKT condgiare not satisfied.

7.3.2 Partitioning into sets of active constraints

Generally, the set of inequality constraif$z,d) < O that are active varies with
the value of the elements @h The disturbance space can hence be partitioned into
regions which are characterized by their individual setabif/a constraints. These
regions will be called critical regions.

The concept of critical regions allows one to decompose tiginal optimiza-
tion problem (7.1) into a sequence of equality constraingthvzation problems,
which are valid in the corresponding critical region. Thiea is also applied in
multi-parametric programming [Pistikopoulos et al., 2D0OMAowever, we do not
search for an explicit expression for the inputsas in multi-parametric program-
ming. We rather use each subproblem to find good controlledhlasc for the
corresponding critical region.

In order to obtain a fully specified system in each region,

1. the active constraints need to be controlled, and
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2. a controlled variable has to be controlled for each uricaimed degree of
freedom.

The number of unconstrained degrees of freedym; npor is calculated accord-
ing to
Npor = Nz — Ng — Nh active, (7.5)

wheren;, Ng, Nh active denote the number of variablesthe number of model equa-
tions, g, and the number of constraints fromwhich are activel§ = 0). This
method will give the right amount of degrees of freedom fagtically all sys-
tems encountered in reality.

Remark 5. When the optimization problefd.1)is composed of polynomial equa-
tions, the critical regions are defined by semialgebraic sefR™™d, A semi-
algebraic set is defined as the finite union of sets defined hyita fiumber of
polynomial equalities and inequalities,

g(x,u,d) =0 (7.6)
and
h(x,u,d) <0, (7.7)

Where g and h are polynomials in the variablesi andd, with coefficients ifR.
Loosely speaking, a semialgebraic set can be thought of defgted by a finite
number of polynomial inequalities. The interior of an &dlijid, or the set of points
on a curve in theR" are examples of semialgebraic sets.

In the rest of the paper, by abuse of notation, all active traimish;(z,d) =0
are included in the equality constraint vectiz,d) = 0. Then in every critical
region, the optimization problem (7.1) can be written as

mZinJ(z,d)
s.t. (7.8)
g(z,d) =0.

The KKT first-order optimality conditions (7.4) simplify fgroblem (7.8) in
each critical region, to

0,(z,d) + [0,9(z,d)]"A =0,

g(z,d) =0. (7:9)

These expressions cannot be used for control, becausetithegrsain unknown
variablesx (in z= [u,X]), d, andA, which must be eliminated.



124 Measurement polynomials as controlled variables

7.3.3 Eliminating the Lagrangian multipliers A

In every critical region, a control structure that givesimatl operation has to sat-
isfy (7.9). Recall that the LICQ is assumed to hold, i.e. atdptimum,,g(z,d)
has full row rank for every value af within the critical region.

Proposition 1. LetN(z,d) € R™*("~) be a basis for the null space bfg(z,d).
Keeping the active constraint§gyd) = 0, and the variable combination, &g =
[N(z,d)]"O0,J(z,d) = O then results in optimal steady state operation.

Proof. SelectN(z,d) such that{N(z,d)]"[0,9(z,d)]" = 0. Since the LICQ are
satisfied, the constraint Jacobiahg(z,d) has full row rank andN(z,d) is well
defined and does not change dimension within the region. Téieefjuation in
(7.9) is premultiplied byN(z,d)]" to get

[N(z,d)]" (DZJ(z,d)+[ng(z,d)]T)\) = [N(z,d)]"023(z.d) + 0A .10
[N(z,d)]"0,J(z,d).

SinceN(z,d) has full rank, we have that (7.9) are satisfied whenegyerd) = 0
and[N(z,d)]"0,J(z,d) = 0. O

We callJ;req = [N(z,d)]"0,J(z,d) the reduced gradient. By construction, the
reduced gradient hagor = n; — Ng elements. Keeping

Jrred = [N(z,d)]T0,3(z,d) = 0 (7.11)

together with the active constraintgz,d) = 0, fully specifies the system at the op-
timum and is equivalent to controlling the first-order omlity conditions (7.9).
However,J; eq cannot generally be used for control directly because litdg#
pends on the variables andx (x enters througlz = [u,x]T), which are usually
unknown. Thus, we want to eliminate the unknown disturbadand the internal
statesx from the expression (7.11).

The simplest approach is to solve the measurement equationg,d,y) =0
and the active constraintgz,d) = O for the unknownsl andx, and substitute the
solution intoJ; req. AS we show, this is straightforward in case of linear ecpres)
but it becomes significantly more complicated when workintpywolynomials of
higher degree.

7.4 Elimination for linear quadratic systems

In this section we describe the basic concept of how the umkeare eliminated
form J;req. This will lead to the linear zero loss method, or null-spacethod
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Alstad and Skogestad [2007]). Our procedure is demondtrstep by step for
minimizing a quadratic cost function subject to linear ¢oaists and a linear mea-
surement model. Solving the model and measurement eqgsaditiothe unknowns
and substituting intd, req is avoided, as this is difficult to extend to the polynomial
case. Instead, we search for necessary and sufficient mmsdihich guarantee
that the measurement mode(x, u,d,y) = 0, the active constraints and the model
9(z,d) = 0, and the reduced gradied.eq = O are satisfied at the same time. We
require that the necessary and sufficient condition is aifomof measurementg
and known parameters, only.

The optimization problem we consider is

_ J Jzd 4
B T T 7z z
mzan(Zvd) =[z" dT] [ Jzd" Jad ] [ d }

ot (7.12)
Az—b=0,
and the linear measurement model is
mz.dy) =y~ @6y | § | -0
(7.13)

:y—éy[ é ] =0.

We considefz,d]" as unknown and we assume that (7.12) has a solutigr; 0O,
andA has full rank. In addition, we assume that the measuremeatinzarly
independent, an@y = [GY GY] invertible.

The null space of the constraint gradieNt, is a constant matrix which is in-
dependent of, such thalAN = 0. The first-order necessary optimality conditions
require that at the optimum

V4
Jrred =NT03(2,d) =NT [ Iz Jag | [ q ] =0. (7.14)

If the number of independent measurememts {s equal to the number of
unknown variablesr(; + ng), the measurement relations (7.13) can be solved for
the unknowns and substituted into the gradient expresgidd) to obtain

C(y) = JZ,I’ed =NT [ Jzz Jud ] [éy] 71y. (7.15)

Controllingc(y) = and the active constrainés — b to zero, then results in optimal
operation.
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However, in the case of polynomial equations of higher degré is gener-
ally not possible to solve for the unknown variables. Themefwe consider the
problem from a slightly different perspective. Suppoge- n,+ ng, then for any
disturbanced and feasiblez, the outputy is uniquely defined. Since the mapping
from [zd] toy is invertible, one can also say that for every output andidisince
pair (y,d) there exist a unique, which satisfies the measurement equations (7.13).
However, an arbitrary feasiblewith its corresponding pairy(d) will fail to satisfy
the first-order optimality condition (7.14). Moreover, &irthere is no requirement
on the rank ofl,q4, the condition,, > 0 guarantees that only oaéor equivalently
one pair ¥, d)) satisfies the first-order optimality conditions and tmég pair §, d)
corresponds to the unigue minimizerThis can be used for a more subtle elimi-
nation method which does not require solving the measurere&tion (7.13) for
the unknown variables.

Consider the elements of the reduced gradient vector (7di® at a time,
together with all the measurement equations (7.13). Lestiperscrip{(i) denote
thei-th row of a matrix or a vector. We write the reduced gradi@nt4) together
with the measurement equations (7.13) as a sequence obdmear systems

. . 7
—0. (7.16)
GY Gy vy 1
M)
HereM (), i = 1...npor are square matrices of size, 4 1). We want to find a

particular output combination which satisfies (7.16). Ausioh for [z, d]" exists
only if rank(M W) = ny = n, + ng.

The submatri¥GY Gﬁ y] already has ranky, irrespective of the value of (or
the control policy that generates the inpuivhich in turn generateg). This fol-
lows becauséGY G, y] has more columns than rows, and because(f@#lG}]) =
ny. Therefore, the condition for a common solution is:

detM)=0 foralli =1..npor. (7.17)

This condition guarantees that a common solution to (7.428)% so the elements
of the controlled variable are selected ag = det(M ().

It remains to show that controlling the determinaqts- detM () gives the
inputs which lead to the optimum. Since the system is linearthe rank of the
measurement equationsnig there is a unique linear invertible mapping between
the measurementsand the vectofz, d]T. Therefore every value gf corresponds
uniquely to some value in

In the case with more measurememis> n, + ng, any subset ofi, + ngy mea-
surements may be chosen such that @G )=n, + ng.
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Remark 6. When there are no constraints, we have that u, and this method
results in the null space method [Alstad and Skogestad,]200this caseN may

be set to any nonsingular matrix, for example the identityrixdN = 1. Then we
have that

Chulispace= [Juu Jud] [C;y]flya (7.18)

as has been derived in Alstad et al. [2009].

The null space method was originally derived by Alstad arah&&tad [2007]
using the optimal sensitivity matrix= ag—zpt. However, controllingc = Hy withH
selected such thaiF = 0, is indeed the same as controlling the gradient to zero.

Remark 7. Actually, in the linear case presented above, the condsain
Az—b=0 (7.19)

can always be used to eliminate the variables Then, for the remaining un-
constrained problem the condition iank([GY G}]) = ny +ng, and we need
Ny = Ny + Ng Measurements

The next example is included to demonstrate that our “detemmh method”
gives the same result as the previously published nullespaethod Alstad and
Skogestad [2007].

Example 3(Linear model and quadratic objective}onsider a system from Alstad
[2005]. The cost to minimize is

J=(u—d)? (7.20)
and the measurement relations (model equations) are

Y1 = G{U + Gﬁ,ld

Y2 = Gu+ Gﬁ_zd (7.21)
where the variables,d,y denote the input, the disturbance and the measurements,
respectively. The values of the gains are given in TableVielare searching for a
condition on y and y» such that the optimality condition is satisfied. The gratlien
isOyJ=2(u—d) and Jy=2, Jyg = —2. Itis easily verified that measurements are
linearly independent. This gives an equation system of 8teans in 2 unknowns:

M| d | =0 (7.22)
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Table 7.1: Gain values for Example 3

Variable Value
G{ 0.9
Gy1 0.1
G‘Z’ 0.5
G, -1.0

where
Juu Jud 0
M=| Gl Gy v |. (7.23)
G} Gz,z Y2

u
Equation(7.22)hasasolution{ d ] if and only if
-1

detM) = 0. (7.24)

Therefore the necessary and sufficient condition for thetexce of a nontriv-
ial solution is

Juu Jud 0
det G; Gél yl - _yl(‘JUUGéZ - GszlJud) + yZ(JuuGal - G{Jud)
G, Gyp ¥2
=0.
(7.25)
On inserting the parameter values from Table 7.1, we obtain
c=detM) =y1 +2y,. (7.26)

Controlling c=y; + 2y» to zero therefore yields optimal operation. This is the
same variable combination as found by applying the nulkespaethod in Alstad
[2005].

Even though obtaining the invariants via the determinany sgem cumber-
some, it eliminates the necessity of inverting the measengsrand solving for the
unknowns. While this is of little advantage for systems aklr equations, the
concept can be extended to systems of polynomial equatibichwannot easily
be solved for the right set of unknowns.
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7.5 Elimination for systems of polynomial equations
Letd now denote the vector of all unmeasured (unknown) variables

~ X

d= { 4 } , (7.27)

not only including disturbances, but also unknown states and lety include all
measurements and known inputs. Thus, every variable beleitiger tod or vy,
and we write the optimality conditions as

Jz,red (yv a) =0

- (7.28)
g(y,d) =0,
and the measurement relations as
m(y,d) = 0. (7.29)

Remark 8. Note that in the elimination step, we do not distinguish leetwin-
ternal states variablex and external disturbances. All variables which are not
available as measurements (that &= [x,d]") have to be eliminated from the
optimality conditions.

For polynomial equations, eliminating the unknown vamsbfromJ; req iS
not as straightforward as in the linear case, as we cannos@hge the measure-
ment equations for the unknowns and insert them in to theessn ofJ, req.
Even for the case of a univariable polynomial of degree 5 agiddn, for example
d®>—d+1=0, there exist no general analytic solution formulas, as pvasen
by Abel [1826]. Therefore we are interested in finding a wagliminate the un-
known variablesd from J;eq(y,d) = O without solvingg and m for them first.
This is exactly what was done in Section 7.4, where we usedéterminant of
a carefully constructed coefficient matrix, which chargzts the existence of a
common solution irl, to replacel, eq. The determinant is a function of the known
variables only, that is, the measurementnd the parameteéy, Jzz andJyg.

The generalization of the determinant to systems of polyabeguations is
called resultant. According to Emiris and Mourrain [1999],

“the resultant of an overconstrained polynomial systemattarizes
the existence of common roots as a condition on the inputfiecoef
cients”.

To be more specific, we consider multivariate polynomiats Ry, a], that is,
real polynomial functions with coefficients I®, and variabley = [y1,Yz,...,Yn ]
andd = [x,d] = [cfl,cfz,...,(fn&]. Given anng-tuple,

C(Lj = (oru(l),oru (2), .. .,C(Lj (n&)) , (7.30)
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we use the shorthand notation

goii — dAfi’j(l)dAgi’j(Z) o d"r?i:j(”&)' (7.31)

d

Then we can write a system pfpolynomials in compact form
~ k‘ ~ A .
fi(y,d) = %ai,j(y)dau, i=1.n, (7.32)
=

where the coefficients;; (y) # 0 are polynomials iiR[y], that is, polynomials ity
with coefficients inR.

We consider the functions; j(y) as polynomial coefficients, andl as vari-
ables. For every polynomidf, we collect the exponent vectors in the ggt=
{ai1,...,0iK}. This set is called support of the polynomial

The support of the polynomid = df +didy — 1, for example, is found to be
& =1{(2,0),(1,1),(0,0)}. We denote a€); the convex hull of the support of a
polynomial,Q; = conv(4}).

Further, we denote the set of complex numbers without ze®5 §8* = C\ 0).
Next we present some basic concepts from algebraic geortateyn from Cox
et al. [2005].

Definition 8 (Affine variety) Consider i, ..., f, polynomials irIC[d], e dAn&]. The
affine variety defined by f..., f, is the set

V(fy,-, fn) = {(dy,...,dn;) €C": fi(dy,...dy) =0 i=1...n} (7.33)
Casually speaking, the variety is the set of all solution€'lh

Definition 9 (Zariski closure) Given a subset 8 C™, there is a smallest affine
variety SC C™ containing S. We calb the Zariski closure of S.

Let L(&) be the set of all polynomials whose terms all have exponentse
supporté;:
L(&) = {@1d% + -+ d% : g ; € C} (7.34)

Then the coefficients; ; of n polynomials define a point iE™k . Now let
Z(&,...60) CL(&L) x -« x L(&n) (7.35)

be the Zariski closure of the set of &lly, . .. f,) for which (7.32) has a solution in
(C*)M (that is the Zariski closure of the points defined by all cogdfitsa; ; € C
for which (7.32) has a solution). For an overdeterminedesysbfn;+ 1 polyno-
mials inng variables we have following result:
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Theorem 9(Sparse resultant [Gelfand et al., 1994; Cox et al., 20053sume that
Qi = conv(&}) is an ny-dimensional polytope for+ 1,...,n;+ 1. Then there is
an irreducible polynomialZ in the coefficients of thg $uch that

(Froees fgen) € Z(EL. bny,) = A fa,. ., 1) = 0. (7.36)
In particular, if
f1(d...Ong) = - = far12(h...On;) = O (7.37)
has a solutiondy, ..., dy;) in (C*)™, then
Rty fag1) = 0. (7.38)

Remark 9. The requirement that (as to be g-dimensional is no restriction and
can be relaxed, [Sturmfels, 1994]. However, for simplicitye chose to present
this result here.

Depending on the allowed space for the roots, there are otlaitant types
(e.g. Bezout resultants and Dixon resultants for systenowfdgeneous polynomi-
als), with different algorithms to generate them. Gengriléy will be conditions
for roots in the projective space with homogeneous (or hanizgd) polynomi-
als. For more details on different resultants, we refer tifaBd et al. [1994];
Sturmfels [1994]; Cox et al. [2005]. An overview of diffettenatrix constructions
in elimination theory is given in Emiris and Mourrain [1999]

We choose to use the sparse resultant, since most polynsysiaims encoun-
tered in practice are sparse in the supports. That mearedanple, a polynomial
of degree 5 in two variables y will not contain all 21 possible combinations of
monomialsx®,y°, x*y, xy*, ... . x* y* x%,...,y,x,1. Just as in linear algebra, this
sparseness can be exploited for calculating the resultambther reason for us-
ing the sparse resultant is that it gives the necessary dfidesut conditions for
toric roots, that is, roots ifiC*)", such that the input polynomials need not be
homogeneous (or homogenized), as in other resultants.

Finally, the sparse resultant enables us to work with Laysetynomials, that
is, polynomials with positive and negative integer expasen

Usually, resultant algorithms set up a matrix in the coedfits of the system.
The determinant of this matrix is then the resultant or a ipleltof it. Generating
the coefficient matrices and their determinants efficierstls subject to ongoing
research, but there are some useful algorithms freelyadblail In this work, we
use the maple software packagml t i r es [Busé and Mourrain, 2003], which
can be downloaded from the interfiet

2 http://wwesop.inria.fr/galaad/logiciels/mltires



132 Measurement polynomials as controlled variables

For more details on the theory of sparse resultants, we teféelfand et al.
[1994]; Emiris and Mourrain [1999]; Sturmfels [2002]; Dkstein and Emiris
[2005].

7.5.1 Finding invariant controlled variables for polynomial systems

After introducing the concepts above, we are ready to agpmyntin the context
of controlled variable selection and self-optimizing adoht As in the linear case

above, we assume that the active constraints and the maaki@s,g(y,d) = 0,
and the measurement relationgy,d) = 0O, are satisfied.

Let Jz(iged denote thea-th element in the reduced gradient expression. To ob-
tain then. = npor controlled variables needed for the unconstrained degkes

freedom we have:

Theorem 10(Nonlinear measurement combinations as controlled viesahGiven
d € (R*)", and 4 ng = ng, independent relations(yg,d) = m(y,d) = 0 such that
the system

,d)=0
9ty A) (7.39)
m(y,d) =0
has finitely many solutions fat € (C*)™. Let%(Jz(fged,g, m), i=1...ncbe the
sparse resultants of the polynomial systems composed of
‘Jz(jt?ed(yva) = oa g(yaa) = 07 m(yva) =0 i=1- N, (740)

then controlling the active constraints(ygd) = 0, and G = %’(Jz(’iged,g, m) i=
1,...,nc, yields optimal operation throughout the region.

Proof. The active constraints are controlled, thyfg,d) = 0 andm(y,d) = 0 are
satisfied always, and there is no condition on the paraméietbis part of the
system.

The systemg(y,d) = 0,m(y,d) = 0 has only finitely many solutions fat,
so the set of possibld is fixed. Moreover, we know that a real solution to the
subsysteng(y,d) = m(y,d) = 0 exists, since it is the given disturbance.

From Theorem 9, the sparse resultant gives the necessaisuffimient con-

ditions for the existence of a solution for (7.40)dre (C*)™. Therefore, when-

everJZ(jr)eOI = 0, the resultant is zero (necessary condition). On the dthad if
#(Jzred, 9, M) = 0 then the system (7.40) is satisfied (sufficient condition).

This holds for any solutionl € (C*)", and in particular the “actual” values
of d. Because there are as many resultants as unconstrainezeslegfreedom,
controlling %(Jz(jr)ed,g, m) fori =1,...,n, satisfies the necessary conditions of op-

timality in the region. O
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Remark 10. In cases where the ¢ ((C*)”d;, we may apply a variable transforma-
tion to formulate the problem such we ge€ (C*)". For example a translation
d=d-1

Remark 11. By partitioning the overall optimization problem into sesdleegions
of active constraints, we assume that we have obtained wkd\ng systems for
each region. In particular it is assumed that there are noebpsints (values of
& j(y), where a polynomial in g or m vanishes for all valuesipf

Remark 12. In some cases, the matrix of coefficients may be singulddiyge
an identically zero determinant. These cases can be hatgiedperturbation of
the system at that point. This is a standard method of hagdiggeneracies in
resultants Canny [1990]; Rojas [1999].

Example 4 (Elimination). Consider a system with one disturbance d, where we
want to minimize a cost J subject to one constraint. The redigcadient is Jreq =
NTO,d(y,d) = a11(y) +a12(y)d, and the constraint is

9(y,d) = az1(y) +az2(y)d +az3(y)d* = 0. (7.41)

All coefficients g;(y) are known functions of the measurements. At the optimum
we must have

Jrred = ag1(y) +az2(y)d =0. (7.42)

For arbitrary coefficients @1,a12,a2 1,22, a2 3, this system of univariate polyno-
mials in d does not have a common solution. However if thesgpagsultant is

zero, then there exist a common solutiogzd for (7.41)(7.42) In the case of

univariate polynomials, the sparse resultant coincideth wie classical resultant,

which is the determinant of the Sylvester matrix [Cox et¥92], and the van-

ishing of the resultant is the necessary and sufficient ¢mmdior the existence of
a common root. We construct the Sylvester matrix

ar2(y) aa(y) O
Syl= 0 a2(y) aaly) |, (7.43)
a3(y) ap2(y) azi(y)

and the resultant is (where we omit writing the dependencg explicitly)
R (Jzred, d(Y,d)) = det(Syl) = af yap1 — a1 2811822 + 8238 ;. (7.44)

For a common root tto exist, the polynomial in the coefficie#®J; req, 9(y,d))
must vanish. Since the constraints are satisfidgl, d = O for any disturbance
d € R, controlling the resultant to zero is the condition for thedluced gradient
J.red t0 become zero. So for any real#l0, the optimality conditions will be
satisfied, and operation will be optimal wheney@(J; req,9(y,d)) = O.
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CaF, CBF, Cck

=z

Ca,CB, Cc

Figure 7.2: Isothermal CSTR

7.6 Case study |

Consider a CSTR as in Figure 7.2, with a feed stream congaimiainly compo-
nentA, and possibly also componersandC, and with two first order chemical
reactions,
A—B M= k1CA (7.45)
B—C I = k2CB.
ComponenBis the desired product, whil@is an undesired side product. We have
one manipulated variable, the feed stream g, which can be adjusted to achieve
profitable performance. We assume that prodican be sold very profitably, and
can be separated easily from the other components. Thetigpedaobjective is
therefore to maximize the concentration of the desired ybdSince the level in
the reactor is controlled at a constant value, this cormdedo maximizing the
total production oB.

Itis assumed that the unmeasured disturbances are th@ratmietk; andks.
This could be due to imperfect temperature control in thetaeacatalyst decay or
unknown reaction paths, which have been approximated tiyofider kinetics. In
addition we assume that the concentratigiis too difficult (expensive) to measure
online.

Thus, we will have to eliminate two unknown disturbance afalesk, ky, and
one unmeasured state variabie This gives

d=| K (7.46)
ko
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Table 7.2: Unmeasured variables
Symbol Description
k1 Reaction constant for reaction 1
ko Reaction constant for reaction 2
Cg Concentration of desired product
Table 7.3: Known variables: Inputs, measurements and peeam
Symbol Description Type Value Unit
q Feed flow rate Known input varying  nme/min
Ca Outlet concentratio® Measurement " kmol/m
Cc Outlet concentratio®@ " kmol/m?3
\% Tank volume Known parameter given 3m
CAE Feed concentratioA ” ” kmol/m?3
CBE Feed concentratioB " " kmol/m?3
CcE Feed concentratio  ” ” kmol/m?3

The unmeasured variables are summarized in Table 7.2.

All measurements and known parameters are shown in Tahleietask is
to find a controlled variable which can be controlled usingtibtal flow rate, and
which maximizes the desired concentration.

Step 1. Formulate the optimization problem We collect the inputi = g, and
the statex = [ca, Cg, Cc] into a vector

Z= [q7 CAchvc(:]T' (747)
Then the optimization problem is

minJ = —Cg
z

st. (7.48)
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where the constrainty(z) = 0 are the model equations which are derived from the
mass balances:

01 = qCaF —gca—kicaV =0
J2 = (Csr —QCs + kicaV — kocgV =0 (749)
03 = gCcr —gcc +kocgV = 0.

Step 2: Find regions of active constraints In our example, there are no other
constraints as the model equations. Therefore we have omyeagion of active
constraints, which is defined by (7.49). Since we have fouiakikes and three
constraints, the number of degrees of freedom is

Npor = nz—ng:4—3: 1, (750)

and thus the number of controlled variablesds= npor = 1.

Step 3: Formulate optimality conditions Using z = [q,Ca,Cs,Cc]", the first
order optimality conditions are

023(2) + [09(2)] " A =0,
o5 =0 (7.51)

Step 3a: Eliminate Lagrangian multipliers We calculate the null-space of the
constraint JacobiaN = [ng, Ny, N3, ng]" with

n = —q(g+kV)(q+kV) (7.52)
= —(q+kV)q(car —Ca) (7.53)
s = g(—kiVecar +kicaV —qosr — ceekiV + qcs + cgkyV) (7.54)
ng = Ke[(—Cgr +Cp— CaF +Ca— CcF +Cc)V2ka +V(—qecr +qcc)]
+(0cs — Ccr + e — qcer)V ke + 0P (Cc — Cer ). (7.55)

Step 3b: Reduced gradient The reduced gradient for our system is defined as
Jzred = [N(2)]"0,J(z) = 0. Using,J(z) = [0, 0, —1, O] we have that

Jzred = —N3

(7.56)
= —((—k1V car +KkiCAV — qcar — CarkiV +qcs + CgkiV).
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Step 3c: Eliminating unknownsky, k, and cg We have three model equations
01 =02 =03 =0, (7.49), and three unknowms= [cB,kl,kz]T. Before we can
apply Theorem 10, we have to check the assumptions first:

1. Under normal operation (nonzero feed, etc.), when akrotariables are
given, g1 = g2 = g3 = 0 has one solution foky, ko, cg (finite number of
solutions).

2. Under normal operation we have tlkatZ 0, ko # 0 andcg # 0. Therefore
we have thatl € (C*)3.

Since all requirements are fulfilled, we can use the resud#(d, req,91,92,03) as
controlled variable. We use softwanmail t i r es Busé and Mourrain [2003] to
calculate the sparse resultant and obtain for the controlieiable

C = % (Jzred, 91,02, 03) = CAFCA -+ CAFCCF — CAFCC — Ca. (7.57)

Here, we chose to eliminatg, k, andcg. However, depending on the choice of
eliminated variables, there exist many other expressionthé invariant.

Step 4: Control the invariant  Controlling the invariant such that
c=0 (7.58)
yields optimal operation.

Remark 13. Note that the self-optimizing invariarf7.57) has become simpler
than the expression for the reduced gradi€nt6) Depending on the structure
of the equations, the resultant may become surprisinglplsinas in this case. In
other cases, it may become more complicated. In generaldiffisult to make

statements about the form of the invariant a-priori.

7.7 Changes in the active constraints.

In this section, we present a pragmatic approach for degpatihen to change
the control structure, because of changes in the activelsét.task is a research
field in itself and has received some attention in literatuBaotic et al. [2008]
e. g. has worked on linear systems with quadratic objectaed Woodward et al.
[2010] present an extremum seeking method, which can haindleging active
constraints.

An exhaustive study on this topic is outside the scope ofgghfger. However,
we would like to present a procedure, which may be used atingtquoint for a
more thorough investigation of this problem in future work.
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From a pure optimization perspective, there is no diffeechetween a con-
straint and a controlled variablgy), as the controlled variable may be simply
seen as an active constraint, and, similarly, an activet@nsmay be considered
a variable which is controlled at its constant setpoint.nfrtbis perspective, there
is no difference between an active constraint and the maplelt®ns, either.

However, from an implementation point of view, there arésdénces between
the model, the active constraints, and the controlled bleg(y). First of all, the
active constraints and the controlled varialtég) = O are not satisfied automati-
cally, that is one must control them to their setpoints. 8dbg since their values
are known (or calculated using known measurements) theybmaged for detect-
ing when to switch control structures. The basic idea is tmitoo the controlled
variables and the active constraints of all neighboringoreg

The main assumptions are that all the regions are adjadentlisturbance
moves the system continuously from one region to anotherttasystem cannot
jump over regions. In addition, we assume that controlifig = O is equivalent
to controlling the reduced gradient to zero, as shown in ta&ién 7.5. Starting in
the correct region, the control structure should be swickiben:

1. (A new constraint becomes active) When a new constraicarbes active,
change the control structure to the corresponding region

2. (A constraint becomes inactive) As soon as the contreteidblecin one of
the neighboring regions becomes zero (reaches its optetaisit), change
the control structure to the corresponding region.

Since our controlled variables are derived from the opiitpabnditions, this
method will give optimal operation (and switching), as l@sxthe same optimality
conditions cannot be satisfied at two distidctThis will hold if the optimization
problem is convex in the disturbance space of interest.

In addition, we have to assume that the regions of activet@nts are ad-
jacent, and that a changing disturbance moves the systetimeously from one
region into another. Although this is the case for many sgstan practice, it has
to be confirmed that these requirements are satisfied foraeseh

Similar to our approach, Woodward et al. [2010] present ehogetvhich de-
tects active set changes based on the optimality conditidhgrefore, their ap-
proach will be applicable in the same cases as our approach.

However, there are significant differences in the appraackiée separate the
steady state optimization problem and the dynamic contailpm, by using self-
optimizing controlled variables. Once the steady stat@r@itregions of active
constraints are known, and control structures are set updohn region, we start
with designing the dynamic controllers and an appropriatéching law, which
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can handle the dynamic system and avoids e.g. switching dratiorth for high
frequency disturbances.

In contrast, Woodward et al. [2010] attempt to design amoigtng controller
which can handle all complications which come with dynanystems.

However, the main focus of this work is to find steady staténogitcontrolled
variables and different regions where they should be usdw actual dynamic
implementation is a separate problem, which is not consdlar depth here.

7.8 Case Study Il

We consider an isothermal CSTR with two parallel reacti@ssdepicted in Fig-
ure 7.3, taken from Srinivasan et al. [2008]. The reactored With two feed
streamdsF4 and Fg which contain the reactan#s and B in the concentrationsp
andcg. In the main vessel, the two components react to the deshetliptC,
and the undesired side produ2t The reactant& andB are not consumed com-
pletely during the reaction, so the outflow contains all fptsducts. The CSTR
is operated isothermally, and we assume that perfect tertysercontrol has been
implemented.
The product< andD are formed by the reactions:
kg
A+B — C

(7.59)
2B 2 D

We wish to maximize the amount of desired prod(€z + Fg)cc, weighted
by a yield factor(Fa + Fg)cc/(FacCain) [Srinivasan et al., 2008]. The amount of
heat to remove and the maximum flow rate are limited by thepegent, and
we formulate the mathematical optimization problem afed [Srinivasan et al.,
2008]:

(FA-I- FB)C‘C
max————=(Fa+F 7.60
L. (Fa+Fg)cc (7.60)

subject to

Faca, — (Fa+ Fg)ca —kicacgV =0
Face, — (Fa+ Fg)Cs — kiCacgV — 2koc3V =0
—(Fa+Fg)cc +kicaCgV =0 (7.61)
Fa+Fg < Fmax
k1CACRY (—AH1) + 2kaG3V (—AH3) < Gmax

Here, k; andk, are the rate constants for the two reactiqhsiH;) and (—AH5)
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A
B
ABCD
o
Figure 7.3: CSTR with two reactions
Table 7.4: Overview of variables
Symbol Description Comment
Fa Inflow streamA Measured input
Fs Inflow streamB "
F total flow Measured variable
q Heat produced 8
Cg Concentration oB "
ca Concentration oA Unmeasured state
Cc Concentration o€ "
kq Rate constant reaction 1 Unmeasured disturbance

are the reaction enthalpieg,ax the maximum allowed hea¥, the reactor volume,
andFyaxthe maximum total flow rate. The measured variabjgstbe manipulated
variables (), the disturbance variabled)( and the internal stateg)(are given in
Table 7.4, and the parameter values of the system are listEabie 7.5.

We write the combined vector of states= [ca, Cg, Cc] and manipulated vari-
ablesu = [Fa, Fg] as

Z= [ CA7 C37 CC7 FA7 FB ]T~ (762)

7.8.1 Identifying operational regions

Next, the system is optimized off-line for the range of pbkesdisturbanced =k;.
This shows that the system can be partitioned into threecanjaritical regions,
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Table 7.5: Parameters

Symbol  Unit Value
k1 l/(molh) 0.3-15
ko I/(mol h)  0.0014
(—AH;)  J/mol 7x 10
(—AHy)  J/mol 5x 10*
Cajin mol/l 2
CBin mol/l 1.5
\% I 500
Frnax I/h 22
Omax kJ/h 1000

defined by their active constraints.

The critical regions are visualized in Figure 7.4, where ribemalized con-
straints are plotted over the disturbance range. In theréigion, for disturbances
below aboutk; = 0.65m, the flow constraint is the only active constraint. The

second critical region for values between allqut 0.65—L— andk, = 0.8 is
characterized by two active constraints, i. e. both the flonstraint and the heat
constraint are active. Finally, in the third region, abobewtk; = 0.8—— only

molh
the heat constraint remains.

7.8.2 Eliminating A

In each critical region, the set of controlled variablestaeors the active constraints
(we know that they should be controlled at the optimum). Tééses the uncon-
strained degrees of freedom, which is the difference batwlee number of ma-
nipulated variables and the active constraimspr = n, —ng. For each of the
unconstrained degrees of freedom one controlled variableeded.

In the first critical region this givespor 1 = 5—4 = 1 unconstrained degrees of
freedom, so apart from the active constraint, which is tie éontrolled variable,
we need to control one more variable (invariant).

To obtain the reduced gradient, we calculate the null spadaambian of the
active setN] and multiply it with the gradient of the objective functiaihJ(z, d)
to obtainJ; req1 = NJ 0,J. Depending on the algorithm to compute the null space,
this may become a fractional expression, but since we wartritrol the process
at the optimum, i. e. we contrdleq 1 to zero, it is sufficient to consider only the
numerator ofl;eq1. This is possible because a fraction vanishes if the numrerat
is zero (provided the denominator is nonzero which is the t&se becausé,g
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Figure 7.4: Optimal values of the constrained variables

has full rank). For the critical region 1, we obtain from (¥).the reduced gradient

Jred 1 = —(Fa+ Fg)%cc [—3ccFEFa — 3ccF4Fs

— 4ccegF2koV — dcckoV 2k CaFa — CoF 2

— ccFS — 4ackoV 2ky C3Fs — ccosF 2k V

— 4ccegF2koV — coeaFgkiV — ccF2cakiV

— ccF2cakqV — 8ccFaceFekaV (7.63)
— 2ccFacgFek1V — 2ccFaFgeakiV

+ 8Fak1V2Ca inkaC3 + 2F2K1V GsCain

+ 2FakqV FaCaCa in — 2F2K1V GginCa

—2Fak1V FeCg inCa

which should be controlled to zero. This expression may bwkfied slightly,
since it is known thatFa + FB)ZC‘C # 0. It is therefore sufficient to control the
factor in square brackets in (7.63) to zero.

Similarly, in the second critical regiambor2 = 5—5= 0, and here we simply
control the active constraints, keepig@t gmax andF at Fnax.

In the third critical regiomporz = 5—4 = 1, and we use one of the manipu-
lated variables to control the active constragi{gmax While the other one is used
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to control the invariant measurement combinatlepq 3, which is an expression
similar to (7.63).

7.8.3 Eliminating unknown variables

The reduced gradients for the first and the third criticalaed,req1 andJ red;3
still contain unknown variables, nameky, ca andcc, and cannot be used for
feedback control directly.

To arrive at variable combinations which can be used forrobnwe include all
known variables inty, and all unknown variables inth such thatl = [ky, ca, .
Then we write the necessary conditions for optimality fartesegion as

Ferealy d) =0 (7.64)

g(y,d) =0.

Considering the known variablgsas parameters of the system, we want to find
conditions on these parameters such that (7.64) is satidfrelsystem has; = 3
unknown variablesks, ca andcc, of which we know that they are not zero. This
corresponds to solutioriky, ca, cc] € (C*)3. According to section 7.5 we have that
(7.64) is satisfied if and only if the sparse resultant is zero

In critical region 1 and 3, the number of equationg = 5 (model equa-
tions+active constrains+invariant), and the number ofnemknsn; = 3. Hence
we have more equations than necessary. Since we assume sgrement noise,
all measurements are equally good, and we may select a sifoget 1 equations
from (7.64) to compute the sparse resultant for the subssutions. Obviously,
the reduced gradient must be contained in this set of equgtiélternatively, as
we do in the following, we can eliminate one more variablerfrine invariant.

For the first region, we use the sparse resultant of the systemisting of
the invariant (7.63), the model equations (the first thregabty constraints in
(7.61)) and the first (active) inequality constraint in (@).60 eliminateky,ca,cc
andFg and to calculate the controlled variable combination. Toengutations
were performed using theul ti r es software [Busé and Mourrain, 2003]. After
division by nonzero factors, the controlled variable fagiom 1 becomes

C1 = —ChinFA — FACAinCo,in + BFACAInK2CEV + 2FACA inFmaCo
— FaCAinFmaxCoin + Faah + CoinFaaxt+ AV 2K5Ch (7.65)
— 2CojnFasCh — AV KoChChinFmax+ 4V koChFmax:

Note that this invariant for control has become simpler tenexpression for
the reduced gradient (7.63).
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In the second critical region, control is simple; the two ipafated variables
are used to control the two active constraifits: Fyaxandq = gmax

The third critical region is controlled similar to the firsi@ One input variable
is used to control the active constraint, and the second ispused to control the
resultant. The model equations (the first three equatiaypethher with the energy
constraint) in (7.61) and the reduced gradient are usednpote the resultant.
Thus the unknown variabldg, ca, cc, andFg are eliminated from the reduced
gradient. The controlled variable for region 3 is

C3 = —4V GkoAH2FACA inC inOmasAH1 + FACE,inqﬁquHl
+ AV 2CAK5AHFACA inCa inAH?Z — 4V 2Cg k3 AHZFACA inCa inAH1
— 2V C3koFACA,inCa jinAHZOmax— 4V ko AH2FACE i AH1Gmax
— 2V GkoAHLFZCA jnCB in AHZ + 8V G3koAHAH FACA inCGmax
— 8V2cgkAH2Ca inAH1 Omax — 12V 2Cak5FAAHZCE j, AH1
— 8V2CRK5AH FACA inAH? + 8V 2cRkEAHZAH 1 FaCA in
+ 8V2RK5FAAHZCa inAH1 — GF,0,CB1in -+ 2CB 0 ax
— AH1Cg jinFACA inOmax+ 2C8FACA inOmaAH1 + FACA inCE jn AHF Omax
— 208FACR in02\aH1 + 8V G3KoAHG2, o+ 8V 2CRKSAH 2 Omax
+ 8V 3cBk3AHSCR in — 2C8FZCA inCa inAH 7 0max
— 2V GGkoAH 10,8 in — 2V GikoAH 205 ,Ca in
+ 4V 2cAKSAHZCR inOmax — 8V 2c8Kk3AHZCg inAH;.

(7.66)

Due to the structure of the polynomials in region 3, here tharant has
become more complicated after eliminating the unknowraées.

Although the expressions are quite complicated, they a@ootay known quan-
tities, and can be simply evaluated and used for control.oi®eéctually using
the measurement combinations for control, they are scalettheg the order of
magnitude is similar. That i, is scaled (divided) b¥max andc; is scaled by
AHZAH,FAFs.

7.8.4 Using measurement invariants for control and regiondentifica-
tion

Having established the controlled variables for the thréial regions, it remains
to determine when to switch between the regions. Startingdrfirst critical re-
gion, the flow rate is controlled such thHa{+ Fg = Fmax and the first measurement
combinationcy is controlled to zero. As the value of the disturbakgcases, the re-
action rate increases as well as the required cooling to tkesepystem isothermal,
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Figure 7.5: Optimal values of controlled variables

until maximum cooling is reached, Figure 7.5. When the gait#tis reached, the
control structure is switched to the next critical regiomene the inputs are used
to controlq = gmax andFa + Fg = Fnax While operating in the second region, the
controlled variables of the neighboring regions are meoedo As soon as one of
the variables; or c3 reaches its optimal setpoint (i. e. 0) for its region the ount
structure is changed accordingly. Specifically, whkeis further increased, such
thatcz = 0 is reached, we must keéfa + Fg < Fnax such to maintain the value

c3=0.
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Table 7.6: Parameters for dynamic Simulation

Variable Value  Unit  Description

Cp 4.0 kJ/kgK Heat capacity

p 1.0 kg/l  Density
TinA 350 K Temperature of feefd
Tng 350 K Temperature of feed

7.8.5 Implementation and dynamic simulations

We modify the model (7.61) to become a dynamic model,

Na = FaCa,, — FoutCa — kiCaCgV
Ng = FaCa,, — FoutCs — kiCaCaY — 2KCEV
Nc = —FoutCc + kicacsY
fp = —FoutCp + 2kpC3V
H = Facpp(Tina—T) +FeCpp(Ting — T) +kiCaCaV (—AH1) + 2koCBV (—AH2) — g

V =Fa+Fes—Fou,
(7.67)

with n; as the number of moles of componeént A B,C,D, and the additional
parameters in Table 7.6, and with the enthaty

Implementation of optimal operation is straightforwars sanple P1 controller
can be used to control the invariants. In the steady sta& @&s have assumed
that we have ideal temperature and level control under tipardn practice, this
has to be achieved by control. Therefore we have includegdesture and level
controllers in our dynamic simulations. Further, it is ased that the temperature
should be 350 K under operation.

We present only simulations for regions 1 and 3, because $his involves
the polynomial invariants. In region 2, only the active doaisits are controlled.

Control structure in region 1 All variables are controlled using simple Pl con-
trollers. The control structure in region 1 is presentedigufe 7.6. The cooling
duty g is used to control the temperature, and the feed figvis used to control
the invariant. Further, we use the outfléw; to keep control the level, and the
feedF, to controlling the throughput tB = Fyhax In order not to violate the heat
constraintgmax the controller output goes into saturation when the cairgtis
reached.
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ABCD

Figure 7.6: Variable pairings for Region 1

Control structure in region 3  All variables are controlled using PI controllers.
The pairing was selected as in Figure 7.7. Since it is optbmékepq at gmax in
this region, it is set to this value in open loop. The feed flows used to control
the invariant, and the feed flofg is used to control the temperature. As in region
1, the outflowt is used to stabilize the level of the reactor.

7.8.6 Simulation results

In Figure 7.8 we show the dynamic behavior of the system iiorsgl and 3.
The left column shows the response to a disturbance in remienand the right
column shown the response to a disturbance in region 3. Netdifferences in the
magnitude of the disturbances in the first row. The control#riables (constraints
and self-optimizing invariants have been plotted in red), #ney are nicely kept at
their setpoints.

The simulations in both regions demonstrate nicely thatpiissible to control
the obtained invariants using simple PI controllers.

7.9 Discussion

The presented method is based on the same idea as NCO trfeiangois et al.,
2005]. However in contrast to Francois et al. [2005], whaeedptimality condi-
tions are solved for the optimizinigputs this work focuses on finding the right
outputswhich express the optimality conditions. The problem ofagating the
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ABCD

Figure 7.7: Variable Pairings for Region 3

inputs which control the outputs to zero is dealt with sefgdya In most cases,
inputs are generated by feedback control, e.g. Pl contsolle

The method was developed as an alternative derivation apdexgization of
the existing null space method [Alstad and Skogestad, 2f@@ Tihear systems.

In the linear case, eliminating the constraints is strdggtard, while this is
not trivial in the polynomial case. By premultiplyingJ by the null space of the
constraintdNT, we eliminate the Lagrangian multipliers from the equaset) and
obtain the reduced gradient for the nonlinear case.

The elimination of the Lagrangian multipliers could als@belone simulta-
neously with the other unknown variables, using the resultdnder the strict
complementarity condition (eithé; = 0 or the constraint is active), the solutions
for A lie in the toric variety, and therefore the sparse resulargs necessary and
sufficient conditions on the known variables so that the KK3tem has a solu-
tion. We chose to apply the two-step procedure in this wosteiad of eliminating
everything by using the resultant because this resultsned@omputational load
when computing the resultants.

As an alternative to calculating resultants, our initighay@ach was to attempt
to compute the controlled variable combinations by Groédreses with an ap-
propriate elimination ordering [Cox et al., 1992]. We triedfind an appropri-
ate monomial ordering which eliminates the unknown vadspbnd then use a
polynomial from the elimination ideal as controlled vatebHowever, with the
Grobner basis approach it is not straightforward to find @niehtion order that
eliminates the unknown variables from the equation systétewot yielding the
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“trivial solution” (i. e. the invariant is always zero whehnet constraints are satis-
fied). Another disadvantage with the Grébner basis appraatiat the selected
invariant may give rise to additional “artificial solutidnahich are not solutions

of the original optimality conditions.

A similar approach is to calculate a Gobner basis for theligeaerated by
the active constraintg(y,d) andm(y,d) using some elimination ordering, and
to reduceNT 0,J modulo the ideal. This avoids the trivial solution, howeube
problem of choosing a monomial ordering which eliminatés@known variables,
remains.

Generally the Grébner basis approach tends to give even coonglicated
expressions than the sparse resultant approach preseméed h

Since the sparse resultants can also give “large” expressior method is best
suited for small systems, with few constraints and equatidrhis is further em-
phasized by the fact that calculating the analytical deitesint for large matrices
is computationally demanding and that the constructiorhefresultant matrices
is based on the computation of the mixed volume, which is d eaumerative
problem [Cox et al., 2005]. However, large systems can ditedecomposed into
smaller subsystems which can be considered independé&ilymethod may be
applicable for such a subsystem.

If there are more polynomial equations than unknowns, trgineer must
choose which polynomials to use in the resultant calculatio addition to the
reduced gradient. From a purely mathematical view, thisdu# make any dif-
ference, as long as the set of model equations has finitely @lations ford.
However the controlled variables will look quite differefatr different choices.
The best (in terms of simplicity) choice depends on the sinecof the equations,
and is thus specific to the problem. However, as a generaéljug it would be
advisable to keep the degrees of the polynomials low in thenawn variables.
This leads to simpler resultants.

Although we can specify which variables to eliminate frore teduced gra-
dient, the variables which remain depend strongly on thecgire of the model
equations and the eliminated variables. In some casesfathiation about the
optimum is contained in very few variables, in other casesymariables are
needed to specify the optimum.

The resultant method, as presented in this paper, does kit account
measurement noise or model error. This is beyond the scotiésofvork. Our
goal was to extend the idea of the null-space method [Alstddskogestad, 2007],
and to demonstrate that the concept of finding variablestwt@imain constant at
optimal operation is possible also for polynomial systems.

Since our approach is to separate the controlled variablest®n procedure
and the controller design, it must be verified, that the mesgmsant invariants are
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controllable using simple controllers. That is, we have kensure that the con-
trolled variables actually crosses zétaProving this mathematically is not trivial
and a subject for further research. However, this problebejsond the scope of
this paper, since we are only interested in finding variaklbgh contain only
known quantities, and which characterize the optimum. lmal experience so
far, the measurement invariants could be controlled by l&irBpcontrollers.

Apart from handling noisy measurements, model mismatchcamdrollabil-
ity issues, a subject for future research is to find methodgswieproduce not
all solutions of the optimality conditions, but only a céntget of interest. This
could be all the real solutions or solutions which resideams further specified
semialgebraic set, so that stationary points which arelsgmtdnts or maxima are
excluded.

7.10 Conclusions

In this paper we have presented an approach to obtain ombeedy state opera-
tion which does not require on-line calculations. We hawenshthat, after iden-
tifying the critical regions, there exist optimally invanit variable combinations
for each region. If there are enough measurement/moddiamsaig + nm > ny),
the unknown variables can be eliminated by measurementsyatein equations,
and the invariant combinations can be used for control usidgcentralized self-
optimizing control structure.

The dynamic simulations show that it is possible to contrelitivariants using
simple PI controllers.

Depending on the problem structure, the invariants mayreamore compli-
cated than the reduced gradient, as in region 3 of case studiyrhuch simpler,
as in case study | and region 1 of case study Il. Due to the slimnbature of
the calculations, this method is best suited for small systeHowever, it is diffi-
cult to predict how the invariant will look like without analing the system more
thoroughly (that is considering the mixed volumes of theregponding Newton
polytopes). Moreover, since the analysis is based on an exaael, it is difficult
to make a-priori statements about the robustness to notsenadel error. It is
expected, that simple invariants of low degree will behagttdp than invariants
with of high degrees in the variables. Thus for example thariant of case study
| can be expected to be relatively robust to measuremeng nbliswever, this has
to be evaluated individually for each case.

3For example, this would not happen wher: x2 and we have an input with gain= Gu, in
this case the input has to move into different directionpedeling on the value of This would be
difficult to control in practice. However, this particulaxample cannot happen, because X2 is
not irreducible.
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Further, we have shown that the measurement invariants €asdd for de-
tecting changes in the active set and for finding the righbretp switch to. The
active set changes are strictly speaking only valid fordstesiate operation. This
assumes that the disturbance changes occur on a frequeidy i&/fow enough
for the system to reach steady state. Faster disturbangesdbe handled by the
dynamic controllers.

Using methods from elimination theory, we have shown thariinciple, mea-
surement polynomials can be used as self-optimizing cledreariables to con-
trol the process optimally.
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Chapter 8

Invariants for dynamic systems

O heaven! were man but constant,
he were perfect.

W. Shakespeare

In optimal control the optimal input trajectories are ofaived nu-
merically or analytically from the optimality condition$his requires
that all variables which enter the optimality conditions &nown or
measured. We use techniques from polynomial eliminati@or
to eliminate variables which are not known from the optityadion-
ditions. The result is an expression of the optimality ctiods in
known variables only, which can easily be evaluated androted
by feedback.

Submitted to the 50th IEEE Conference on Decision and CleamiebEuropean
Control Conference, 2011, Orlando

8.1 Introduction

Dynamic optimization problems are ubiquitous in sciencg@mgineering. In pro-
cess control, they are found in the optimization of batclti@a or grade transi-
tions in continuous processes. Although many problems eapproximated well
by optimizing the behavior at steady state, other casesherantly of dynamic
nature, and must be approached by dynamic optimization.

Most approaches in literature deal with optimization based model. One
of the oldest approaches is to find the optimal input usingRbetryagin mini-
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mum principle [Bryson and Ho, 1975]. This requires a simptedei, and that all
parameters and variables are known (measured).

A second approach, which is very popular today and can handite complex
models, is nonlinear predictive control, or dynamic reéalet optimization. Here,
we use measurements to update the process model parameggremasample
times, and solve the optimization problem iteratively gsihe updated model in
order to obtain new input trajectories [Allgéwer and Zhe2@QO0; Grotschel et al.,
2001; Diehl et al., 2002; Schlegel et al., 2005].

A third approach, which may be placed in between the two preyiis to use
the model off-line and exploit the solution structure to firadiables, which give
optimal or near optimal operation, when kept at constapiosets using a feedback
policy. This approach is followed in NCO tracking [Srinizaset al., 2003] and
self-optimizing control [Skogestad, 2000].

Whenever using a model to find an optimal operation stratemylling uncer-
tainty is a major challenge. Uncertainty may arise fromedldéht sources, such as
incomplete information (unmeasured states), parameisicrtbances and model
structure error. To cope with uncertainties, there arerséepproaches:

1. Keep the unknown or varying parameters at some fixed valuaost cases
this will give poor performance, or even feasibility pratie

2. Estimate the unknown variables using some filter or mokiorizon estima-
tion [Kihl et al., 2011]. This approach is used frequenttyywbver, it can be
difficult to obtain converging estimates for the unknownshim reasonable
time.

3. Use a robust control approach [Terwiesch et al., 1994te Me attempt to
find a control policy, which gives the best performance overaye of dis-
turbances. Generally it has to compromise performanceitorghustness.

4. Neighbouring extremal control [Bryson and Ho, 1975], wehthe original
optimization problem does not have to be re-solved comlgletinstead,
an easier, linear problem is solved to find the required ctioes to the
nominal input trajectory.

5. The approach presented in this paper, where we use magsl@tg to elim-
inate the unknown or uncertain variables from the optimal@nditions.

Our work contributes to handling parametric uncertainty dgnamic opti-
mization problems, which are given as polynomial equatiofise main contri-
bution of this paper is to extend the ideas from steady s&df@ptimizing control
Skogestad [2000] to dynamic optimization problems whiehdescribed by poly-
nomial equations.
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Our method is in the same spirit as Srinivasan et al. [200d] Alstad and
Skogestad [2007], where the controlled variables are thienafity conditions as-
sociated to the corresponding optimization problem. Tleaid to formulate the
optimality conditions i, = 0) which include unknown parameters, and then use
tools from elimination theory [Emiris and Mourrain, 1999pxXet al., 2005] for
eliminating the unknown parameters to find invariants ofroat control systems,
so that a feedback solution in known (measured) variablededound.

Our approach consists of four steps: First, we formulateofitenality condi-
tions. Second, we eliminate the adjoint variables from thignaality conditions,
and third, we use model equations to eliminate unmeasuatelssind parameters
from the optimality conditions to obtain optimally invamiavariable combinations
in known variables only. Finally, we use feedback to cortineke variable combi-
nations.

This paper is structured as follows. In Section 8.2 we prethenoptimal con-
trol problem in consideration, and describe how to find coratibns of variables
which remain constant under optimal control. That is, hoe dldjoint variables
can be eliminated from the optimality conditions. In Sett&3, we introduce
some basic concepts from toric elimination theory, whichmileuse for eliminat-
ing other unknown variables from the invariant. In Sectioh 8e show how to ap-
ply the results from elimination theory to eliminate unkmoparameters from the
optimality conditions. Section 8.5 gives a case study ofdabfatch reactor, where
we find controlled variables which do not contain unmeaswegthbles. Section
8.6 closes the paper with a short discussion and conclusion.

8.2 Optimal control

We assume that the dynamic optimization problem can beenritt following
form:

T(g‘q’(tf) = J(x(t)) (8.1)
s.t. x=F(X(t)) + G(x(t))u(t) (8.2)

X(0) = Xo (8.3)

u(t) >ut (8.4)

u(t) <uY. (8.5)

The scalar functiod denotes the terminal cost, and the functiango, t;] — R™
andx : [0, tf] — R™ denote the input and state functions, respectivelix) is a
vector valued function of dimensiai, andG(x) is a matrix of dimensiomy x ny.
The elements of (x) andG(x) are polynomials in the rin®[x], that is, every row
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in F(x) and G(x) contains polynomials in the variablesand coefficients irR.
The variablesi- andu¥ denote the time invariant lower and upper bounds for the
inputsu. Note that the system is input affine and we have only inpustraimts.

All functions are assumed to be sufficiently smooth and diffiéable.

8.2.1 First order optimality conditions

Assumption 1. The optimal control problen(8.1) — (8.5) is feasible and has a
unique solutioru*(t).

We define the Hamiltonian
H(X(1),u(t),A (1), u=(t), u” (1)) = AT(F(x(t)) + G(x(t))u(t))
+ T (Ut = u() + T () — ),

whereA, pt and uY are the adjoint variables corresponding to the model, the
lower and upper input constraints, respectively.

(8.6)

Theorem 11 (Pontryagin Minimum Principle [Geering, 2007; Bryson and,H
1975]) If the controlu is optimal, then there exist nontrivial vectors of adjoint
variablesA and u, such that the following conditions are satisfied (we omit to
write the explicit time dependency):

1.
oH
T oA
x(0) =Xo
PR
0X (8.7)
M) = 2
X(tr)
ptTut—u) =0
p -y =0

2. Forallt € [to,t¢], the Hamiltonian has a global minimum with respectto
i.e.
H(Xopt yOPt ) opt IJLOPt HUODt) < H(Xopt U. A 0Pt uopt IJLOPt IJUOIOt)
(8.8)
forall ut <u < uY andte Jto,t¢].
3. If the final time is free, we have the transversality coadit

H(X(tf)vu(tf)*v)‘ (tf)vuL(tf)v“U (tf)) =0. (89)
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8.2.2 Implementing the optimal solution

The solution of problem (8.1) — (8.5) generally consists feguence of arcs
which are defined in certain intervals. We treat each arc @fohtimal solution
separately. The arcs are defined by the active constraimisarg continuous and
differentiable within each interval [Bryson and Ho, 1978]e can distinguish two
types of arcs:

1. Constrained arcs (boundary arcs): One or more inputst areanstraint.
2. Unconstrained arcs: The inputs are all unconstrained.

In the constrained arcs, implementation is easy; we simpBpkthe inputs
at the active constraint. If there are unconstrained degoédreedom left, the
remaining problem can be reformulated as an unconstrairsddegm by redefining
the input set. Therefore, in the following, we consider otlilg case where no
constraint is active. To specify the optimal trajectory, meed one controlled
variable for each unconstrained degree of freedom.

At the minimum of the Hamiltonian (8.8), we must have

JoH
Huy = N 0. (8.10)
We simplify notation by considering one input at a time,
JoH
L = == -11
Ui aul 07 (8 )

for all inputsi = 1,...,ny,. Unfortunately, we cannot contrél,, to zero, because
it contains unknown adjoint variables. To eliminate the adjoint variables, we
perform successive time differentiations.

Definition 10 (Lie bracket, [Marquez, 2003])Given two vector fields,f: R" —
R". The Lie bracketf,g| is the vector field defined by

_dg. of

f.g = ——0. 12
(.9 =5 T =59 (8.12)
Recursive bracketing is defined as

adig = [f,ad{ g, (8.13)

with ad’g = g.
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It can be shown [Srinivasan et al., 2003; Gros et al., 2008, thek-th time
derivative ofH,; can be written as

i 2T k .
HY = g =27 (adk Gi) (8.14)
A

whereG;(x) denotes thé-th column inG(x). SinceH,, = 0, is zero at all times,
its time derivatives must be zero at all times, too. Theefare can write the time
derivatives up top the, — 1-th derivative as

)\T [Ai(bAijl.vAin"'Ainxfl] :)\TAi :O, (815)

where all terms\, A}, AL,. .. ,ALX_l are collected in the matri&'. Equation 8.15
has a nontrivial solution fok only if

detA') = 0. (8.16)

Therefore, controlling '
¢ =detfA") (8.17)

to zero gives optimal operation. If we have several inputsivay collect alt; into
avectorc = [cy,...,Ci,. .. ,cnu]T. The vectorc will generally still contain unknown
variables, such as unmeasured states or unmeasured aligtesd. Therefore
it cannot be evaluated online and used for control. Howeaker eliminating
unknown variables frong, it can be used for control and the correct inputs can be
generated automatically by a P or Pl feedback controller.

Since the optimal control system (8.1)—(8.5) is defined ilypamial equa-
tions, and all calculations above preserve the polynomialctire, we can use
results from elimination theory to eliminate unknowns icleg = detA').

8.3 Toric elimination theory

We give a very short introduction to toric elimination thgofor more detailed
information we refer to Cox et al. [1992]; Gelfand et al. [4§9Sturmfels [2002];
Cox et al. [2005]; Emiris [2005]. More specifically, we pras¢he sparse resul-
tant from algebraic geometry Cox et al. [2005]; Emiris anduktain [1999] to
eliminate the unknowns. Casually speaking, the resultaat ¢condition for an
overdetermined system of polynomials to have a common root.

We consider a system of+ 1 polynomials,

fo= - =fr=0, (8.18)
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in n variablesx = [x,...%y]", and letC* denote the complex numbers without
zero,C* = C\ 0. Toric elimination theory considers solutions of the paignials
(8.18) in(C*)". Since none of the variables is allowed to be zero, the theaalid
for Laurent polynomials ifR[x,x 1, u,u~1], that is, polynomials with positive and
negative integer exponents.

Definition 11 (Monomial) We define a monomiaP as the power product? =
XX .. @ where(ay, &, ..., an) € Z".

Definition 12 (Support) Let the support€; = {a;1,...,a m } denote the set of
exponent vectors corresponding to monomials in
m
fi= Z Ci’an"*j, Gij 7§ 0. (8.19)
=1
We denote a&) = cony&;) the convex hull of the support of the polynomial
fi.

Definition 13 (Affine variety) Consider f{,..., f,, polynomials inC[xy,...Xn).
The affine variety Vfy, .., fm) is defined by the set

V(f1,.., fm) = {(X1,--,%) € C°: fi(Xqg, ... %) =0,i =1...m}. (8.20)

Definition 14 (Zariski closure) Given a subset 8 C™, the smallest affine variety
containing S is called the Zariski closure of S and is denateS.

LetL(&;) be the set of all polynomials that have exponents in the stgho
L(&) = {cix® +- +Cmx¥m: ¢ jeC}, (8.21)
Then the coefficients of a polynomial define a poin€ifi. Now let
Z(&o,...,En) CL(&) X -+ x L(&) (8.22)

be the Zariski closure of the set of &l, ... f,), for which (8.19) has a solution in
(C*)". For an overdetermined system of polynomials we then haseehult.

Theorem 12 (Sparse resultant,[Gelfand et al., 1994; Cox et al., 20088sume
that Q = conv(&;) is a n dimensional polytope for= 0,...,n. Then there is an
irreducible polynomialZ in the coefficients of thg $uch that

(To,o Tn) € Z(8b, ..., &) & B (To, .. Tn) = 0. (8.23)

In particular, if the system
fo=fi=--=f, (8.24)
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has a solutionxy, ...,x,) € (C*)", then
H(f1,...,fn)=0. (8.25)
We callZ the sparse resultant.

Remark 14. There exist more general versions of Theorem 12, which doenot
quire the convex hull of the supports to be n-dimensiondurfsfels, 1994]. How-
ever, for simplicity we chose to present this simplified ieerbere.

Example 5(One variable) Consider the system of two polynomials

fo = ay1 +agox , (8.26)
fi = apy +agox+ ap 3x~.

The supports of this system afe= {(0), (1)}, and&1 = {(0),(1),(2)}. Clearly,

the convex hulls of the supports are the line segm@iisand [0, 2], which have

dimension n= 1. For generic coefficients;a (8.26)is inconsistent and does not

have a solution inC*. The sparse resultant for this system is calculated as the

determinant of the Sylvester matrix

app a;; O
‘@( f07 fl) - det 0 di2 a1l
a3 A axn
2 2
= Qo821 — A12a11322 + A3 3.

(8.27)

Note that we have eliminated x frof8.26) and the statemen#(fo, f1) =0 is
identical to stating that there exist some x such thatff; = 0.

The calculation of the sparse resultant for multivariaté/pamials is more
involved. An algorithm is given in Canny and Emiris [2000j. this work, we use
the free softwararul ti r es [Busé and Mourrain, 2003] for the computations.
We will use Theorem 12 to eliminate unknown variables fromdtntrol invariant
from equation (8.16).

8.4 Using resultants in optimal control

After introducing the sparse resultant, we can apply it toaptimal control prob-
lem. Recall that generally the invariargs= det/A') contain unknown variables.
We collect all unknown (unmeasured) variables in a vedtgo we have; = ¢;(d),
and we write the model equations in the form

m(d) =0, (8.28)

where we have omitted to explicitly state the dependencyerkhown variables.
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Assumption 2. The model equations are polynomials in the polynomial fid]

Assumption 3. The variety \m(d)) is zero dimensional, that implies thai(d) =
0 has a finite number of solutions fdr

Theorem 13 (Invariants for Control) If the number of unknown variableg s
eqgual to the number of model equations, mnd Assumptions 2 and 3 hold, con-
trolling

2Z(ci,m(d))=0 (8.29)
is equivalent to controlling8.16)

Proof. By assumption, the model equationgd) = 0 have a finite humber of
solutions.c;(d) = det(A") is a polynomial in the variableswhose coefficients are
functions ofu, and thus can be manipulated. Arbitrary input valuesill cause
that ¢;(d) = 0 does not have any solution. The sparse resultag;(d),m(d))
gives the necessary and sufficient condition for the contbystem

m(d) =0 (8.30)
ci(d)=0
to have a solution ifC*)". By Theorem 12, we have
¢ =detA) =0« 2(m,c) =0. (8.31)
U

Thus, we may use model equations to eliminate unknown vagdbomc; =
det(A"), to obtain an expression which contains only known vargbMore im-
portantly, since the unknown variables are not containe#(im, ¢;) we can con-
trol the resultant to zero by feedback control using onlireasurements.

Remark 15. Note that it is not necessary to be able to solve the modeltemsa
m(d) = 0 uniquely ford. The only condition is that the model equations have a
finite number of solutions.

Remark 16. Since the unknown variableisassume real values in the process, the
existence of complex solutions fofd) = 0 does not matter, because the Theorem
12 states thatjdecomes zero whenever the resultant is zero.

8.5 Case study: Fed batch reactor

The model and the optimization problem for this case studgken from Gros
et al. [2009]. Since controlling measured path constragsraightforward, we
present the unconstrained case where finding the contrediedble combination
is more involved. Therefore we have selected the initiabiitions as in Gros et al.
[2009], such that we have only one unconstrained arc.
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8.5.1 Model
We consider a fed batch reactor with two chemical reactions,
A+B—Cand B — D, (8.32)

whereC is the desired product amlis the undesired side product. The operational
objective is to maximize difference between the amour@ ahd the amount db
at the final batch timé.
We use a simple dynamic model,
Ca = —kicacCg — CAU/V
éB = —k1CACB — 2k2C% — (CB — CE)U/V (8.33)
V =u,
with the initial conditions:ca(0) = cao, €a(0) = cgo, andV (0) = Vp. Initially the
concentration of the products is zelgy = cpg = 0. All parameters and initial

conditions are given in Table 8.1.
From the mass balance, we haggy(= cpg = 0)

ce(t) = \% (CaoVo — Ca(t)V) (8.34)

and

CD(t) = % [(CA—i-CiBn — CB)V — (C,A\o-l-CilgI — CBO) Vo] . (835)

8.5.2 Optimal control problem
The optimization problem is the formulated as
muinJ(tf) s.t. x=F(x)+G(X)u, (8.36)
where the objective is
J(tr) = (co(tr) —cc(te))V (tr). (8.37)

Further, we have the state and input vectots [Ca, Cg, V]T andu =u, and

—kiCaCa 1 [ —Ca
F(X)=| —kicaCe—2koC3 |, G(X)=< | cli—cg |. (8.38)
Vv
0 Vv
The constraints for our system are
U < Umax

8.39
Umin < U. ( )
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Table 8.1: Parameters and initial conditions

Symbol Value  Unit Description

k1 0.053 I/mol/min parameter

ko 0.128 I/mol/min "~

cin 5 mol/l §

ts 250 min "

Umnin 0 I/min input constraint
Umax 0.001  I/min ”

Ca0 0.72 mol/l initial condition
Cgo 0.0614 mol/l "

Cco 0.0 mol/l ”

Cpo 0.0 mol/l "

Vo 1 [ 7

8.5.3 Nominal optimal solution

Solving the system for the nominal conditions shows thatenainthe input con-
straints becomes active. The optimal trajectory is theesfosingle interior arc.
The Hamiltonian is

H=X; (—kchcB - %)

in__
+ A2 <—k1CACB — 2koCh + (G —ce)u VCB)U> (8.40)

+ AsU.

Proceeding as in Section 8.2 we ¢kt= AT Ag = 0 with

in T
Ao=| 52 =2 1 . (8.41)
We continue with the first and second time derivatisésy; = 0 andATA, = 0.
Here,A; = [a1a12, a13]" with the elements

1 .
a1 = \—/ [—kch(CB - CIIQ)]
812 = [k1G(Ca — o) + 2kzCa(ca — 28]
a;3=0,

(8.42)
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Table 8.2: Simulation cases

Casel Case?

Unmeasured state: Ca Cg
Unmeasured disturbance: none k;

andA; = [6121, ayo, azg]T, with

ady = V_lz [C'é] kchV(kch + 4k2CB) 4 2k;ca (CB — Cg) U]
1. 2.2 | 1,22
Q2= 72 [CEY (4kicakocs + 8KksCh + kica) (8.43)
+2 (CB — Clé]) (k1CA + 2k2(CB — CE)U)]
a3 =0.
The determinant of = [Ag, A1, Az] becomes zero when
c=0, (8.44)
with
C = 4koC3CV + 2caCl U — k1CaC3V + 2kiCACHV cg — 2u(cl)2. (8.45)

In optimal control literature [Bryson and Ho, 1975], thigpesssion is solved for
u, and the input is implemented in the process. However, ifetlie unmodelled
uncertainty or dead time in the process, this might lead stability. Moreover,
the coefficient ofi might be very small (or large) resulting in numerically idradi-
tioned solution fou. In other cases, a relationship is found which does not aonta
u at all, and (8.45) cannot be solved far Therefore, we will not solve for the
input, but rather use feedback-controller to contras zero.

8.5.4 Eliminating unknown variables
We consider two cases, where different variables are ceraidunknown and have
to be eliminated, Table 8.2.

Case 1: Unknown variables in algebraic equations

Let us first assume that the concentration of compoAestvery difficult or ex-
pensive to measure, so in this case we have one unmeasurednstaelyca.
All other variables irc from (8.45) are known. However, the unmeasured state is
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present in the algebraic relationship (8.34). From this bimio the measurement
polynomial

M =Vee(t) — (CaoVo — Ca(t)V) =0, (8.46)
and we calculate

Z(c,my) = —V c3kice + 2V ki€l cc — 4V Bk2ch — 2cTucs ©.47)
+ 2CianU —2Cg k1Ci|'3ﬁI CaoVo + C%k1CAOVo. .

Z(c,my) does not contain the unmeasured state, and controllingzéro will by
Theorem 13 result in optimal operation.

Case 2: Unknown variables come from the differential equatins

Now we assume that we have an unknown disturb&pcand that the concentra-
tion cg is unmeasured. Since the reaction rate only enters throuwlifieaential
eguation, we need to eliminake from c (8.45) using a differential equation, and
we need to use a change rate as a measured variable, too. éfpifeve have
a good measurement of a process variable and a good clockegtienating the
time derivative is not difficult.

We assume that we can measure the concentrgtitmgether with an estimate
of its time derivativeca. If the measurement af is good (little or no noise), then
we may use its past values to estimate its time derivative. aggeime that we
measure, continuously using finite differences,

ca(t) — ca(t — Imin)
Imin

Ca= (8.48)

This does not give the exact derivative, but the approxiomais considered good
enough for our purposes.
To eliminate the unknowneg andk; we use an additional mass balance for
componens,
My = —CaV + CaoVo + C (V — V) — eV — 26pV = 0, (8.49)
in combination with the implicit component balance égrfrom (8.33),

Mg = —6gV — kyCaCaV — 2kaC3V — (cg — cf)u =0, (8.50)

and we eliminate the unknowns by calculating the resultattt vespect to the
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unknown variable&; andcg:

Z(C,mp,mg) =

— 16V2CakaClCp + V2CaCA + AV 2koCl a2 + BV 2cakoClh
+Vua? — 16V cpkaclhVocao + 16V cpkaCll Vo

+ 8V VoCmokaCll” — 8V CakoClN Vg 4 16V GagVokoClcp

+ 8V cakaCliVoCao — 8V GaCagVokaCll — 8V cAoVokzc‘iQ2

— 8V2caokotl? + AV2C2 kot + 2VoCeoCU — caVodlu (8.51)
+ CaVoCaoU + 16V2 koGl — 16V 2cpkodl” — 2V cacou

1V eadTu— 4V oo clu— 8V AT koMo — Ve Ea +VVoCaota
—V/ GagVlota — CACAQVoU — 2CacVoC U+ BcagViZkaCll?

+ A2 V2ol + V2 o — Vodh U+ Av2AN Ky
—V2clen — 2V2epEa — 8cagVPkaCl cao.

This expression does not contain any of the unknown vasabteit can be evalu-
ated online and controlled to zero using a P or PI controller.

8.5.5 Simulation Results
Nominal operation

The state and input trajectories for nominal optimal openaare given in Figure
8.1. These trajectories are generated by applying the apfimput. The final
optimal cost is value i§ = 0.2717.

Controlling the invariant

Case 1.: Variablecy unmeasured - all other variables known Here we cannot
control c = det(A) to zero, because we cannot evaluate it sicés not known.
Instead we control the resultagt(c,m) (8.47) to zero using a P controller. The
trajectories appear identical to the optimal ones from tiegipus section, and the
objective value ig = 0.2717. This is exactly as expected, because by Theorem 13,
controllingc and#(c,my) are equivalent. The suboptimality, which is introduced
by the added P controller, does not become visible whendenisg the first seven
digits of the objective function. However, whereas we neekinow the value of

ca to controlc, this is not necessary for controllig(c,m; ) to zero.
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Figure 8.1: Nominal optimal input, volume, and concentratirajectories



172 Invariants for dynamic systems

0.064

0.0621

0.06

~ 0.0581

0.0561

0.0541

052 . . . .
0.05 0 50 100 150 200 250

time [h]

Figure 8.2: Disturbancky

Case 2.: Variablesk;, cg unmeasured —Ca and ca measured In this case, the
statecg is not known (measured) and the paramé&idas not known either. There-
fore we cannot evaluateand use it for control. Instead we contr@l(c, mp, mg),
which contains neitheg; norcg. This expression can be evaluated using the avail-
able measurements and controlled to zero. In the nominaltbagrajectories look
identically the same as in Figure 8.1.

Next, we consider a change in the reaction kinetics, wkerises 20%, Figure
8.2. The input and the states are given in are given in Figtdd Be final profit
when controllingZ(c, mp,mg) to zero isJ = 0.2970, while the profit using the
optimal input isJopt = 0.2971. This difference comes from the approximation of
Ca in (8.48). Using the exact derivative, we obtdia= 0.2971, which is the same
value as the optimal input gives.

If we had not eliminatedk; in Z(c,mp,mg), and just used the nominal value,
the objective value would be lowel,= 0.2873.

8.6 Discussion and conclusion

We have shown that the concepts of finding invariant variablabinations can

be extended to dynamic systems, which are described by quih or rational
equations. By not explicitly solving for the input we do not have to be concerned
whether the input appears @because we use a P or Pl controller to generate the
optimal inputs. This is a simple alternative to analytigdithding the optimal input
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Figure 8.3: Inputs and concentrations for unmeasured ehafig at time 100
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by further differentiations.

Adding a controller to controt will often come at a negligible loss. This is
confirmed in our example, where controlling the invarianétng only a P con-
troller gives virtually the same performance as when aitaly solving for the
optimal input.

In this work, we considered only parametric uncertaintiad anmeasured
states. The equally important issues as model error andumegaent noise are
beyond the scope of this work and are have to be studied inefutark.

We have assumed that the uncertainty does not change thie egtistraints.
This is valid for sufficiently small disturbances. Howewer, larger disturbances,
the new set of active constraints has to be determined.

Controlling the invariant can be used together with othelNiacking meth-
ods to handle model mismatch (by adjusting model parametertgrminal con-
straints on a run-to-run basis, similar to Srinivasan andvo[2007]. Thus, our
method can be considered as a part of a larger procedure fitgrmenting optimal
batch performance.

Beside “normal measurements” we have also allowed measutsnof their
time derivatives. They may be estimated by finite differsregabove, or by using
some filtering. If a measurement is assumed to be reliabds itls change over
time should also be possible to estimate reasonably weltodacing measure-
ments of the time derivatives, makes it possible to elingingatriables, for which
we do not have a purely algebraic expression, and which #mmugh the differ-
ential equations only.

In the procedure for eliminating the adjoint variables, vewé presented the
common case of input affine systems. If the model is not inffirteg elimination
of the adjoint variables comes at the cost of introducingetioherivatives of the
input, which have to be measured.

We used the resultant to eliminate the unknown variablefieechniques,
such as Grobner bases [Cox et al., 1992], could also havedpgied. However,
it is not easy to find appropriate monomial orderings whidmiglate the unknown
variables, while avoiding the trivial solution (the invant is always zero when the
model equations are satisfied).
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Chapter 9

Conclusions and future work

Now this is not the end. It is not
even the beginning of the end. But
itis, perhaps, the end of the
beginning.

W. Churchill

9.1 Conclusions

In the first part of this thesis, existing methods from sgifimizing control have
been considered and studied under an optimization poirieaf \A connection be-
tween the methods used in self-optimizing control and thdignt of the optimiza-
tion problem was found. In this context, it was discoverdwt tself-optimizing
control can be interpreted as finding the best possible appation to the gradi-
ent of the process. In line with this interpretation, we foansimple derivation of
the previously published null-space method [Alstad andg8ktad, 2007]. It was
found that this derivation could be extended to systems lyfymial equations as
was presented in this thesis.

For cases where no model is available, we have presentechadrfet finding
invariant combinations which is based on using optimal .dd@tae suggested ap-
proach can be used to find directions in the measurementshwidicate a good
operation policy. This analysis tool may applied for findihg “secret” of good
plant operators.

In Chapter 5, we studied the use of self-optimizing contral AICO tracking
in the context of real-time optimization. The results frdmstwork indicate that
self-optimizing controlled variables should be used indbatrol layer, while the
iterative NCO tracking procedure should be used in the aptition layer. Here,
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the self-optimizing variables are used to align the contigectives and the eco-
nomic objectives in a hierarchical control structure whiglbased on time scale
separation.

In the second part of this thesis, the foundations have tmdridr extending
the self-optimizing control concept for polynomial sysgenThe concept of null-
space method has been extended to polynomial systems, emdoesynamic sys-
tems, which are described by polynomial equations. Thesdtseare very inter-
esting from a theoretical point of view, because they deitnatesthat the concept
of finding optimal invariant variable combinations is nostrected to the linear-
guadratic case. However, the results are “exact” in a ratrehematical sense,
that is they may not work well in case of plant-model mismaind measurement
noise. But this will be very dependent on the structure ohtioelel equations, and
it may well be that there are cases, which give robust andlsimyariants, which
are suitable for use in industrial practice.

9.2 Further work

9.2.1 Robustify and simplify the polynomial approach

In this thesis the theoretical basis has been provided tending the self-optimizing
control concept for nonlinear (polynomial) systems. Thaules obtained are valid
for a perfect model without measurement noise. It is diffitalmake general
statements about how this will impact the performance ofglaat in case of
model mismatch and measurement noise. Another partidbyek issue is that
the polynomial invariants may become extremely long exgoes of high degree
variables. In practice, however, it is often more convenierhave simpler (fewer
terms and low degree) robust expressions, because the immodékexactly known.
Moreover, the computation of the resultant is computatiprexpensive, so the
approach for finding polynomial invariants is in practicdyoapplicable to small
systems.

Based on the results of this work, future research couldfocusystematically
finding simpler, more robust invariants, which may gengraitroduce some loss
in terms of the objective function, but which tolerate modesmatch and mea-
surement noise better. A possible starting point could best optimization to
find approximate invariants with a simple structure, whidhimize the loss over
the range of disturbances.

9.2.2 Further studying the polynomial approach

Since the results for polynomial systems are based on agberfedel without
measurement noise, it does not matter which measuremeaeniacided in the
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invariant. In practice, there will be measurements, whi@hraore reliable than
others. So far, it has been left open which equations shauidsed for eliminating
the unknowns.

The choice of the equations for eliminating the unknownsltare large im-
pact on the size and the degree of the invariants. Therdittiee research may
give indications on which equations to use for eliminating tinknowns.

9.2.3 Handling changing active constraints

Another field for future work is the consistent and tractaidadling of changing
active constraints. This is a very important topic, becaheesconomic loss asso-
ciated with changing active constraints is generally highan the loss associated
with the unconstrained degrees of freedom. In this work, aeetused a prag-
matic approach, where we monitored the controlled vargabfehe neighbouring
regions. This is viable when the numbers of regions is snrall the problems
behave nicely. However, when there are many regions, it neagrbe difficult to
track all the controlled variables in the neighbouring oegi. Some progress on
this topic has been done in the explicit model predictivetm@drcommunity, but
it seems that there are still many open issues when the @gatiiom problem is
not linear-quadratic. When considering model mismatchrardsurement noise,
handling changing active constraints becomes even motkebmg, and a sys-
tematic, rigorous way of handling these issues has yet tebelaped.

9.2.4 Further studies on the combination of real-time optinization
and self-optimizing control

It has been shown that real-time optimization and selfroizing control are com-
plementary (Chapter 5). It would be worth studying the iatéion of real-time
optimization and self-optimizing control further. Topiokinterest could be:

e Evaluating how the combination of real-time optimizatio&elf-optimizing
control compare to the truly optimal dynamic real-time optation.

e Research possibilities for further improving the combiorabf self-optimizing
control and real-time optimization.

e Which disturbances should be rejected in which layer.

A different direction of future work could be studying thde@nd effect of back-
off and active constraint handling in the combined framdwaifr self-optimizing
control and real-time optimization. Deeper knowledge igsthareas would allow
us to further fine-tune the overall control structure forimgt interplay.
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9.2.5 Disturbance discrimination

We have assumed that the important disturbances, whichdsheurejected op-
timally, are known a priori. This is, however, not generdlye case in practice.
It would be of great practical importance if we had theoadljcsound methods
for discriminating disturbances, such that we could foaushe important distur-
bances in modelling and control structure selection.
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Appendix A

Optimal operation of a waste
Incineration plant for district
heating

In writing music, the structure of
each piece is a very important
factor.

L. Ornstein

This paper demonstrates the concept of implementing apéHiizing
control structure on an industrial case study. Using oiéloptimiza-
tion, the structure of the optimization problem is expldite find a
set of variables, which give optimal operation when colgcbht their
setpoints. We first obtain a steady state plant model, wisabpti-
mized on grid points in the operating region in order to detee the
set of active constraints and the optimally unconstraireiables to-
gether with their optimal values. The variables assumingrestant
optimal value are candidates for self-optimizing variableour oper-
ational regions are found, and for each region a simple cbstruc-
ture is defined to 1.) satisfy constraints and 2.) to contnel gelf-
optimizing variables to their setpoints. To be able to cleabgtween
different regions, switching rules are defined. Using tresiching
rules, the plant can be controlled close to optimality whedistur-
bance causes the system to change from one region to arfeithedty
some dynamic simulation results are presented to show thioto
performance within the regions and across region bourglarie

Based on the paper “Optimal Operation of a Waste Incineratdant for District
Heating” presented at the American Control Conference 2@9Louis
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A.1 Introduction

Rising energy prices, increasing competition and enviremia demands make
it increasingly necessary to operate plants as close tonafity as possible. In
order to remain close to optimality in spite of disturbandb&re are two basic
paradigms [Narasimhan and Skogestad, 2007]. The first jganad to obtain op-
timal operation via on-line optimization [Marlin and Hryka997]. This implies
that the optimal setpoints of the controlled variables amputed on-line and are
updated at certain time intervals based on the last availablasurements. Setting
up, solving and maintaining an such a real-time optimiza(i@TO) system can
be a very time-consuming and complex task, as the uncertimirihe model and
parameters can have a severe impact on the control perfoenand the updated
setpoints have to be available at the given sample times.

A second paradigm, which is very common in practice, is tatify appro-
priate “self-optimizing control” variables [Skogestad)®]. Controlling these
variables at their set-points keeps the process at or atodetoptimal operating
point in presence of disturbances, without the need to tieaige. Usually, such
policies are obtained by intuition, experience, and tezdirinsight. We present a
case study of a waste incineration plant, where the contnattsire can be found
by performing an off-line optimization and analysis.

In district heating networks, the network operators usuaish to obtain the
lowest possible return temperature to the heat sourcegwhd power plants are
designed for providing a given amount of heat at a specifieghézature range. In
this case study, the power plant is not owned by the distaatihg provider, which
can lead to conflicts as the district heating provider attsrtgpdraw more energy
than what is produced, thus cooling down the plant. We desigontrol structure
which prevents the plant from being cooled down while mizimg the operating
cost. The example illustrates nicely the principles andebienof self-optimizing
control.

The structure of the paper is as follows: First the fundamdddeas of self-
optimizing control are presented, and then the waste irafio& process is pre-
sented and explained together with the operating objecti\ext, the model is
described and optimized. Based on inspection of the opditioiz results, a con-
trol structure is designed and tested on a dynamic modeler Aitesenting and
discussing representative results, the paper finishesowitibonclusions.

A.2 Self-optimizing control

The idea behind self-optimizing control is defined in Skageé$2000]:
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Yo Nu; th,dp 8
from DHN
g guy | Cooler HX X Us
>
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Ya L@U7 Y2 Y3
UoX Air Usy
Y1 Y5
to DHN
to line 2

Figure A.1: Flowsheet of the incineration plant

Self-optimizing control is when we can achieve and accépthiss
with constant setpoint values for the controlled variab@#hout the
need to reoptimize when disturbances occur)

This means that for each region defined by the set of activst@ints, we search
for variables or variable combinations whose optimal valaee constant in pres-
ence of disturbances. If they are controlled at their optvalues, which are the
same for all disturbances within that region, we indirecthtain optimal opera-
tion, without having to reoptimize for new setpoints.

A.3 The process

We consider a waste incineration plant with two productimed. The process
flowsheet for one line is shown in Figure A.1. It is assumed tha lines are
designed and operated symmetrically, such that it is seffi¢do consider one line.

Cool water is flowing from the district heating network (DH&hd distributed
equally onto the two production lines where is heated in tt bxchangers (HX)
before it is returned to the network. Before the cold stremsplit between the two
plant lines, a bypass is installed to adjust the amount oémfiawing through the
heat exchangers.

In the two lines on the primary side, liquid water is heatedhim furnaces to
the desired temperature and transfers the heat to the segostceam in the heat
exchangers. The plant is equipped with an additional cpwlkich is used when
the DHN does not require all the produced heat. To prevenlinrgbdown the
plant, the heat exchangers can be bypassed on the primaryeid
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Table A.1: Measurements

Variable Description

V1 Return temperature to furnace

Yo Primary side heat exchanger exit temperature

Y3 Secondary side heat exchanger exit temperature
Va Cooler exit temperature (liquid)

Y5 Secondary side return temperature (to DHN)

V6 Primary side flow rate

Table A.2: Inputs

Variable Description

Uy Bypass valve opening

U Cooler valve opening

Us Primary side heat exchanger valve opening
Ug Secondary side heat echanger valve opening
Us Secondary side bypass valve opening

Us Primary side flow pump duty

Uy Cooling fan duty

Ug Secondary side flow pump duty

In this study, the plant operator is interested in operatitggplant to provide
16 MW per line, while minimizing energy consumption for pusrgind fans and
still satisfying temperature and flow constraints. The lalde measurements and
inputs are listed in Table A.1 and A.2.

The two lines are operated symmetrically and are subjeotegdédrational con-
straints: The furnace entrance temperature is givgm-ag126+1)°C, and should
not be violated to avoid condensing of fume gasses and badilithe pipes. The
primary side flow rate igs = 250 t/h, and the primary side heat exchanger exit
temperature/, must not exceed 12€. In addition, the return temperature to the
district heating networkys must be in the interval from 9€-150C. The con-
straints are summarized in Table A.3.
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Table A.3: Operational Constaints

Variable Constraint Description
V1 y1 =126+ 1°C Furnace return temperature
Yo yo < 126°C Heat exchanger exit temperature

Vs 90<y5 <150 Returntemperature to DHN
Y6 Y6 = 250 t/h Primary side flow rate

A.4 Steady state plant model

The main modelling assumptions are: Symmetric lines, rangressible fluids,
no pressure drop in heat exchanger and pipes, no heat lasdddeal counter
current heat exchangers. We give an overview over the mgsirtiant aspects of
the model. A more thorough description of the model and alpdarameters and
values is given in Smedsrud [2008].

A.4.1 Heatexchangers

The heat exchangers are modelled based on the logarithnaic teeperature dif-
ference. However, to make the numerical simulations mdoast the equations
are transformed such that we obtain a linear relationshipvd®n the input and
output temperatures [Skogestad, 2009]. The steady statsfér function from
the inlet temperatures to the outlet temperatures is

To=DTi, (A1)
with in out
Ti:[ TihnOt ] and To= [ T'&%‘t ] (A.2)
Tcold Tcold

as the vectors of inlet and outlet temperatures, respégtaed the dimensionless

gain matrix
ya-g) Bly-1)
p=| v 15| (A.3)

y—B v-B
Using the mass flow rates and the specific heat capacitigs the parameter
B is defined as the ratio between cold and hot heat capacity ftws,r
B = wech/w'ch,. (A.4)

Further we define
y=-exp(—a), (A.5)
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Table A.4: Parameter values for heat tran$fer

Unit  ai(K7(W?m?)  ax(KI(Wm?) az(/1(n?)  as(W/(m?K)

hux 4.10°4 -0.15 21.92 7615.8
hcool 0.42 -20.44 432.3 666.09
with a as
a=UA [1/(whcg) - 1/(vv°c°p)] . (A.6)

Here,U = h"h¢/(h" 4-hC) is the overall heat transfer coefficient aAds the
total heat transfer area. The variablésandh” are assumed equal, and their flow
dependency in heat exchanger and cooler is found from fittiegsteady state
model to the dynamic model used to test the results,

hunit = a1(WE)2 + ap(WE)2 + agw’ + ay, (A7)

where the subscriptinit stands for either the heat exchanger (HX) or the cooler
(Cool). The parameter values are listed in Table A.4.

The matrixD becomes singular whefi = 1 (parallel temperature profiles),
which is the case for some operating conditions. In orderdte @ simulate also
cases where 4 dmax < B < 1+ dmaxfor smalld, we define the number of transfer
units isn:

n =UA/(w°cp). (A.8)

We expand the exponential term in (A.5) [Hertzberg, 2001 define
S= Z(—na)i/(i + 1) (A.9)
i=

The seriesSis truncated after = 5. Using (A.9), we writey = —nd(1—S) +1,
and for 1— dnax < B < 1+ OmaxWe use

y nB(1+S)
D— [ 1+n(1+S 1+n(1+9 ]
n(1+S 1

1+n(1+S 1+n(1+9

(A.10)

instead of (A.3).

A.4.2 Pump, fan, valve and mixer modelling

The fan dutyP is calculated by

1w /1 1 WAPp
P="|—=|5-=]|+— A.11
n[sz <A% A%>+ p } (A1)
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wheren, w p, Ap are the efficiency, flow rate, density and pressure differenc
respectively, and\;, A, denote cross sectional areas of the pipes before and after
the fan, respectively.

Assuming equal pipe diameters before and after the pump arelevation
difference, the pump pressure outlet is calculated by

Ap=(pPn)/w. (A.12)

The valves are modelled by

w=Ky\/(po/P)AP, (A.13)

with K, being constant on the primary side, and being a function efvidive
opening in the secondary side, aoglis a reference density. The mixer equations
are derived from the mass and energy balances:

Wiot = zWi, (A.14)
|

Towt = Z(Wi/Wtot)Ti (A.15)

A.5 Optimization

The optimization objective is to minimize the total work the pumps and fans,
minJ = ZW:u6+U7—|—U8, (A.16)

subject to the model equations and the operating consriorh Section A.3.

To obtain a map of the operating regions, the disturbanceesigadiscretized
in two disturbance variables, namely flow and temperatureing from the dis-
trict heating network. The temperature grid ranges frort6t® 90 C and has a
resolution of 0.1C. The flow disturbance from the district heating networlges
from 500 t/h to 900 t/h, and has a resolution of 1.6 t/h. The@h@optimized for
each of these grid points. Evaluating optimal operationatbgrid points yields
four regions, defined by active constraints. These regimnsk@own in Figure A.2.
In Table A.5 all inputs are given with the optimal values fack region. Thex’
in the table indicate that the corresponding variable doéassume constant value
throughout the region. In most cases when an input assun@sstaot value, it is
at a constraint, i.e. 0% or 100%.

Table A.6 shows the optimal output values. The furnace meemperaturey,
and the primary side flow ratgs, are always constant because they are operational
constraints (see Section A.3). Otherwise, only the prinsatg heat exchanger and
cooler temperatures andy, reach the constraint of 12€& in Regiond. All other
measurements are unconstrained and varying in the whatareg
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90
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75 1
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Flow rate (t/h)

Figure A.2: Operating regions of the waste incineratiompla

Table A.5: Optimal input values (active constraints in Bold

Region Up U2 us Ug Us Us Uz Uga
[%] [%] [%] [%] [%] [%] [%] [%]
a 926 0 100 x 100 6.78 O X
B 926 O 100 100 x 6.78 0 X
y X 0 100 100 0 «x 0 X
o 0 X 100 100 0 x X X

3ug is not actually an input as it is used to set the disturbaneerfide
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Table A.6: Optimal output values (active constraints irdhol

Region y1 Yo Y3 Ya Y5 Ve
°C °C °C °C °C th

a 126 x X X x 250
B 126 X X X x 250
y 126 x X X x 250
o) 126 126 x 126 x 250

A.6 Control structure design

In each region, the degrees of freedom (DOF) available fémipation Ngl[,?e are
determined according to Skogestad and Postlethwaite [2005

N(I[r)?e = Nm — No — Nactive, (A.17)

whereN, is the number of control degrees of freeddyg js the degrees of freedom
without steady state effect, aMlcive is the number of active constraints.

In our case, we havly,, = 14 control degrees of freedomy = 0 degrees of
freedom without steady state effect, and the number of @ctinstraintsNactive,
varies in the different regions.

If the number of DOF is zero, all inputs are used to satisfyctrestraints, and
no self-optimizing variable is required, as the optimumtia eonstraint. When the
number of DOF is larger than zero we have a number of inputsivwive do not
need to satisfy a constraint, and we may use these inputsiiminé the operating
cost. This is done by controlling a variable, which has aimegity invariant value,
a self-optimizing control variable.

In Tables A.5 and A.6 the active input and output constradmes shown in
bold face for each region. All inputs exceapf are present in both lines, so when
calculating the DOF free for optimization, this has to beetainto account when
designing the control structure.

¢ Inregiona,where the bypasss is fully open, we have

Nopro% =14 —2 —2 -1 —2 -1 -2 —2 =2
D N e a g
W U U Uz U Y1 Ve

¢ Inregionf,whereuy is fully open, we have

Ngg?eﬁ:m 2 -2 -2 -2 -1 -2 -2=1
AP I S g W
U U3 U U U Y1 VYs
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e Inregiony,whereu, is fully open and the bypass is fully closed, we have

Ngp Y =14 2 —2 —2 —1 -2 —1 —2 —2 =0.
L N I N N N N
W Uz W U U7 U Y1 V¥

e Inregiond whereu; = us = 0 and wherauz andug, are fully open, we have

Nopi®® =14 2 -2 —2 -1 -1 -2 -2 —2 =0.
R o e g o
u Uz Ug Us U v Y4 Y6
Thus, in regiona and 3, we have unconstrained degrees of freedom for which we
have to find self-optimizing control variables, while in i@gs y andd all degrees
of freedom are used to satisfy the active constraints.

A.6.1 Regiona and 8

In regiona, the inputsuy, us andug are unconstrained, while we have two active
constraintsy; = 126°C andyg = 250 t/h. In region3, the inputsu;, us andug are
unconstrained, while we have two active constraipts; 126°C andygs = 250 t/h.

In both, regions, the input; is unconstrained. Since its optimal value is con-
stant, we use it as a self-optimizing controlled variablee Temaining two DOFs
have to be used to satisfy the constraints on the furnacenretmperature; and
the flow rateys.

One possibility would be to control the furnace return terapee,y;, using
the secondary side heat exchanger valya regiona (andus in regionf), while
keeping the bypass valwg at a constant opening. However, this approach is not
desirable from a dynamic point of view, because of the longgtiag between the
secondary side valves and the furnace inlet temperstiure

Therefore, in regiom it is chosen to employ an input resetting structure, which
utilizes the direct effect of bypass to control the furnace inlet temperatweg
while the secondary side heat exchanger valyis used to reset the primary side
bypass valve; to the optimal value (Figure A.3).

In region 3 the bypass valve assumes the same constant value as in cegion
and is used as a self-optimizing variable as well. Howeee the secondary side
heat exchanger valuwg is in saturation, whilais may be use instead to reset the
primary side bypass valug to its optimal value (Figure A.4).

A.6.2 Regiony

Regiony does not have an unconstrained degree of freedom for optiimiz This
means that the system is operated optimally when all theeactnstraints are
satisfied. After usinglg to control the flow rate in the primary side, the bypass
valveu; is used to control the furnace return temperatyrd-igure A.5.
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Figure A.3: Control structure for regiam. (ZC: valve position controller for input
ul)
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Figure A.4: Control structure for regigh. (ZC: valve position controller for input
ul)
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Figure A.5: Control structure for region

A.6.3 Regiond

In regiond, the bypasses; andus are closed, while the heat exchanger valwgs
anduy are fully opened. After usings to set the primary flow rate, the region has
two unconstrained inputs, the cooler valyeand the cooling fan dutyy; they are
needed to control the active constraints, the furnacemeé&mperaturg; and the
heat exchanger exit temperatygeto their setpoints at 12€. This means that all
three temperatures become=y, = y4 = 126°C. Because of the energy balance,
the plant optimum is specified by controlling any two tempéaes of this set to
126°C.

The relatively large elements in the steady state relatie grray [Skogestad
and Postlethwaite, 2005] from= [up, U7]" toy = [y1, Y2, V4T,

11919 -0.3854
RGA=| 0.1182 00758 |, (A.18)
—0.3101 13096

suggest pairingl, with y; andu; with y4. However this leads to a very poor
dynamic performance, because in this pairinghas very little initial gain ory;
due to the equality of the exit temperatures of heat exchaamyt cooler.

From the energy balance it is clear that the heat has eithiee temoved in
the heat exchanger or the cooler. Therefore opening theicealveu, alone will
not have the desired effect gn. If the furnace return temperatuyg becomes
too hot and the cooler valve, opens, it acts as a bypass andincreases even
further. However, as it closes, more water goes through thie hmeat exchanger,
and the temperatung increases as well. To effectively reduce the furnace return
temperaturegy,, it has to be controlled by the cooler duty.
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Figure A.6: Control structure for regioh

A set of pairings which gives good dynamic and steady stat®mpeance, is
to use the cooling fan duty; to control the furnace return temperatyreand
to control the cooler exit temperatuyg manipulating the cooler valve, (Figure
A.6).

This pairing ensures that the fan dutyincreases before the disturbance com-
ing from the district heating network affects the coolert égmperaturey,, and
avoids the bypass effect when the cooler valystarts opening.

A.7 Dynamic model and simulations

To test the control structure and simulate the process, tuehdescribed in A.4
is extended to a dynamic model, where the heat exchangersatelled as ideal
tanks, Figure A.7. A first order transfer function with a ticenstant oft = 1.5s
is used to add dynamics to the pumps, valves and fans. Thesraxel splitters
remain as modelled for the steady state case.

Each heat exchanger is modelled by 10 equal heat excharajiemnse with the
governing equations [Mathisen, 1994]:

dTri ; ; hhA -\ WhN
—h _— (TiHl_Ti_ AT | — A.19
dt < h " WiCpnN h> PnVh (A.19)
T, : - A

W = (AT — heAT)) ———— A.20
dt ( h h C C) pWCp,WVW ( )
dT : o heA 0\ WeN
—¢ = (TH_T- = AT )= A.21
dt < ¢ ¢ WcCp,cN ) pVe ( :

In the above equationE denotes the temperatudethe heat transfer coefficient,
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Figure A.7: Heat exchanger section

Athe total heat transfer area,the mass flow rateg, the heat capacity flow rate,
N the number of sectiong the fluid density and/ the volume. The superfik
denotes the compartment, while the suffibes andw denote the hot side, the cold
side, and the wall element, respectively. The tet:ﬁlj$andATci denote the signed
difference between the wall and the hot and cold side ofgectrespectively.

Modelling the heat exchangers discrete instead of contisunoves the re-
gions in Figure A.2 slightly up, approximately’C, but does not affect the struc-
ture of the optimal solution. Using the dynamic model anddbetrol structures
developed above, the process was simulated for variougsosrin the different
regions and for disturbances across region boundaries.

A.7.1 Control within regions

As an example, the control performance in regioand?d is presented here. The
performance in the remaining regiorsandy, is similar.

Regiona

In regiona, the control structure is well capable of keeping the vamiain the fur-
nace return temperature close to its desired value, wtelseti-optimizing control
variableu; returns to its optimal value (Figure A.8). This reflects tatcol pri-
orities: first, the active constraints are satisfigddlose to 126), and second the
system readjusts to optimal operation.

Regiona andf have in common, that they have one unconstrained degree of
freedom. After all active constraints have been satisfigd,degree of freedom is
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Figure A.9: Control performance in regiah d;,dy: disturbancesy;: active
constraintu,: cooler valveys: temperature to DHNY: fan duty

used to minimize the pump work, which is minimized whanis at 94.8%. The
value differs a bit from the steady state value, becauseeodlifferences between

the dynamic and the steady state value.

Region o

In Figure A.9 the control performance for a disturbance giae d is shown. It
can be seen that the combination of cooling fan dutsind cooler valvel, ensures
deviation of less than O°&in y;, even though the disturbances entering the plant

are large.
In regionsy and d, all inputs are needed to guarantee that the constraints are
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Table A.7: Switching conditions

Transition Condition 1  Condition 2 Condition 3
a—p U =100% t<ts Region =a
B—y us=0.00% t<ts Region =f3
y— 0 u; = 0.00% t<ts Region =y
00—y u;=0.00% t<ts Region =0
y—PB up <94.8% t<ts Region =y
B—a u=100% t<ts Region =f3

satisfied. Therefore, therefore, optimal operation is detefy specified by con-
trolling the active constraints.

A.7.2 Switching between regions

When the change in the disturbances becomes so large thgiba oundary is
crossed, it is necessary to detect this event and to switeltdhtrol structure.
For the switching strategy here it is assumed that the syssmot jump over
a region, i.e. the disturbances move the system gradudlhytie new region.
Then, the switching logic can be based on monitoring the mstcained and self-
optimizing variables of the current and neighbouring raegio For example, in
region a variableuy is unconstrained. If a disturbance enters such thajoes
into saturation, the unconstrained variable of regbis released and used for
control. The same strategy is used for switching in the otbgions. Switching
from y into the unconstrained regigh is done when the self-optimizing variable
of regionf, uy, reaches its optimal set-point. This is possible sincegiorey the
valveu; assumes a strictly smaller value than in regibon

To avoid chattering, the regions are switched when the sparding variable
has been in saturation or crossed its value for more thar2.5 minutes. Using
this strategy we ensure that the control structure of onemegactive long enough
to realize its effects before switching to the next contg@tem. The conditions
for switching are listed in the Table A.7.

As an example, we consider a temperature rise in the disiiting network,
moving the system from regiofd to y, Figure A.10. The variable; is constant
until us goes into saturation. Them leaves the optimal point of regioa to
control the furnace inlet temperatwe
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Figure A.10: Region switching frorf to y (dotted line shows switching instant)
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A.8 Discussion

This case study demonstrates the nicely the concept andntiespof self-optimizing
control. First, the active constraints are controlled, #iidere are remaining de-
grees of freedom, they are used to control self-optimiziengables. The advantage
is that we have a very simple and easy to implement contrattetre in every re-
gion. Moreover, our procedure leads to a good understanafirtbe operating
conditions and constraints. This understanding can befioeidor operation of
the plant. In addition, it is easy to communicate to operatas the control struc-
tures for each region are simple and easy to understand anthima

In region B the valveus was used to control the valwg. Since there are two
lines (each having one valwg), we are lacking one degree of freedom. The above
analysis was made based on the unrealistic assumption @exaatly symmetrical
lines. This will not be the case in practice, therefore, aammactical solution
could be to controk = 3(uf + u?) to 94.8%, and lettingi; control the furnace
return temperaturg,. This would ensure the correct furnace return temperature,
while in lettingus affect both valves. Alternatively, one could use the sptileen
the lines as an additional degree of freedom to controlgne its optimal setpoint.

The challenge in handling several control structures iartteracking the op-
erating regions and switching correctly. In this case stitithas been found that
monitoring the controlled variables of the four regionslgsegood results. The
self-optimizing approach has been found to be a simplerat®e to methods
like real-time optimization or model predictive controlhere the constraints are
handled implicitly, such that where the operating regioashdt become visible.
Considering the simplicity of the control structure andéeellent control perfor-
mance, it seems that the effort of maintaining and instléin online optimizing
control system may not be able to improve performance sagmfly. However
this would have to be investigated in a separate study.

A.9 Conclusion

We have presented a case study of a waste incineration plaoh\is operated
close to optimality using very simple control configurascmd simple switching
rules for changing between them. The applied proceduraaletee different op-
eration regions obtained from steady state optimizatind,yéelds an intuitive and
understandable control structure, while at the same timiagybptimal operation.

The switching rules are based on monitoring the constraametiself-optimizing

variables and information about the system dynamics. Rsmitocess, the self-
optimizing control approach seems to be an attractiversdtese to real-time opti-
mization.
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