SUBPRO

SUBPRO Summer project 2022

Modelling of Offshore Blue Hydrogen
Production with Carbon Storage

Figure 1: The Sleipner field in the North Sea. (Photo: Harald Pettersen / Equinor ASA)

Author: Yoonsik Oh

Supervisors: Johannes Jaschke
Co-supervisors: Evren Mert Turan
Magne Hillestad
Gro Mogseth

July 30, 2022

Contents

(1 Job description|

2 Process description|

2.1 Flowsheetl
[3__Simulationl

[3.1 Aspen Hysys Modell

BII Casesimulationl
[3.2 Model in Python|
B.3 Gas heated- and autothermal reformerl
[3.4 Initial complete modello o
[3.5 Improved new model|

I Reosul & 0l

EF 4 o

(A Python code]
[A.1 Defining and unpacking variables|,
[A.2 Enthalpy|.
[A.3 Equilibrium constant| Lo L

[A.9 Post ATR temperature] L
[A.10 Isothermal temperature shift reactor]
[A.11 New improved modell o
[A.12 Stream summary print function|o
[A.13 Error output|.

[A.15 Composition print function|. L.

(B Hysys simulation with pure oxygen|

|C Hysys simulation with 90% oxygen|

[D Hysys simulation with 40% oxygen|

14

16
16
18
19
20
21
22
30
30
31
32
32
40
41
41
42

46

50

54

1 Job description

The goal of this summer project was to model an offshore blue hydrogen production with
carbon capture and storage (CCS) and further researching towards a net-zero hydrogen
production. However, the scope for the project was to only build the necessary models
relevant to the control volume which is the hydrogen production and the CCS plant. This
means that this project would not go into detail of the feasibility of different methods for
storing the captured carbon (COj). Many different methods of producing blue hydrogen
(> 95%CO4 captured) was considered, but the deciding factors for choosing the final method
was based on economy, efficiency and spacing. Spacing is especially important in this project
since the plant is designed to be on an offshore platform, where spacing is limited and
expensive to expand. Further, this project will build the basis of a possible future project,
a feasibility analysis.

2 Process description

There are already many known methods to produce blue hydrogen. The main issue in this
project is that the plant is being built on an offshore platform which has limited amount of
space and weight and the building cost will be higher. In a typical blue hydrogen production
plant, a large furnace is used which takes most of the space in a steam reforming plant. A
company named Johnson Matthey has come up with a method of producing hydrogen that
instead of using a large furnace, it instead uses a combination of a gas heated reformer and
an autothermal reformer™. This method also has a high hydrogen purity and low carbon
emission as most of the CO, will be captured and stored. More details about the conversion
is explained later in the report. Using this process flowsheet, a model from the software
Aspen Hysys has been made to test out different cases, which will also be discussed later.

2.1 Flowsheet

13
9 :l/
8 " Y,

5 14
12

Figure 2: Flowsheet of blue hydrogen production

The complete flowsheet can be seen in fig. 2l Stream 1 is the stream of natural gas extracted
from the subsea. The natural gas consists mainly of methane, but also some other organic
compounds like ethane and propane. There are small trace of Ny, Oy, CO5 and other small
compounds. When discussing the simulated model further down, an average range of each
compound and the used for the model will be shown?. Stream 2 consists of hydrogen and
its purpose is to turn all sulfuric compounds into HyS. Then stream 3 containing the natural
gas and H,S will enter the first column, C1, which is the purification step. Here most of the
HsS will be captured by some pellets to be later removed. This step is important as most
sulfuric compounds damages the catalysts used later in the process, which is important when
considering both economy and yield.

After the purification step, stream 4 will enter the second column, C2, which is the saturator.
The purpose of the saturator is to saturate the stream before the reactors with water so the
reactions happening in the reactors is shifted towards right side. Here a steam to carbon ratio
was set to 2.5 where carbon is mostly methane. After the saturator process, stream 6 will
mix with stream 7, which will be heated before the prereforming process. The prereforming
reactor R1s purpose is to remove all the heavier hydrocarbon compounds with more carbons
than methane, into methane. This is done by reacting the hydrocarbons with water into CO
and hydrogen, but due to the low temperature and with correct conditions, the CO and Hy
will turn back into methane and water, mainly due to the equilibrium.

Stream 10, which is the outlet stream of R1 will enter a heat exchanger which will heat
up the stream from the outlet stream of the gas heated reformer (GHR), R2. In GHR the
stream enters catalyst filled pipelines and will enter another reformer. This reactor is the
autothermal reformer (ATR), R3 and in this reformer the equilibrium will be heavily shifted
towards right due to the high temperature and the reactions happening are endothermic.
The high temperature is gained by burning a feed with pure oxygen. Later on, this will be
discussed as pure oxygen is hard to come by on a offshore platform. After the reactions in
the ATR, the outlet stream, stream 14, will enter the GHR, and heat up the pipeline which
contain stream 11. This concept is similar to a tube and shell heat exchanger. There are
two main reactions in the process. The first one is the steam-methane reforming and the
other reaction is the water-gas shift reaction which is shown in eq. and eq. (2.1.2),
respectively.

CO + HyO = CO, + H, (2.1.2)

The exit stream of GHR, stream 15, will enter a heat exchanger where it heats up the inlet
stream for GHR. Stream 16 will then enter R4, which is the isothermal reactor. The goal of
this reactor is to remove as much CO as possible. It does this by only letting the water-gas
shift reaction happen by using special catalysts. After R4, stream 17 now contains mainly
of Hy, COy and HyO. To remove H5O, stream 17 enters a cooler and enters C3, which is
a column for removing condensate. Stream 19 now will contain mainly of CO; and Hs.

To separate these hydrogen from other components, a pressure swing adsorption has been
chosen as a separator. This is due to other methods like separation with amines takes up
lot of space and is heavy.

3 Simulation

3.1 Aspen Hysys Model

To simulate different cases, a model was made using the software Aspen Hysys. In this
model, cases of how different concentration of nitrogen introduced in the oxygen feed into
ATR would affect the process. Mainly due to hydrogen being introduced with nitrogen can
form nitrous compounds like NH3 and HCN. For the reforming part, this would not be a
problem as the reactors uses nickel catalysts which degrades NHj3 into nitrogen and hydrogen.
The isothermal shift reactor uses a copper catalysts which oxidizes the ammonia.

SPRDSHT-1 SPRDSHT-2

3 5
E-101

11
Isothermal

Prereformer

7

GHR-Duty ITR-Duty

E-103-Duty

Figure 3: Aspen Hysys model

3.1.1 Case simulation

The simulation starts after the saturator process, so in other words, NG stream in fig. |3 is
stream 6 in fig. 2] The composition of this stream is shown in table [I The software has
made few calculations by using adjust blocks. The first adjust block were used to control
the HyO stream such that the stream before the prereformer has a steam to carbon ratio of
2,5. The second adjustment block is to control the oxygen feed stream into the ATR such
that the outlet stream has an temperature of 1050 °C. The third adjustment block were used
to control the outlet temperature after the heat exchanger after ATR such that the energy
gained from the heat exchanger is the same as the energy used in the GHR.

When considering different ways to create an oxygen stream, there are space and economy
to consider. Air separation by membrane is the most economic way and takes up the least
amount of space for separating air into a stream of oxygen. The downside of membrane
separation is the purity. This nitrogen forms into ammonia, but even though it might not

damage the catalysts, it is still a inert component that needs to be removed before the last
stage where the tailgas is sent to storage and hydrogen transported to land which needs to
be as pure as possible. The most used methods are electrolysis, cryogenic separation and
membranes.

Electrolysis splits a water molecule into hydrogen and oxygen and has no impurities com-
pared to the other methods. This process also creates hydrogen, which is one of the goals in
this project anyways. The downside of electrolysis is the high energy cost for the process.
Splitting only one water molecule has a theoretical minimum of 237kJ, which is the stan-
dard gibbs free energy of forming water. Cryogenic separation might be the best option of
separating air to achieve pure oxygen (99.99% pure), but the main problem with cryogenic
separation is the huge space it takes up and the weight it requires. It is also energy intensive,
which makes the electrolysis a better option anyways. The last method that was considered
in this project was air separation by membrane. Though it is economic viable and takes up
small space compared to the other methods, the oxygen purity is low. Some studies claim
that a oxygen purity of 90% is achieved®, but a commercial membrane separator can only
achieve between 25%-40% oxygen purity, which is too low purity to apply as feed to ATR.
However, the Hysys model will be used to run two different cases, one with pure oxygen
stream from electrolysis and one with 90% and 40% pure oxygen stream to test out how
it will affect the process. Ultimately, there can be allowed some degree of nitrogen concen-
tration, due to the last separation step, which is the pressure swing adsorption which can
separate hydrogen from COs, but also other components like Ny and NHs. This will be later
on discussed after the cases.

Compound | %mol

CH, 78.24
CyHg 6.10
CsHg 6.70

H—C4H10 2.48
i-C,Hy | 1.41

CsHyo 3.70
H,O ~ 0
H, ~ 0
CcO ~ 0
COq 1.34
H,S ~ 0

Table 1: Average composition of natural gas in the north sea

When running the simulations on HYSYS, the composition on table [1| were used with a
flow of 1000 kmol h™!, which is a bit high, but it was a value that was arbitrary chosen to
observe the numbers. Later when trying to switch up the numbers to more realistic numbers,

the HYSY'S model breaks when trying to run the simulation due to inconsistency problems
with having multiple adjust blocks running simultaneously. Luckily, a backup was saved
with the initial value of 1000 1000 kmolh~!, and the wanted observations could be made.
In the case of pure oxygen stream feed in to the ATR, the product stream before the PSA
separation consisted mostly of hydrogen and carbon dioxide, which is desirable. Hydrogen
had a %mole of 74.76 and CO, had a %mole of 23.92. The rest of the compound consisted
of methane, carbon monoxide, water and nitrogen. The nitrogen is due to the fact that it
is inert, except when it may react to other compounds like ammonia or HCN, but in our
case, even though some nitrogen might have converted into ammonia or HCN, the amount
would be insignificant. Rest of the compounds can be removed by operating with reactors
with higher conversion rate and better separators.

In the case of 10%mole nitrogen included in the oxygen feed in to the ATR, the results were
similar as with pure oxygen. And as expected, the nitrogen were inert during the process and
will have a bit larger composition than with pure oxygen, since in the case of pure oxygen,
the only nitrogen coming is from the feed, which is also arbitrary in the case of north sea
natural gas. The %mole of hydrogen and CO, were found to be 73.83 and 23.67, respectively
and the other remaining compounds were the same as the case with pure oxygen. But the
nitrogen had a %mole of 1.31 instead of 0.12 as with the previous case. Mole percent of 1.31
is larger than all the other compounds excluding hydrogen and CO, combined.

In the more extreme case, where a more common air membrane separator is used to split air
into oxygen and nitrogen, the oxygen flow is 40% while the nitrogen is 60%. The results were
not ideal as the hydrogen were only 60%mole and nitrogen was 15.39%mole which means
that the hydrogen to nitrogen ratio in the product stream was 4:1. It can be concluded that
an air membrane separation with today’s technology, should not be used for the system.
The data sheet of all stream information and duty required for different cases is shown in

appendix [A.15]

3.2 Model in Python

As Aspen HYSYS software’s purpose was only to look how the numbers deviated with
changing different units, the real modelling goal of this project was done in Python. The
function fsolve, a package from scipy.optimize, was used to solve all the systems of nonlinear
equations. The same composition from table [1| and natural gas stream data from Norsk
Petroleum was used to estimate an average gas flow from a typical oil platform. As the
platform Troll was producing average of 35 million Sm?® /year™, a flow of 4000 Sm® /hour was
used in the project, which was estimated to be 145.4 mol/hour, where it was estimated to
be 0.829 kg of natural gas per 1 Sm®. The complete flowsheet with stream numbers used in
the Python model is shown in fig. |4 where the stream number in the flowsheet is the same
as the number used in the Python model.

Visual Paradigm Online Free Edition

Mo (T

Pressure swing
adsorption

)l Q2

Prereformer G3as heated Autotherma Isotherma .
reformer reformer tempersture 4 [H2

2 (Steam) 14 [HD
<hift reactar Visual Paradigm Cnline Free Edition

Figure 4: Flowsheet used in the Python model

3.3 Gas heated- and autothermal reformer

The model was first tested by modelling GHR by itself and the ATR by itself. The code is
shown in appendix [A.4] It has the inlet stream with the inlet temperature as input values
and will solve to find the outlet stream and the duty required. The GHR does not actually
need a duty since it is a adiabatic reactor, but to model the GHR and ATR connected
together, we first calculate the heat GHR requires, and then give the same duty into a heat
exchanger after the ATR which should give the outlet temperature after the ATR. While
HYSYS model uses a gibbs reactor where it tries to find a composition that gives lowest
gibbs energy at the given temperature, we control the reactions happening in the reactor by
modelling an equilibrium reactor. The mass balance and energy balance is shown as:

ncu, = No,ch, — &1
NH,0 = NoH,0 — &1 — &2
np, = Nou, + 3&1 + &
nco = noco + & — &2
nco, = No,co, + &2
nH(T) =noH(Tp) + Q,

(3.3.1)

where &; and & are extent of reactions for the steam methane reforming reaction and water
gas shift reaction, respectively. We set &; as §; = no,cH;—nen, and §2 = nco,. The equilibrium
is as shown:

3
TCo * Tg
Ksyp = ——m%
LCHy * TH20 (3.3.2)
Tco2 * THy
Kwgsp = ————
XCo * TH,0

To calculate the enthalpy for each stream, a function was made to easily calculate the
enthalpy of each component at the given temperature, so when calculating the total enthalpy
of the stream, a simple dot product between the component stream array and the enthalpy
array could be used. The were made two enthalpy functions, one with only enthalpy for
the five first components which can be found during the whole process; CH4, H,O, Hy, CO
and COy and another enthalpy function which also includes heavier hydrocarbons. The
heavy enthalpy function was only used until the prereformer, as after the prereformer, all
the heavier hydrocarbons has converted into CHy, H,O and CO. Since there was hard to find

a source with data for every compound, an accurate data from NIST was used to find the
enthalpy for the 5 first components®, while a more ideal gas enthalpy data was used for the
heavier compounds!®. The code used for calculating the enthalpy is shown in appendix

While one may predicted that the steam methane reforming and water gas shift reaction
was well studied with equilibrium data easily available, this was not the case. As there were
no problem finding the equilibrium data by themselves, it was hard to find a study where
the equilibrium constant data was found together. There was one study that showed both
equilibrium constant data, but the data for the water gas shift reaction were unrealistic and
gave odd number@. For example at a temperature of 250°C, the water gas shift reaction
equilibrium constant should have a number around 100, but the one from the study gave
a number less than 0.001, which will give strange numbers for the reactors. That is why
data from another study will be used for the water gas shift reaction®. The code used for
calculating the equilibrium constant for both reactions is shown in appendix

The model for ATR is similar as GHR, but in the case for ATR, the energy balance differ.
Instead of finding a duty from the enthalpy difference between the inlet and outlet temper-
ature, we set the reactor temperature and find the amount of oxygen the reactor needs to
achieve the given temperature. In addition, an chemical equation for methane combusting
with oxygen is included in the model, which changes the mass balances. It was assumed that
there was pressure drop, there was full combustion, meaning that methane and oxygen only
reacted to methane and water. The additional reaction is given as:

CHy 4+ 205 — CO2 + 2 H,0, (3.3.3)
and the new mass balance is given as:

ncuH, = No,cHy, — §1 — &3
N0 = No,H0 — &1 — &2 + &3
nm, = now, + 381 + &2
nco = No,co + &1 — &2
nco, = No,co, + & + &3
nH(T) = noH(Ty) + AHo, - no,,

(3.3.4)

where &3 is the extent of reaction of eq. the amount of oxygen moles required and
AHp, is the change of enthalpy of oxygen. It was also assumed that it was only oxygen that
was combusting and not other compounds, when it reality, other compounds like methane
and hydrogen might also combust and giving more heat in the reactor. The code for the

model is given in appendix

3.4 Initial complete model

After testing out the GHR and ATR models, a complete model of the entire flowsheet was
written in Python. To make the code easier to understand, the code was divided up to
virtual blocks with names to easily identify where all the streams and components was in a

complicated 200+ lines of code. There were total of 11 blocks, and a summary of the goal
of each blocks is shown in table 2

Block number | Goal
e Find the required amount of steam with a 2.5 steam
to carbon ratio.
e Component balance between stream 1, 2 and 3.
1 e Calculating the temperature of stream 3 after mixing
stream 1 and 2.
e Component balance between stream 3 and 4.
e Heat duty required before heating up stream 3 to
2 693K.
e Prereformer. (Equilibrium)
3 e Component balance between stream 4 and 5.
e Pre-GHR heat exchanger, calculating the required
duty.
4 e Component balance between stream 5 and 6.
e Gas heated reformer. (Equilibrium)
e Component balance between stream 6 and 7.
g e Calculating required duty in the GHR.

Table 2: Summary of purpose and goal for each block

The system has 82 variables with 82 independent equations, which fsolve was able to solve.
The code for defining and unpacking variables is shown in appendix The problem with
the model was that even though the system of equations was solved, the results were not
realistic. For example, there were streams that were negative, the isothermal temperature
shift reactor required heat and not the other way around, and the temperature after post-
ATR heat exchanger was negative. And since the code was written as a big system, it was
hard to find where the error was, but the connection between GHR and ATR was the main
suspect. Even though these two reactors worked fine by themselves, an error occured when
GHR required a too big duty that the post ATR heat exchanger could cool down after the
ATR reactor. The code for the initial model is shown in appendix[A.6] To improve this model,

Autothermal Reformer.
Calculating required amount of oxygen to achieve the

set temperature of the reactor.

Post-ATR heat exchanger
Finding the actual outlet temperature after the ATR

by cooling the outlet stream with the same duty that
is required for the GHR.

Isothermal temperature shift reactor. (Equilibrium)

Calculating the duty recovered from the reactor

Precondensate heat exchanger
Calculating the heat recovered by cooling down the
stream to 313K.

Component balance between stream 10 and 11.

10

Condensate. Separating liquid water from the gas
stream with a given split ratio.

Component balance between stream 11 and 12.
Stream 13 is calculated outside of the nonlinear equa-

tion system.

11

Pressure swing adsorption. Separating the stream 12
to product stream (stream 14) and flue gas stream
(stream 15). Product stream will contain mostly hy-

drogen.

Table 3: Summary of purpose and goal for each block

a new model was made where a ”forward passing” method used. Most of the equations were
just a mass balance, so the information from the previous stream could pass directly into the
next stream, given that there was no reaction, which decreases the amount of variables and
required amount independent equations drastically. Rest of the blocks code will be explained
in section

10

3.5 Improved new model

In the new improved model, almost all component balance will be forward passing, meaning
that the previous component stream data will be passed directly as a new stream data. The
model will have stream 1 and stream 2 and inputs since these are given, and the output will
be all 15 streams, oxygen required in the ATR and all the duty required/recovered. Block
1 in the new improved model will have a function that solves the new temperature after
mixing with fsolve. The code for this is shown in appendix [A.7] Block 2 will have only
forward passing, where components from stream 3 will be stream 4 and the duty required
to heating up the stream is calculated by taking the difference in enthalpy between stream
3 and 4. Block 3 is solving stream 5 by a new prereformer function by using stream 4 as
input. The code for this new function is shown in appendix [A.8 Block 4 is similar to block
2, but only with stream 5 and 6. The outlet temperature is set to 973K.

Block 5 and 6, which is the GHR and ATR, will be solved by the same function that was
made at the start when testing the model. The code for GHR and ATR function is shown in
appendix and appendix [A 5] respectively. The operating temperature of GHR and ATR
is set to 1073K and 1600K. In reality, the operating temperature is lower, but the reason
why the operating temperature is higher will be discussed later in the results and conclusion
section. Block 7 calculates the temperature after the heat exchanger after the ATR, by using
the same duty that GHR requires. The code for the post ATR heat exchanger is shown in
appendix [A.9 Block 8 is the isothermal temperature shift reactor and calculates stream 10
and duty recovered by using stream 9 at the given operating temperature of 523K. The code
for this block is shown in appendix [A.10]

Block 9 is the pre-condensate part, and is similar to block 2 and 4, only with stream 10 and
stream 11. Block 10 and 11 is similar to each other, as the stream is splitted into two streams
based on the splitting factor that is given. The split factor in these two blocks are something
to reconsider in the future as they are near ideal numbers and will differ from a realistic
condensator and PSA. To observe the results easier, 4 functions has been made, which are
the functions summary(), error_output(), mass() and composition. The summary function is
print out all the streams, the duty required /recovered and the amount of oxygen required like
a table. The error_output() function prints out the error in fsolve for all equations, but this is
only used in the first initial model as the new improved model will only use forward passing
and its own functions for each block. The function, mass(), prints out the mass streams,
and is used to check if the mass balance is satisfied at all points. Lastly, the function
composition() is similar to the summary() function, only that it prints out the composition
of each component in the streams in a nice table. The code for summary(), error_output(),

mass() and composition is shown in appendix [A.12] appendix [A.13| appendix and
appendix [A.15] respectively.
4 Results and discussion

The initial model that was solving the entire flowsheet at the same time with fsolve did
solve, but gave unrealistic numbers. The temperature after the post ATR heat exchanger

11

was either negative kelvin or around 100K, which can be concluded to be odd. Some streams
even gave negative numbers, which is physically impossible. The mass was not conserved at
all points either. The main suspect of this error was indeed the connection between the GHR
and ATR. If GHR has too high duty, the stream after ATR does not have enough energy to
cool down the stream to a realistic number since the duty used in GHR should be the same
duty that is being recovered. Realistic, GHR and ATR should be operated around 973K and
1323K, respectively, but in our model, they were set to 1073K and 1600K, respectively. The
new improved model showed some promising numbers, where the product stream before the
pressure swing adsorption contained almost entirely of Hy and CO,. There was 2.69% CO
containing in the stream, but this can be improved by finding more optimal temperatures
or equilibrium constants for the isothermal temperature shift reactor. An summary table of
the mole streams, mass streams and mole composition in each stream can be found in fig. [5
fig. [6] and fig. [7], respectively.

0.00
0.00
0.00

0.00 0. 656.28 188.85
0.00 55.84 D 0.00
0.00
0.06

Figure 5: Mole stream table from the new improved model

We can observe that CH4, CO and CO, is increasing and H,O decreasing after the prere-
former, which is expected. We can also see that CHy is almost used up after the GHR and
is almost non existent after the ATR, which is also good. That means that the methane has
converted into Hy, which is the ultimate goal of the process. After the isothermal tempera-
ture shift reactor, the amount of CO is reduced drastically, due to it converting into COs in
the water gas shift reaction. The temperature after the GHR and ATR process (post ATR
heat exchanger) is calculated to be 512K, which should be higher, but this cannot be achieved
without setting the operating temperature of GHR and ATR unreastically high. Methods
of fixing this will be discussed later in the section when discussing future possibilities.

The model has lot of improvements. There has not been considered any pressure drops in
the process, when in reality there will be around 1 bar of pressure drop after each unit. This

12

. @aa7 3
: 8875.7753

Figure 7: Composition of each component in the stream table from the new improved model

means that there are not any compressors considered in the process, when in reality, a large
amount of energy will be required to compress the streams at the required level. The flue
gas which will be transported back to the reservoir is also at a low pressure when using a
pressure swing adsorption since the pressure is being lowered to desorp the CO, from the
particles that is being absorbed at a high pressure. The pressure for the flue gas needs to be
especially higher since when being transported back, it needs to have a high pressure to be
able to transport the flue gas back to the reservoir which has a high pressure. The numbers
for condensate and the pressure swing adsorption has also been almost ideal splitters. This
will be problematic as there are regulations which controls what components are allowed
to be transported as carbon storage in a reservoir and how large concentrations of each
component can be.

The equilibrium constants used in the model is also being used from different sources, and
can be improved by using better constants which will improve the conversion of methane
and CO. The model also assumes that the initial stream is purified at the beginning, when
in reality there needs to be a part where we are adding hydrogen to convert all the sulfuric

13

components into HyS which is being removed by the purifier. The hydrogen can be added
by recycling some of the hydrogen product stream after PSA, which this model have not
considered. The steam used in the process to achieve a 2.5 steam to carbon ratio needs
to be either recycled water after the condensate or purified ocean water. This part of the
process should also be included when improving the model in the future. The pressure swing
adsorption unit requires also hydrogen to flush out the flue gas from the absorbed particles,
which also needs to be modelled. This can be achieved by splitting up the hydrogen product
stream, but to find a sweet spot where the process can achieve maximum amount of hydrogen
with highest amount of purified hydrogen gas is something that can be achieved by optimizing
the process, which should also be a part when improving the model.

This model has considered that the oxygen stream feeding into the ATR is pure, and this
can only be achieved by either electrolysis or a cryogenic separation. When considering a
cheaper option like air membrane separation, some nitrogen will be included in the process
and needs to have a separation unit that can separate the hydrogen and the flue gas with
nitrogen. It also needs to be checked if the concentration of nitrogen gained from the given
method of achieving an oxygen stream is in bounds of the regulations when transporting flue
gas back to the reservoir. Also in the ATR when achieving heat by combusting oxygen with
methane, other components will also combust which will give energy to ATR, that might
reduce or increase the amount of oxygen that is required to achieve the given operating
temperature of the reactor. As the HYSYS model uses a gibbs reactor, it can find the heat
gained from combustion quite easily, but when modelling with an equilibrium reactor like in
the Python model, this can be quite challenging.

Lastly, when modelling the process in this project, there has not been considered any eco-
nomic feasibility and sizing in detail. It has been concluded that this method will use less
space than a regular steam methane reforming process due to the process using an ATR
instead of a large furnace. But if the process is economical feasible with the startup cost and
the amount of revenue and the approximated years in payback is something to consider in
the future when looking if this project is feasible to build or not.

In conclusion, this project will be a good starting point when building a model that will be
used when considering if the whole project is feasible or not. Economy will be a large part
when considering to actually build the offshore process plant or not, but it is also worth
keeping in mind that a part of this project is to achieve closer to the global net zero goal.
It is still important to build an optimized process that can achieve maximum profit while at
the same time ensuring an environmental profit. In the next section, future possibilites with
improvements and project’s potential will be discussed.

5 Future considerations

As discussed in the results and discussion, there are lot of aspects that have been only
assumed or not considered at all for a more simple model. My initial plan is to continue this
project on my project’s thesis and my master’s thesis. At least there are couple of things that
are maybe quite straight forward to implement, like how achieve purified water, calculating

14

the correct splitter raito, achieving oxygen stream and so on. The harder part will be when
turning this model from a steady state to a dynamic system where control theory can be
applied. Also the economic feasibility will play a large part in the project’s thesis or in the
master, as it will ultimately decide if the process plant is actually achievable or not.

Other things to research is finding new equilibrium constants, how much energy we can gain
in the ATR from combusting other compunds than oxygen, calculate the GHR and ATR
together with optimization to find the operating temperature without setting in manually.
Carbon capture and storage will play a big part as the last part of the process plant will
need to be adjusted to the laws controlling the allowed impurities in the flue gas stream
down to the reservoir. Lastly, calculating the work and energy needed to keep the pressure
for all streams at a desirable range.

References

[1] Johnson Matthey. Lch process for the production of blue hydrogen, 2021.
URL https://www.gastechevent.com/media/auOmgmf5/26367- jm-1ch-process-
production-of-low-carbon-hydrogen-tp.pdf|

[2] Tuong-Van Nguyen, Brian Elmegaard, Leonardo Pierobon, Fredrik Haglind, and Peter
Breuhaus. Modelling and analysis of offshore energy systems on North Sea oil and gas
platforms. 10 2012.

[3] Marina Micari and Kumar Varoon Agrawal. Oxygen enrichment of air: Performance
guidelines for membranes based on techno-economic assessment. Journal of Mem-
brane Science, 641:119883, 2022. ISSN 0376-7388. doi: https://doi.org/10.1016/].
memsci.2021.119883. URL https://www.sciencedirect.com/science/article/pii/
S0376738821008267.

[4] Norsk Petroleum. GjenvArende reserver, troll. URL https://www.norskpetroleum.
no/fakta/felt/troll/.

[5] Chase M.W, Jr. Nist-janaf themochemical tables, 1998. URL https://webbook.nist.
gov/cgi/cbook.cgi?Source=1998CHA1-1951.

[6] Yasar Demirel. Green Energy and Technology. 01 2012. ISBN 978-1-4471-2372-9. doi:
10.1007/978-1-4471-2372-9.

[7] Yunfei Yan, Jie Zhang, and Li Zhang. Properties of thermodynamic equilibrium-based
methane autothermal reforming to generate hydrogen. International Journal of Hydrogen
Energy, 38(35):15744-15750, 2013. ISSN 0360-3199. doi: https://doi.org/10.1016/j.
ijhydene.2013.06.007. URL https://www.sciencedirect.com/science/article/pii/
S50360319913014456.

[8] Byron Smith, L. Muruganandam, Loganathan Murthy, and Shekhar Shantha. A re-
view of the water gas shift reaction kinetics. International Journal of Chemical Reactor
Engineering - INT J CHEM REACT ENG, 8, 01 2010. doi: 10.2202/1542-6580.2238.

15

https://www.gastechevent.com/media/au0mgmf5/26367-jm-lch-process-production-of-low-carbon-hydrogen-tp.pdf
https://www.gastechevent.com/media/au0mgmf5/26367-jm-lch-process-production-of-low-carbon-hydrogen-tp.pdf
https://www.sciencedirect.com/science/article/pii/S0376738821008267
https://www.sciencedirect.com/science/article/pii/S0376738821008267
https://www.norskpetroleum.no/fakta/felt/troll/
https://www.norskpetroleum.no/fakta/felt/troll/
https://webbook.nist.gov/cgi/cbook.cgi?Source=1998CHA1-1951
https://webbook.nist.gov/cgi/cbook.cgi?Source=1998CHA1-1951
https://www.sciencedirect.com/science/article/pii/S0360319913014456
https://www.sciencedirect.com/science/article/pii/S0360319913014456

A Python code

A.1 Defining and unpacking variables

from enthalpy import const, enthalpy, enthalpy_heavy, heavy_const
from Keq import K_smr, K_wgsr

import scipy.optimize as opt

import autograd.numpy as np

from autograd import grad, jacobian

inlet/outlet = [molar flow, P, T/Q/n02]
Cc =12

H=1.

0 =16

#

molar flow component order = CH4, H20, H2, CO, COZ2

Mm = np.array([C * 1 + H* 4, H* 2 +0, H* 2, C+ 0, C+ 0 % 2])
This 1s to check the conservation of mass

molar flow component order = CH4, H20, HZ2, CO,

C02, C2H6, C3H8, n-C4H10, i-C4H10, C5H12

Mm_heavy = np.array(
[C*1+H*4, H* 2 +0, H*x2, C+0,C+0x*x2, Cx*x2+H=x*6, Cx*x3
+H*8, C*4+H=* 10, C * 4 +H *x 10, C * 5 + H * 12])

inletcomposition = np.array([78.24, 0.0, 0.0, 0.0, 1.34, 6.10, 6.7, 2.48,
1.41, 3.71) / 100 # [Sm~3/h]

inletstream_kg = 4000 * 0.829

avgMm = np.dot(Mm_heavy,inletcomposition)

inletstream_mol = inletstream_kg/avgMm

inletstream = np.multiply(inletstream_mol,inletcomposition)
other = np.array([30.0, 311.0])

inletstream = np.append(inletstream, other) # This is the given values

16

guess = np.array([400, 30.0, 10000, # n2
100, 400, 0.0, 0.0, 1, 30.0, 400.0, # n3
100, 400, 0.0, 0.0, 1, 30.0, 4000.0, # n4
200, 400, 100, 1, 10, 30.0, 700.0, # nb5
200, 300, 100.0, 1, 10, 30.0, 20000.0, # né6
10, 300, 500.0, 100.0, 1.0, 30.0, -5000, # n7
1, 200, 500.0, 100.0, 1.0, 30.0, 30, # n8
1, 200, 500.0, 100.0, 1.0, 30.0, 200, # n9
1, 10, 500.0, 200, 1.0, 30.0, -6000.0, # mni0
1, 10, 500.0, 10.0, 1.0, 30.0, # nit
1, 1.0, 500.0, 10.0, 100, 30.0, 313.0, # niZ2
30.0, 313.0, # ni3
1.0, 1.0, 500.0, 1.0, 1.0, 30.0, 313.0, # ni4
30.0, 313.01) # ni5

splitratio = np.array([[1.0, 0.001, 1.0, 1.0, 1.0], [0.01, 0.01, 0.999, 0.01, 0.01]11)

Input 2s gtven, { and output <s the initial guess wvalues
def system(input, output, f):

Defining and unpacking all the variables

n1CH4, n1H20, n1H2, nl1CO, n1C02, \

nl1C2H6, n1C3H8, nli_C4H10, nln_C4H10, nl1_C5, P1, T1 = input

f1, f2 = £

Note: on stream 8, we set the reactor temperature depending on U2 stream

n2H20, P2, Q1, \

n3CH4, n3H20, n3H2, n3C0, n3C02, P3, T3, \

n4CH4, n4H20, n4H2, n4CO, n4C02, P4, Q2, \

n5CH4, nb5H20, nbH2, n5CO, n5C02, P5, T5, \

n6CH4, n6H20, n6H2, n6CO, n6CO2, P6, Q3, \

n7CH4, n7H20, n7H2, n7C0, n7C02, P7, Q4, \

n8CH4, n8H20, n8H2, n8CO, n8C02, P8, n02, \

n9CH4, n9H20, n9H2, n9CO, n9CO02, P9, T9, \

n10CH4, n10H20, n10H2, n10CO, nl0C02, P10, Q5, \

n11CH4, n11H20, n11H2, n11CO, n11C02, P11, \

n12CH4, n12H20, n12H2, n12C0, n12C02, P12, T12, \

17

P13, T13, \
n14CH4, n14H20, n14H2, n14C0, n14C02, P14, Ti14, \
P15, T15 = output

Defining variables
n2 = n2H20

n5 = nbCH4 + nbH20 + nbH2 + nb5CO + n5C02
n7 = n7CH4 + n7H20 + n7H2 + n7C0 + n7C02
n8 = n8CH4 + n8H20 + n8H2 + n8CO + n8C02

nl0 = n10CH4 + n10H20 + nl1OH2 + n10CO + n10C0O2

nCarbon = n1CH4 + n1C2H6 + ni1C3H8 + nin_C4H10 + n1i_C4H10 + n1_C5

A.2 Enthalpy

H298, A, B, C, D, E, F, G, H
order of compounds: CH4, H20, H2, CO, CO2

Temperature ranges for the constants:
CH4 (298-1300), H20 (500-1700), H2 (298-1000), CO (298-1300), CO2 (298-1200)

const = np.array([[-74.87, -0.703029, 108.4773, -42.52157, 5.862788,
0.678565, -76.84376, 158.7163, -74.87310],
[-241.83, 30.09200, 6.832514, 6.793435, -2.534480,
0.082139, -250.8810, 223.3967, -241.8264],
[0.0, 33.066178, -11.363417, 11.432816, -2.772874,
-0.158558, -9.980797, 172.707974, 0.0],
[-110.53, 25.56759, 6.096130, 4.054656, -2.671301,
0.131021, -118.0089, 227.3665, -110.5271],
[-393.52, 24.99735, 55.18696, -33.69137, 7.948387,
-0.136638, -403.6075, 228.2431, -393.5224]
D

Order of components: CH4, H20, H2, CO, CO2, C2H6, C3H8, n-C4H10, ©1-C4H10, C5+
Order of coefficients: A, B, C, H298, Cp298/R <- remember to multiply with 8.314
heavy_const = np.array([[1.702, 9.081, -2.164, -74.520 ,4.217],

18

[3.470, 1.450, 0.000, -241.818,4.038],
[3.249, 0.422, 0.000, 0.000, 3.468],

[3.376, 0.557, 0.000, -110.525, 3.507],
[5.457, 0.557, 0.000, -393.509, 4.467],
[1.131, 19.225, -5.561, -83.820, 6.369],
[1.213, 28.785, -8.824, -104.680, 9.011],
[1.935, 36.915, -11.402, -125.790, 11.298],
[1.935, 36.915, -11.402, -125.790, 11.298],
[2.464, 45.351, -14.111, -146.760, 14.731]1]1)

def enthalpy(v, T): # kJ/mol
T =T / 1000

h_vec = v[:,0] + v[:,1] * T + v[:,2] / 2 * T *x 2 + v[:,3] / 3 * T *x 3 +\
v[:,4] / 4 * T *x 4 - v[:,5] / T + v[:,6] - v[:,8]
h_vec = enthalpy_heavy(heavy_const, T*1000) [:5]

return h_vec

def enthalpy_heavy(v, T):
h_vec = v[:,3] + (((v[:,01*T + v[:,1]/2%xT**2x10%*(-3) +
v[:,2]/3*xT**3%x10%x(-6)) - (v[:,0]1*298 + v[:,1]/2%x298*x2*x10x*(-3) +
v[:,2]/3%298%x3%10%* (-6)))*8.314 /1000)

return h_vec

A.3 Equilibrium constant

def K_smr(T):
return (np.exp(-22790 / T + 8.156 * np.log(T) - 4.421 / 10 *x 3 * T
- 4.330 * 10 *x 3 / (T **x 2) - 26.030))

def K_wgsr(T):

return np.exp(5693.5/T + 1.077+#np.log(T) + 5.44e-4xT - 1.126e-7*T**2 -
49170/ (T*%2)-13.148)

19

A.4 Gas heated reformer

def GHR_Reactor(inlet, outlet):
nOCH4, nOH20, nOH2, n0OCO, n0C02, TO = inlet
nCH4, nH20, nH2, nCO, nC02, Q = outlet
ksil = nOCH4 - nCH4

ksi2 = nC02 - n0CO2
ntot = nCH4 + nH20 + nH2 + nCO + nC02
T = 973

eql = K_smr(T)*((nCH4/ntot) * (nH20/ntot)) -
(((nCO/ntot) * (nH2/ntot) ** 3))

eq2 = K_wgsr(T)*((nCO/ntot) * (nH20/ntot))
- (((nC02/ntot) * (nH2/ntot)))

eq3 = nH20 - nOH20 + ksil + ksi2

eq4 = nH2 - nOH2 - 3 * ksil - ksi2

egb = nCO - nOCO - ksil + ksi2

#MB = np.array([eql, eq2, eq3, eq4, eq5])

eq6 = np.dot(inlet[:5],enthalpy(const, TO)) -
np.dot (outlet[:5],enthalpy(const, T)) + Q

#EB = np.array([eq6])

balances = np.array([eql,eq2,eq3,eq4,eq5,eq6])

return balances

20

A.5 Autothermal reformer

def ATR_Reactor(inlet, outlet):
nOCH4, nOH20, nOH2, n0CO, n0C02, PO, TO= inlet
n02, nCH4, nH20, nH2, nCO, nC02, P = outlet

ch4adj = nOCH4- n02/2

c02adj = n0C02+ n02/2

ksil = ch4adj - nCH4

ksi2 = nC02 - c02adj

ntot = nCH4 + nH20 + nH2 + nCO + nCO2

T = 1600

eql = K_smr(T)*((nCH4/ntot) * (nH20/ntot)) - (((nCO/ntot) * (nH2/ntot) ** 3))
eq2 = K_wgsr(T)*((nCO/ntot) * (nH20/ntot)) - (((nC02/ntot) * (nH2/ntot)))
eq3 = nH20 - nOH20 + ksil + ksi2 - n02

eqg4 = nH2 - nOH2 - 3 * ksil - ksi2

eqb = nCO - n0OCO - ksil + ksi2

eq6 = np.dot(inlet[:5],enthalpy(const, TO)) -

np.dot(outlet[1:6],enthalpy(const, T)) + n02%22.7

eq?7 = P-PO

balances = np.array([eql,eq2,eq3,eq4,eq5,eq6,eq7])

return balances

21

A.6 Initial model

Author: Yoonsik UOh
Project: SUBPRO Blue hydrogen

from enthalpy import const, enthalpy, enthalpy_heavy, heavy_const
from Keq import K_smr, K_wgsr

import scipy.optimize as opt

import autograd.numpy as np

from autograd import grad, jacobian

inlet/outlet = [molar flow, P, T/Q/n02]
C =12

H=1.

0 =16

#

molar flow component order = CH4, H20, H2, CO, COZ2

Mm = np.array([C * 1 + H * 4, H* 2 +0, H*x 2, C+0, C+ 0 * 2]) # This
is to check the conservation of mass

molar flow component order = CH4, H20, H2, CO, CO2, C2H6, C3H8, n-C4H10,
i-C4H10, CBH12

Mm_heavy = np.array(
[Cx1+H*4, H*x2+0,H*2,C+0,C+0*2, Cx*2+H=*6,Cx
3+Hx*x8, Cx4+H=x*x 10, C*x 4 + H x 10,
Cx*5+H=* 12])

inletcomposition = np.array([78.24, 0.0, 0.0, 0.0, 1.34, 6.10, 6.7, 2.48,
1.41, 3.71) / 100 # [Sm~3/h]

inletstream_kg = 4000 * 0.829

avgMm = np.dot(Mm_heavy,inletcomposition)

inletstream_mol = inletstream_kg/avgMm

inletstream = np.multiply(inletstream_mol,inletcomposition)
other = np.array([30.0, 311.0])

inletstream = np.append(inletstream, other) # This is the given values

22

guess = np.array([400, 30.0, 10000, # n2
100, 400, 0.0, 0.0, 1, 30.0, 400.0, # n3
100, 400, 0.0, 0.0, 1, 30.0, 4000.0, # n4
200, 400, 100, 1, 10, 30.0, 700.0, # nb
200, 300, 100.0, 1, 10, 30.0, 20000.0, # né6
10, 300, 500.0, 100.0, 1.0, 30.0, -5000, # n7
1, 200, 500.0, 100.0, 1.0, 30.0, 30, # n8
1, 200, 500.0, 100.0, 1.0, 30.0, 200, # n9
1, 10, 500.0, 200, 1.0, 30.0, -6000.0, # ni0
1, 10, 500.0, 10.0, 1.0, 30.0, # nit
1, 1.0, 500.0, 10.0, 100, 30.0, 313.0, # ni2
30.0, 313.0, # ni3
1.0, 1.0, 500.0, 1.0, 1.0, 30.0, 313.0, # ni4
30.0, 313.0]) # ni15

splitratio = np.array([[1.0, 0.001, 1.0, 1.0, 1.0], [0.01, 0.01, 0.999,
0.01, 0.0111)

Input 1s gtven, () and output <s the initial guess values

def system(input, output, f):
Defining and unpacking all the wvariables
ni1CH4, n1H20, ni1H2, n1CO, n1C02, \
nl1C2H6, nl1C3H8, nli_C4H10, nin_C4H10, n1_C5, P1, T1 = input
f1, f2 = f
Note: on stream 8, we set the reactor temperature depending on U2
stream
n2H20, P2, Q1, \
n3CH4, n3H20, n3H2, n3CO, n3C02, P3, T3,
n4CH4, n4H20, n4H2, n4C0O, n4C02, P4, Q2,
n5CH4, nbH20, nb5H2, nb5C0, nbC02, P5, T5,
n6CH4, n6H20, n6H2, n6CO, n6C02, P6, Q3,
n7CH4, n7H20, n7H2, n7C0O, n7C02, P7, Q4,
n8CH4, n8H20, n8H2, n8CO, n8C02, P8, n02, \

~ - -

23

n9CH4, n9H20, n9H2, n9CO, n9C02, P9, T9, \
n10CH4, n10H20, nl10H2, n10C0O, n10C02, P10, Q5, \
n11CH4, n11H20, n11H2, n11CO, n11C02, P11, \
ni12CH4, ni12H20, n12H2, n12C0, n12C02, P12, T12, \
P13, T13, \

n14CH4, n14H20, n14H2, n14C0, n14C02, P14, Ti14, \
P15, T15 = output

Defining variables
n2 = n2H20

n5 = nbCH4 + nb5H20 + nbH2 + nb5CO + n5C02
n7 = n7CH4 + n7H20 + n7H2 + n7C0 + n7C02
n8 = n8CH4 + n8H20 + n8H2 + n8CO + n8C02

nl0 = n10CH4 + n10H20 + nl1OH2 + n10CO + n10C0O2

nCarbon = niCH4 + n1C2H6 + nl1C3H8 + nin_C4H10 + nl1i_C4H10 + n1_CbH

BLOCK 1: mizing purified natural gas and steam and setting S/C to 2.5
stcr = 2.5 # steam to carbon ratio (molar ratio)

eq0 = n3H20 - stcr * nCarbon

eql = n3CH4 - niCH4

eq2 = n3H20 - n2H20 - nl1H20

eq3 = n3H2 - nlH2

eg4 = n3C0O0 - niCO

egb = n3C02 - n1CO2

eq6 = P2 - P1

eq’7 = P3 - P2

n3stream = output[3:8]
n3stream = np.append(n3stream, input[5:10])
T2 = 423

eq8 = np.dot(tnput/[:10], cp(cp_const, T1)) * 8.314 * (T1 - 298) + n2
* 8.314 * single_cp(H20coeff, T2) * (T2 - 298) \
- np.dot (n3stream, cp(cp_const, T3)) * 8.314 * (T3 - 298)

eq8 = np.dot(input[:10], enthalpy_heavy(heavy_const, T1)) + \
np.dot ([0, n2H20, O, O, O, O, O, O, O, O],

24

enthalpy_heavy(heavy_const, T2)) - \
np.dot(n3stream, enthalpy_heavy(heavy_const, T3))

BLOCK 2: Pre—prereformer heat exchanger
T4 = 693

eq9 = n4CH4 - n3CH4

eql0 = n4H20 - n3H20

eqll = n4H2 - n3H2

n4C0 - n3CO

n4C02 - n3C02

ndstream = output[10:15]

eql2

eql3

ndstream = np.append(nédstream, input[5:10])

eql4 = np.dot(n3stream, enthalpy_heavy(heavy_const, T3)) - \
np.dot (ndstream, enthalpy_heavy(heavy_const, T4)) + Q1
eqlb = P4 - P3

BLOCK 3: Prereformer (Removing all heavier carbons to methane, (full
conversion))

pr_ksil = nl1C2H6

pr_ksi2 = n1C3H8

pr_ksi3 = nln_C4H10

pr_ksi4 = nli_C4H10

pr_ksib = n1_C5

pr_ksi6 = n4CH4 - nbCH4

pr_ksi7 = nb5C02 - n4C02

eql6 = nbH20 - n4H20 + 2 * pr_ksil + 3 * pr_ksi2 + 4 * pr_ksi3 + 4 *
pr_ksi4 + 5 * pr_ksib + pr_ksi6 + pr_ksi7

eql7 = nbH2 - n4H2 - 5 * pr_ksil - 7 * pr_ksi2 - 9 * pr_ksi3 - 9
pr_ksi4 - 11 * pr_ksib - 3 * pr_ksi6 - pr_ksi7

eql8 = nbCO - n4CO - 2 * pr_ksil - 3 * pr_ksi2 - 4 * pr_ksi3 - 4
pr_ksi4 - 5 * pr_ksib - pr_ksi6 + pr_ksi7

eql9 = K_smr(T5) * ((nbCH4 / nb) * (nbH20 / nb))
(nSH2 / nb) ** 3))

eq20 = K_wgsr(T5) * ((n5CO / nb) * (nbH20 / nb))
(n5H2 / n5)))

*

*

(((n5CO / nb)

*

(((nbCO2 / nb) =

25

eq2l = np.dot(ndstream, enthalpy_heavy(heavy_const, T4)) -
np.dot (output [17:22], enthalpy(const, T5))
eq22 = P5 - P4

BLOCK 4: Pre-GHR Heat Exzchanger

T6 = 973

eq23 = n6CH4 - nbCH4

eq24 = n6H20 - nbH20

eq2b = n6H2 - nbH2

eq26 = n6C0 - n5CO

eq27 = n6C02 - nbCO2

eq28 = np.dot(output[17:22], enthalpy(const, T5)) - \
np.dot (output [24:29], enthalpy(const, T6)) + Q2
P6 - P5

eq29

BLOCK 5: GHR

T7 = 1073
ghr_ksil = n6CH4 - n7CH4
ghr_ksi2 = n7C02 - n6C02

eq30 = K_smr(T7) * ((n7CH4 / n7) * (n7H20 / n7)) - (((n7CO / n7) *
(n7H2 / n7) ** 3))

eq3l = K_wgsr(T7) * ((n7C0 / n7) * (u7H20 / n7)) - (((n7C02 / n7) =*
(n7H2 / n7)))

eq32 = n7H20 - n6H20 + ghr_ksil + ghr_ksi2

eq33 = n7H2 - n6H2 - 3 * ghr_ksil - ghr_ksi2

eq34 = n7C0 - n6CO - ghr_ksil + ghr_ksi2

eq35 = np.dot(output[24:29], enthalpy(const, T6)) -

np.dot (output [31:36], enthalpy(const, T7)) + Q3
eq36 = P7 - P6

BLOCK 6: ATR

atr_ksil = n7CH4 - n8CH4 - n02 / 2
n8C02 - n7C02 - n02 / 2

atr_ksi2

T8 = 1323

26

eq37 = K_smr(T8) * ((n8CH4 / n8) * (n8H20 / n8)) - ((n8CO / n8) * (n8H2
/ n8) ** 3)

eq38 = K_wgsr(T8) * ((n8CO / n8) * (n8H20 / n8)) - ((n8CO2 / n8) *
(n8H2 / n8))

eq39 = n8H20 - n7H20 + atr_ksil + atr_ksi2 - n02

eq40 = n8H2 - n7H2 - 3 * atr_ksil - atr_ksi2

eq4l = n8CO - n7C0 - atr_ksil + atr_ksi2

eq42 = np.dot(output[31:36], enthalpy(const, T7)) -

np.dot (output [38:43], enthalpy(const, T8)) + n02 * 23.7

eq43 = P8 - P7

#eq37, eq38, eq39, eq40, eq4l, eq42, eq43 =
ATR_Reactor (np.array([n7CH4,n7H20,n7H2, n7C0, n7C02, P7, T7]),
#np . array ([n02,n8CH,, n8H20, n8H2, n8CO, n8CO2, P8]))

BLOCK 7: Post-ATR heat exchanger for making the model make sense by
setting the
post temperature after ATR as the duty required for heating up GHR
eq44 = n9CH4 - n8CH4
eq4b = n9H20 - n8H20
eq46 = n9H2 - n8H2
eg47 = n9CO - n8CO
eg48 = n9C02 - n8C02
eq49 = np.dot(output[38:43], enthalpy(const, T8)) - \
np.dot (output [45:50], enthalpy(const, T9)) + Q3
eqb0 = P9 - P8

BLOCK 8: Isothermal temperature shift reactor

T10 = 523 # Setting the reactor temperature and solving for the heat
required instead

itsr_ksil = n9H20 - n1OH20

n10CH4 - n9CH4
n10H2 - n9H2 - itsr_ksil

eq51
eqb2

27

eqb3 = nl10CO - n9CO + itsr_ksil

eqb4 = nl10C02 - n9CO2 - itsr_ksil

eg55 = K_wgsr(T10) * ((n10CO / n10) * (nlOH20 / n10)) - ((n10CO2 / ni10)
* (n10H2 / n10))

eqb6 = np.dot(output[45:50], enthalpy(const, T9)) - \
np.dot (output [52:57], enthalpy(const, T10)) + Q4
eqb7 = P10 - P9

BLOCK 9: Precondensate heat exzchanger, same as ITSR, the temperature
is set and we solve for heat gained

T11 = 313

eq58 = n11CH4 - n10CH4

eqb59 = n11H20 - n1OH20

eq60 = nl11H2 - nl1OH2

eq61 = n11CO0 - n10CO

eq62 = n11C02 - n10CO2

eq63 = np.dot(output[52:57], enthalpy(const, T10)) - \
np.dot (output [59:64], enthalpy(const, T11)) + Q5
P11 - P10

eq64

BLOCK 10: Condensate

eq65 = n12CH4 - f1[0] * n11CH4
eq66 = nl12H20 - f1[1] * n11H20
eq67 = n12H2 - f1[2] * n11H2
eq68 = n12C0 - f1[3] * n11CO
eq69 = n12C02 - f1[4] * n11CO2
eq70 = P12 - P11

eq7l = T12 - T11

eq72 = P13 - P11
eq73 = T13 - Ti1

BLOCK 11 PSA

eq74 = nl14CH4 - £f2[0] * n12CH4
eq75 = nl14H20 - f2[1] * n12H20
eq76 = nl4H2 - f2[2] * nl12H2

28

eq77 = n14C0 - f2[3] * n12CO
eq78 = n14C02 - f2[4] * n12C02
eq79 = P14 - P12

eq80 = T14 - Ti12

eq81 = P15 - P12

eq82 = T15 - T12

system = np.array([eq0, eql, eq2, eq3, eq4, eq5, eqg6, eq7, eq8, eq9,
eql0, eqll, eql2, eql3, eqld, eql5,
eql6, eql7, eql8, eql9, eq20, eq21l, eq22, eq23,
eq24, eq25, eq26, eq27, eq28, eq29,
eq30, eq31, eq32, eq33, eq34, eq35, eq36, eqd7,
eq38, eq39, eq40, eqd4l, eqd42, eq43,
eq44, eq4b, eqd6, eqd7, eq48, eq49, eqb0, eqbl,
eqb52, eqb3, eqb4, eqbb, eqgb6, eqb7,
egb58, eqb9, eq60, eqbl, eqb62, eq63, eqb4, eqbb,
eq66, eqb7, eq68, eq69, eq70, eq7l,
eq72, eq73, eq74, eq75, eq76, eq77, eq78, eqr79,
eq80, eq81, eq82])

return system

def function(guess):

return system(inletstream, guess, splitratio)

def solve(f, guess, grad_function):
sol = opt.fsolve(f, guess)
print(sol)

return sol

grad_function = jacobian(function)

sol = opt. fsolve(function, guess, fprime=grad_function)

29

print ("error:", function(sol))

sol = solve(function, guess, grad_function)

A.7 Mixing temperature

def mixingTemp(input,guess):
ni1CH4, n1H20, nl1H2, nl1CO, n1C02, n1C2H6, n1C3H8, nli_C4H10, nln_C4H10,
nl_C5, P1, T1, n2H20, T2 = input
n3stream = input[:10]+np.array([0, n2H20, O, O, O, O, O, O, O, 0])
T3 = guess[0]

eql = np.dot(input[:10], enthalpy_heavy(heavy_const, T1)) + \
np.dot(np.array([0, n2H20, O, O, O, O, O, O, O, 0]),
enthalpy_heavy(heavy_const, T2)) - \
np.dot(n3stream, enthalpy_heavy(heavy_const, T3))

return eql

def T3function(outlet): # Using this function in fsolwe

return mixingTemp(inletstream,outlet)

A.8 Prereformer

def PR_Reactor(inlet, outlet):
n4CH4, n4H20, n4H2, n4C0, n4C02, nl1C2H6, ni1C3H8, nin_C4H10, nli_C4H10,
nl1_C5,T4 = inlet
n5CH4, nb5H20, nbH2, n5C0O, n5C02, T5 = outlet

ndstream = inlet[:10]
n5 = nbCH4 + nbH20 + nbH2 + nb5CO + n5C02

pr_ksil = n1C2H6
pr_ksi2 = n1C3H8
pr_ksi3 = nln_C4H10
pr_ksi4 = nli_C4H10

30

pr_ksib = n1_Cb
pr_ksi6 = n4CH4 - nbCH4
n5C02 - n4C02

pr_ksi7

eql = nbH20 - n4H20 + 2 * pr_ksil + 3 * pr_ksi2 + 4 * pr_ksi3 + 4 *
pr_ksi4 + 5 * pr_ksib + pr_ksi6 + pr_ksi7
eq2 = nbH2 - nd4H2 - 5 * pr_ksil - 7 * pr_ksi2 - 9 * pr_ksi3 - 9

*

pr_ksi4 - 11 * pr_ksib - 3 * pr_ksi6 - pr_ksi7

eq3 = nbCO - n4CO - 2 * pr_ksil - 3 * pr_ksi2 - 4 * pr_ksi3 - 4 x*
pr_ksi4 - 5 * pr_ksib - pr_ksi6 + pr_ksi7

eqd = K_smr(T5) * ((nBCH4 / nb) * (nb5H20 / n5)) - (((n5CO / nb) * (nbH2
/ n5) ** 3))

eqb = K_wgsr(T5) * ((n56CO / nb5) * (n5H20 / nb))
/ 1n5)))

eq6 = np.dot(ndstream, enthalpy_heavy(heavy_const, T4)) -
np.dot(outlet[:5], enthalpy(const, T5))

(((n5C02 / nb5) * (nbH2

return np.array([eql,eq2,eq3,eq4,eq5,eq6])

A.9 Post ATR temperature

def postATR_temp(input, output):
n8CH4, n8H20, n8H2, n8CO, n8C02, \
n9CH4, n9H20, n9H2, n9CO, n9CO2, T8, Q3 = input

T9 = output

stream8 = np.array([n8CH4, n8H20, n8H2, n8CO, n8C02])
stream9 = np.array([n9CH4, n9H20, n9H2, n9CO, n9C02])

eql = np.dot(stream8, enthalpy(const, T8)) - \
np.dot(stream9, enthalpy(const, T9)) + Q3

return eql

31

A.10 Isothermal temperature shift reactor

def itsr(input, output):
n9CH4, n9H20, n9H2, n9CO, n9CO2, T9 = input
n10CH4, n10H20, n10H2, n10CO, nl10C02, Q4 = output
nl0 = n10CH4 + n10H20 + nl1OH2 + n10CO + n10C0O2
stream9 = np.array([n9CH4, n9H20, n9H2, n9CO, n9C02])
stream10 = np.array([n10CH4, n10H20, n10H2, n10CO, nl10C02])

T10 = 523
Setting the reactor temperature and solving for the heat required instead
itsr_ksil = n9H20 - nl10H20

eql = n10CH4 - n9CH4

eq2 = nl0H2 - n9H2 - itsr_ksil

eq3 = nl0CO - n9CO + itsr_ksil

eg4 = nl10C02 - n9CO2 - itsr_ksil

eqb = K_wgsr(T10) * ((n10CO / n10) * (nl1OH20 / n10))

- (((n10C02 / n10) * (n1OH2 / n10)))
eq6 = np.dot(stream9, enthalpy(const, T9)) - \
np.dot(streaml10, enthalpy(const, T10)) + Q4

return np.array([eql,eq2,eq3,eq4,eq5,eq6])

A.11 New improved model

Author: Yoonsik Uh
Project: SUBPRO Blue hydrogen

from enthalpy import const, enthalpy, enthalpy_heavy, heavy_const
from Keq import K_smr, K_wgsr

import scipy.optimize as opt

import autograd.numpy as np

from autograd import grad, jacobian

from atr import ATR_Reactor

from mixing import mixingTemp

32

from prereformer import PR_Reactor
from ghr import GHR_Reactor
from postATR import postATR_temp

from itsr import itsr

inlet/outlet = [molar flow, T, PJ]
Cc =12

H=1.

0 =16

#

molar flow component order = CH4, H20, H2, CO, COZ2

Mm = np.array([C * 1 + H*x 4, H*x 2 +0, H* 2, C+ 0, C+ 0 % 2]) # This
is to check the conservation of mass

molar flow component order = CH4, H20, H2, CO, CO2 C2H6 C3H8
n-C4H10 i-C4H10 CBH12

Mm_heavy = np.array(
[Cx*1+H*x4, Hx 2+ 0, H*2, C+0, C+0x*2, Cx*2+H=x*©6, C=x
3+H*x8, C*x4+H=x* 10, C *x 4 + H * 10,
C* 5+ H=* 12])

inletcomposition = np.array([78.24, 0.0, 0.0, 0.0, 1.34, 6.10, 6.7, 2.48,
1.41, 3.71) / 100 # [Sm~3/h]

inletstream_kg = 4000 * 0.829

avgMm = np.dot(Mm_heavy,inletcomposition)

inletstream_mol = inletstream_kg/avgMm

inletstream = np.multiply(inletstream_mol,inletcomposition)
other = np.array([30.0, 311.0])

inletstream = np.append(inletstream, other) # This is the given values

splitratio = np.array([[1.0, 0.001, 1.0, 1.0, 1.0], [0.01, 0.01, 0.999,
0.01, 0.0111)

33

Input 2s gtven, { and output <s the initial guess values

def system(input, f):

ni1CH4, n1H20, nl1H2, ni1CO, niC02, \
n1C2H6, n1C3H8, nl1i_C4H10, nin_C4H10, nl1_C5, P1, T1 = input
f1, f2 = £

nCarbon = niCH4 + nl1C2H6 + nl1C3H8 + nin_C4H10 + n1i_C4H10 + nl1_C5

stcr = 2.5 # steam to carbon ratio (molar ratio)

o
BLOCK 1: mizing purified natural gas and steam and setting S/C to
2.5

H o
n2H20 = stcr * nCarbon

n3CH4 = nl1CH4

n3H20 = n2H20 + nl1H20

n3H2 = nl1H2

n3C0 = n1CO

n3C02 = n1CO02

P2 = P1

P3 = P2

T2 = 423

inletl = input

inletl = np.append(inletl, np.array([n2H20, T2]))

def T3function(guess):

return mixingTemp(inletl, guess)

34

soll = opt.fsolve(T3function, np.array([T2]))

T3 = so0l1[0]

B
BLOCK 2: Pre—prereformer heat exchanger

H o
T4 = 693

n4CH4 = n3CH4

n4H20 = n3H20

n4H2 = n3H2

n4C0 = n3CO

n4C02 = n3C02

ndstream = np.array([n4CH4, n4H20, n4H2, n4CO, n4C02])
ndstream = np.append(nédstream, input[5:10])
n3stream = n4stream

Q1 = np.dot(ndstream, enthalpy_heavy(heavy_const, T4)) -
np.dot(n3stream, enthalpy_heavy(heavy_const, T3))
P4 = P3

BLOCK 3: Pre-reformer (Removing all heavier carbons to methane,

(full conversion))

stream4 = np.array([n4CH4, n4H20, n4H2, n4CO, n4C02])
stream4 = np.append(stream4, input[5:10])

stream4 = np.append(streamd, T4)

guess3 = np.array([100, 500, 100, 1, 100, 700])

def PR_function(guess):

return PR_Reactor(stream4, guess)

sol3 = opt.fsolve(PR_function, guess3)

n5CH4, n5H20, nbH2, n5C0O, n5C02, T5 = so0l3

35

streamb = np.array([n5CH4, n5H20, n5H2, n5C0, n5C02])

P5 = P4

__
BLOCK 4: Pre-GHR Heat Exzchanger

__
T6 = 973

n6CH4 = n5CH4
n6H20 = n5H20
n6H2 = nbH2
n6C0O = n5CO
n6C02 = nb5C0O2

stream6 = np.array([n6CH4, n6H20, n6H2, n6CO, n6C02])
Q2 = np.dot(stream6, enthalpy(const, T6)) - np.dot(streamb,
enthalpy(const, T5))

P6 = P5

__
BLOCK 5: GHR

__

guessb = np.array([100, 500, 500, 100, 100, 28000.0])
T7 = 1073
inputb5 = np.append(stream6, np.array([T6]))

def GHR_function(guess):

return GHR_Reactor(inputb, guess)

solb = opt.fsolve(GHR_function, guessb)

n7CH4, n7H20, n7H2, n7C0, n7C02, Q3 = solb
P7 = P6

BLOCK 6: ATR

stream7 = np.array([n7CH4, n7H20, n7H2, n7C0, n7C02])

guess6 = np.array([100,100, 500, 500, 100, 100, 30])
inlet6 = np.append(stream7, np.array([30, T7]))
T8 = 1600

def ATR_function(guess):

return ATR_Reactor(inlet6, guess)

sol6 = opt.fsolve(ATR_function, guess6)

n02, n8CH4, n8H20, n8H2, n8CO, n8C02, P8 = sol6
stream8 = np.array([n8CH4, n8H20, n8H2, n8CO, n8C02])

BLOCK 7: Post-ATR heat exchanger for making the model make sense by
setting the
post temperature after ATR as the duty required for heating up GHR

n9CH4 = n8CH4

n9H20 = n8H20

n9H2 = n8H2

n9Co n8C0

n9C02 = n8C02

stream9 = np.array([n9CH4, n9H20, n9H2, n9CO, n9C02])

inlet7 = np.append(stream8, stream9)

inlet7 = np.append(inlet7, np.array([T8, -Q3]))

def postAtr_function(guess):
return postATR_temp(inlet7, guess)

guess7 = np.array([400])

sol7 = opt.fsolve(postAtr_function, guess7)

37

T9 = sol7[0]

P9 = P8

__
BLOCK 8: Isothermal temperature shift reactor

__

T10 = 523 # Setting the reactor temperature and solving for the heat

required instead

input8 = np.append(stream9, T9)
guess8 = np.array([1, 500, 500, 100, 100, -100000])

def itsr_function(guess):

return itsr(input8, guess)

sol8 = opt.fsolve(itsr_function, guess8)

n10CH4, n10H20, n10H2, nl10CO, n10C02, Q4 = sol8

P10 = P9

BLOCK 9: Precondensate heat exzchanger, same as ITSR, the temperature
is set

and we solve for heat gained

T11 = 313

n11CH4 = nl10CH4

n11H20 = n10H20

nl11H2 = n10H2

n11CO = nl10CO

n11C02 = n10C02

stream10 = np.array([n10CH4, n10H20, n10H2, n10CO, nl10C02])
streamll = np.array([n11CH4, n11H20, n11H2, n11CO, n11C02])

38

Q5 = np.dot(streamll, enthalpy(const, T11)) - \
np.dot(stream10, enthalpy(const, T10))

P11 = P10

__
BLOCK 10: Condensate

__

n12CH4 = £1[0] * n11CH4
n12H20 = f1[1] * n11H20
nl2H2 = £1[2] * n11H2
n12C0 = £1[3] * n11CO
n12C02 = f1[4] * n11C02

P12 = P11

T12 = T1i1

ni3CH4 = (1 - £1[0]) * n11CH4
n13H20 = (1 - f1[1]) * n11H20
n13H2 = (1 - £1[2]) * n11H2
n13CO0 = (1 - f1[3]) * n1iCO

n13C02 = (1 - f1[4]) * n11C02

P13 = P11

T13 = T11

__
BLOCK 11 PSA

__

n14CH4 = £2[0] * n12CH4
n14H20 = f2[1] * n12H20
f2[2] * n12H2
n14C0 = £2[3] * n12CO
n14C02 = f2[4] * n12C02
P14 = P12

T14 = T12

=]
'_\
S
ju ey
N
]

39

n15CH4 = (1 - £2[0]) * n12CH4
n15H20 = (1 - f2[1]) * n12H20
nibH2 = (1 - £2[2]) * nl12H2
n15C0 = (1 - £2[3]) * n12CO
n15C02 = (1 - £2[4]) * n12C02

P15 = P12
T15 = T12
__

system = np.array([niCH4, n1H20, n1H2, n1CO, n1C02, T1, P1,
0.0, n2H20, 0.0, 0.0, 0.0, T2, P2,
n3CH4, n3H20, n3H2, n3C0, n3C02, T3, P3,
n4CH4, n4H20, n4H2, n4CO, n4C02, T4, P4,
nbCH4, nbH20, nbH2, nbCO, n5C02, T5, P5,
n6CH4, n6H20, n6H2, n6CO, n6C02, T6, P6,
n7CH4, n7H20, n7H2, n7C0, n7C02, T7, P7,
n8CH4, n8H20, n8H2, n8C0, n8C02, T8, P8,
n9CH4, n9H20, n9H2, n9CO0, n9C02, T9, P9,
n10CH4, n10H20, nl10H2, nl10CO, nl10C02, T10, P10,
nl11CH4, n11H20, nl11H2, n11CO, nl11C02, T11, P11,
nl12CH4, n12H20, nl12H2, n12C0, n12C02, T12, P12,
n13CH4, n13H20, nl13H2, n13C0, n13C02, T13, P13,
nl14CH4, n14H20, n14H2, n14C0, n14C02, T14, P14,
n15CH4, n15H20, n1bH2, n15C0, n15C02, T15, P15,
n02, Q1, Q2, Q3, Q4, Q51)

return system

data = system(inletstream,splitratio)

A.12 Stream summary print function

def mass(data):
print('{:<15}{: . 4f}' format("Stream 1 [g/s]: ", Mm_heavy @
inletstream[:10]))

40

@ datal[7:121))
@ datal[14:19] +

print('{:<15}{:.4f}' format("Stream 2 [g/s]: ",
print('{:<15}{: 4f}' format("Stream 3 [g/s]: ",
(Mm_heavy[5:] @ inletstream[5:10])))

5 5

print('{:<15}{: . 4f}' format("Stream 4 [g/s]: ", Mm @ data[21:26] +
(Mm_heavy[5:] @ inletstream[5:10])))

print ('{:<15}{: . 4f}' format("Stream 5 [g/s]: ", Mm @ data[28:33]))
print('{:<15}{: . 4f}' format("Stream 6 [g/s]: ", Mm @ data[35:40]))
print('{:<15}{: . 4f}' format("Stream 7 [g/s]: ", Mm @ datal[42:47]))
print('{:<15}{: . 4f}' format("Stream 02 [g/s]: ", datal[105] * 32))
print('{:<15}{:.4f}' format("Stream 8 [g/s]: ", Mm @ data[49:54]))
print ('{:<15}{:.4f}' format("Stream 9 [g/s]: ", Mm @ data[56:61]))
print('{:<15}{: . 4f}' format("Stream 10 [g/s]: ", Mm @ datal[63:68]))
print('{:<15}{: . 4f}' format("Stream 11 [g/s]: ", Mm @ datal[70:75]))
print('{:<15}{: . 4f}' format("Stream 12 [g/s]: ", Mm @ datal[77:82]))
print('{:<15}{: 4f}' format("Stream 13 [g/s]: ", Mm @ data[84:89]))
print('{:<15}{: . 4f}' format("Stream 14 [g/s]: ", Mm @ data[91:96]))
print('{:<15}{: . 4f}' format("Stream 15 [g/s]: ", Mm @ data[98:103]))

A.13 Error output

def error_output():
sol = opt.fsolve(function, guess, fprime=grad_function, xtol=1e-8)
print(sol)
errors = function(sol)
print (sum(abs(errors)))
for i in range(len(errors)):

print("eq", i, ":", errors[i])

A.14 Mass balance check function

def mass(data):

print('{:<15}{: . 4f}' format("Stream 1 [g/s]: ", Mm_heavy @
inletstream[:10]))

print('{:<15}{: . 4f}' format("Stream 2 [g/s]: ", Mm @ datal[7:12]))
print('{:<15}{: . 4f}' format("Stream 3 [g/s]: ", Mm @ data[14:19] +
(Mm_heavy[5:] @ inletstream[5:10])))
print('{:<15}{: . 4f}' format("Stream 4 [g/s]: ", Mm @ data[21:26] +

41

(Mm_heavy[5:] @ inletstream[5:10])))

print('{:<15}{: . 4f}' format("Stream 5 [g/s]: ", Mm @ data[28:33]))
print('{:<15}{: .4f}"' format("Stream 6 [g/s]: ", Mm @ data[35:40]))
print('{:<15}{: . 4f}' format("Stream 7 [g/s]: ", Mm @ datal[42:47]))
print('{:<15}{: . 4f}' format("Stream 02 [g/s]: ", datal[105] * 32))
print ('{:<15}{: . 4f}' format("Stream 8 [g/s]: ", Mm @ data[49:54]))
print ('{:<15}{: . 4f}' format("Stream 9 [g/s]: ", Mm @ data[56:61]))
print('{:<15}{: . 4f}' format("Stream 10 [g/s]: ", Mm @ datal[63:68]))
print('{:<15}{: . 4f}' format("Stream 11 [g/s]: ", Mm @ datal[70:75]))
print('{:<15}{:.4f}' format("Stream 12 [g/s]: ", Mm @ datal[77:82]))
print ('{:<15}{: . 4f}' format("Stream 13 [g/s]: ", Mm @ datal[84:89]))
print('{:<15}{: . 4f}' format("Stream 14 [g/s]: ", Mm @ data[91:96]))
print('{:<15}{:.4f}' format("Stream 15 [g/s]: ", Mm @ data[98:103]))

A.15 Composition print function

def composition(data):
nl = np.sum(datal[:5]+inletstream[5:10])
n2 = np.sum(datal[7:12])
n3 = np.sum(data[14:19]+inletstream[5:10])
n4 = np.sum(data[21:26]+inletstream[5:10])
n5 = np.sum(data[28:33])
n6 = np.sum(data[35:40])
n7 = np.sum(datal[42:47])
n8 = np.sum(data[49:54])
n9 = np.sum(datal[56:61])
n10 = np.sum(data[63:68])
nll = np.sum(datal[70:75])
n12 = np.sum(datal[77:82])
nl13 = np.sum(data[84:89])
nl4 = np.sum(data[91:96])
nl5 = np.sum(data[98:103])

42

print (' {:<12}{:<10}{:<10}{:<10}{:<10}{:<10}{:<10}{:<10}H{:<10}H{:<10}{:<
0F{:<10}{:<10}'
.format("Stream", "xCH4", "xH20", "xH2", "xCO", "xCO2", "T", "P",
"xC2H6", "xC3H8", "xn-C4H10", "xni-C4H10", "xnC5H12"))

print(
"{:<123{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.2f}{:<10
2FH{:<10.4fH{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}'
.format("Stream 1:", datal[0]/nl1, datall]/nl, datal[2]/n1,
data[3]/nl, datal[4]/nl1, datal5], datal6],
inletstream[5]/n1, inletstream[6]/n1,
inletstream[7]/nl, inletstream([8]/n1,
inletstream[9]/n1))
print(
"{:<12}{:<10.4£}3{:<10.4£}{:<10.4£f}{:<10.4£}{:<10.4£}{:<10.2f}{:<10
2F3{:<10.4£}{:<10.4f}{:<10.4£}{:<10.4£}1{:<10.4£}"
.format("Stream 2:", datal[7]/n2, datal8]/n2, datal[9]/n2,
data[10]/n2, datal[11]/n2, datal[12], datal[13],
0, 0, 0, 0, 0))
print(
"{:<123{:<10.45f}{:<10.4F}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.2f}{:<10
2f3{:<10.4£}{:<10.4£}{:<10.4£}{:<10.4£}{:<10.4£}"
.format("Stream 3:", datal[14]/n3, datal[15]/n3, datal16]/n3,
datal[17]/n3, datal[18]/n3, datal[19], datal[20],
inletstream[5]/n3, inletstream[6]/n3,
inletstream([7]/n3, inletstream[8]/n3,
inletstream[9]/n3))
print(
'{:<123{:<10.4f}{:<10.4F}{:<10.4£}{:<10.4f}{:<10.4f}{:<10.2f }{:<1
2F <1043 <10 4FH{: <10 4fH{:<10.4f}{:<10 .4}
.format("Stream 4:", data[21]/n4, data[22]/n4, data[23]/n4,
data[24]/n4, data[25]/n4, data[26], datal[27],
inletstream[5]/n4, inletstream([6]/n4,

43

inletstream[7]/n4, inletstream[8]/n4,
inletstream[9]/n4))
print(
'{:<123{:<10.4f3{:<10.4f}{:<10.4f}{:<10.4f3{:<10.4f}{:<10.2f}{:«x1
C2fH{:<10.4fH{:<10.4f H{:<10.4£}{:<10.4£}{:<10.4f}
.format("Stream 5:", datal[28]/nb, datal[29]/n5, datal[30]/n5,
data[31]/n5, datal[32]/n5, data[33], datal[34],
0, 0, 0, 0, 0))
print(
"{:<123{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.2f }{:<1
2FH{:<10.4£3{:<10.4£3{:<10.4f}{:<10.4£}3{:<10.4f}"
.format("Stream 6:", datal[35]/n6, datal[36]/n6, datal[37]/n6,
data[38]/n6, datal[39]/n6, datal[40], datal41],
0, 0, 0, 0, 0))
print(
'{:<123{:<10.45f3{:<10.4F}{:<10.4£}{:<10.4f}3{:<10.4f}{:<10.2f }{:<1
C2F <10 4fH{: <10 . 4f H{: <10 . 4£H{: <10.4£3{: <10 .4£}!
.format("Stream 7:", datal[42]/n7, datal[43]/n7, datal44]/n7,
datal[45]/n7, datal[46]/n7, datal[47], datal48],
0, 0, 0, 0, 0))
print(
"{:<12}{:<10.4£}3{:<10.4£}{:<10.4£f}{:<10.4£}{:<10.4£}{:<10.2f }{:<1"
2 H{:<10.4fH{:<10.4f H{:<10.4f}{:<10.4£}{:<10.4f}"
.format("Stream 8:", data[49]/n8, data[50]/n8, datal[51]/n8,
data[52]/n8, datal[53]/n8, datal[54], datal55],
0, 0, 0, 0, 0))
print(
'{:<123{:<10.4f3{:<10.4F}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.2f }{:<1
2F <1043 <10 4FH{:<10. 4fH{:<10.4f}{: <10 .4}
.format("Stream 9:", datal[56]/n9, datal[57]/n9, data[58]/n9,
datal[59]/n9, datal[60]/n9, datal[61], datal[62],
0, 0, 0, 0, 0))
print(
"{:<123{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.2f }{:<1
2 <10 4fH{:<10.4f H{:<10.4£}{: <10 . 4£}{: <10 .4f}"
.format("Stream 10:", datal[63]/n10, datal[64]/n10,

44

datal[65]/n10, datal[66]/n10, datal[67]/n10, datal[68], datal[69],
0, 0, 0, 0, 0))
print(
'{:<123{:<10.4f3{:<10.4f}{:<10.4f}{:<10.4f3{:<10.4f}{:<10.2f}{:«x1
C2fH{:<10.4fH{:<10.4f H{:<10.4£}{:<10.4£}{:<10.4f}
.format("Stream 11:", datal[70]/n11, datal71]/nil1,
data[72]/n11, datal[73]/n11, datal[74]/n11, datal[75], datal[76],
0, 0, 0, 0, 0))
print(
"{:<123{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.2f }{:<1
2FH{:<10.4£3{:<10.4£3{:<10.4f}{:<10.4£}3{:<10.4f}"
.format("Stream 12:", datal77]/n12, datal78]/n12,
datal[79]/n12, datal[80]/n12, datal[81]/n12, datal[82], datal[83],
0, 0, 0, 0, 0))
print(
'{:<123{:<10.4f3{:<10.4f}{:<10.4f}{:<10.4f3{:<10.4f}{:<10.2f}{:«1
C2F <10 4fH{: <10 . 4f H{: <10 . 4£H{: <10.4£3{: <10 .4£}!
.format("Stream 13:", data[84]/n13, datal[85]/n13,
data[86]/n13, datal[87]/n13, datal[88]/n13, datal[89], datal[90],
0, 0, 0, 0, 0))
print(
"{:<123{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.2f }{:<1
2 H{:<10.4fH{:<10.4f H{:<10.4f}{:<10.4£}{:<10.4f}"
.format("Stream 14:", datal[91]/n14, datal[92]/n14,
data[93]/n14, datal[94]/n14, datal[95]/n14, datal[96], datal[97],
0, 0, 0, 0, 0))
print(
'{:<123{:<10.4f3{:<10.4F}{:<10.4f}{:<10.4f}{:<10.4f}{:<10.2f }{:<1
2F <1043 <10 4FH{:<10. 4fH{:<10.4f}{: <10 .4}
.format("Stream 15:", data[98]/n15, datal[99]/n15,
data[100]/n15, datal[101]/n15, data[102]/n15, data[103],
data[104],
0, 0, 0, 0, 0))

45

Hysys simulation with pure oxygen

L Case Name: case_28.06.22_TemporarilyDone.hsc
12| NORWEGIAN UNIVERSITY OF
13] @aspentECh Bedford, MA Unit Set: NewUser

4 USA
? Date/Time: Fri Jul 15 14:32:16 2022
i
7] Workbook: Case (Main)

8

9
ol Material Streams Fluid Pkg: Al
111 Name H20 NG 1 2 3

12| Vapour Fraction 0.0000 1.0000 * 0.3181 1.0000 1.0000
13| Temperature (©) 150.0 * 38.00 * 117.9 420.0 * 382.4
14| Pressure (kPa) 3000 * 3000 * 3000 3000 * 3000
15| Molar Flow (kgmole/h) 2368 * 1000 * 3368 3368 3466
16| Mass Flow (kg/h) 4.265e+004 1.687e+004 5.952e+004 5.952e+004 5.952e+004
17] Liquid Volume Flow (m3/h) 42.74 54.89 97.63 97.63 101.3
18| Heat Flow (kJ/h) -6.541e+008 -7.604e+007 -7.302e+008 -5.981e+008 -5.981e+008
191 Name 4 5 6 7 8

20| Vapour Fraction 0.0000 1.0000 1.0000 0.0000 1.0000
21| Temperature (C) 3824 480.0 * 700.0 700.0 1050
22| Pressure (kPa) 3000 3000 * 3000 3000 3000
23| Molar Flow (kgmole/h) 0.0000 3466 4096 0.0000 5428
24| Mass Flow (kg/h) 0.0000 5.952e+004 5.952e+004 0.0000 7.410e+004
25| Liquid Volume Flow (m3/h) 0.0000 101.3 122.9 0.0000 147.9
26| Heat Flow (kJ/h) 0.0000 -5.830e+008 -4.826e+008 0.0000 -4.796e+008
27| Name 9 02 10 11 12

28| Vapour Fraction 0.0000 1.0000 1.0000 1.0000 0.0000
29| Temperature (C) 1050 250.0 546.8 250.0 * 250.0
30| Pressure (kPa) 3000 3000 * 3000 3000 3000
31| Molar Flow (kgmole/h) 0.0000 4556 * 5428 5428 0.0000
32 Mass Flow (kg/h) 0.0000 1.458e+004 7.410e+004 7.410e+004 0.0000
33| Liquid Volume Flow (m3/h) 0.0000 12.82 147.9 168.2 0.0000
34| Heat Flow (kJ/h) 0.0000 3.069e+006 -5.800e+008 -6.624e+008 0.0000
35| Name 13 14 15 H2 Tailgas

36| Vapour Fraction 0.7723 1.0000 0.0000 1.0000 0.9971
37| Temperature (C) 40.00 * 40.00 40.00 40.00 * 59.06
38| Pressure (kPa) 3000 * 3000 3000 3000 * 3000
39| Molar Flow (kgmole/h) 5428 4192 1236 3134 1058
40| Mass Flow (kg/h) 7.410e+004 5.175e+004 2.234e+004 6318 4.543e+004
41| Liquid Volume Flow (m3/h) 168.2 145.8 22.42 90.44 55.37
42| Heat Flow (kJ/h) -7.529e+008 -4.003e+008 -3.526e+008 1.342e+006 -4.017e+008
ﬁ
ﬁ
1454
461
1474
1484
1494
1504
15
12
1534
1544
155
1564
1574
158
159
1604
1614

62

63| Aspen Technology Inc. Aspen HYSYS Version 11 Page 1 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

46

* Specified by user.

(Waspentech

NORWEGIAN UNIVERSITY OF
Bedford, MA
USA

Case Name: case_28.06.22_TemporarilyDone.hsc
Unit Set: NewUser
Date/Time: Fri Jul 15 14:32:16 2022

Workbook: Case (Main) (continued)

EEFEEFEERE

Compositions Fluid Pkg: All
Name H20 NG 1 3

12| Comp Mole Frac (Methane) 0.0000 * 0.9470 * 0.2812 0.2812 0.2857
13| Comp Mole Frac (Ethane) 0.0000 * 0.0420 * 0.0125 0.0125 0.0000
14| Comp Mole Frac (Propane) 0.0000 * 0.0020 * 0.0006 0.0006 0.0000
15| Comp Mole Frac (n-Butane) 0.0000 * 0.0002 * 0.0001 0.0001 0.0000
16/ Comp Mole Frac (CO2) 0.0000 * 0.0030 * 0.0009 0.0009 0.0152
17 Comp Mole Frac (Oxygen) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
18| Comp Mole Frac (Nitrogen) 0.0000 * 0.0050 * 0.0015 0.0015 0.0014
19| Comp Mole Frac (H2S) 0.0000 * 0.0000 * 0.0000 0.0000 0.0000
20| Comp Mole Frac (H20) 1.0000 * 0.0000 * 0.7030 0.7030 0.6544
21| Comp Mole Frac (H202) 0.0000 * 0.0000 * 0.0000 0.0000 0.0000
22| Comp Mole Frac (CO) 0.0000 * 0.0000 * 0.0000 0.0000 0.0001
23| Comp Mole Frac (Hydrogen) 0.0000 * 0.0002 * 0.0001 0.0001 0.0432
24| Comp Mole Frac (i-Butane) 0.0000 * 0.0002 * 0.0001 0.0001 0.0000
25| Comp Mole Frac (n-Pentane) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
26| Comp Mole Frac (i-Pentane) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
27| Comp Mole Frac (n-Hexane) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
28| Comp Mole Frac (HCN) 0.0000 * 0.0000 * 0.0000 0.0000 0.0000
29| Comp Mole Frac (Ammonia) 0.0000 * 0.0000 * 0.0000 0.0000 0.0002
30| Name 4 5 6 8
311 Comp Mole Frac (Methane) 0.2857 0.2857 0.1650 0.1650 0.0018
32| Comp Mole Frac (Ethane) 0.0000 0.0000 0.0000 0.0000 0.0000
33| Comp Mole Frac (Propane) 0.0000 0.0000 0.0000 0.0000 0.0000
34| Comp Mole Frac (n-Butane) 0.0000 0.0000 0.0000 0.0000 0.0000
35| Comp Mole Frac (CO2) 0.0152 0.0152 0.0616 0.0616 0.0564
36| Comp Mole Frac (Oxygen) 0.0000 0.0000 0.0000 0.0000 0.0000
37| Comp Mole Frac (Nitrogen) 0.0014 0.0014 0.0012 0.0012 0.0009
38| Comp Mole Frac (H2S) 0.0000 0.0000 0.0000 0.0000 0.0000
39| Comp Mole Frac (H20) 0.6544 0.6544 0.4282 0.4282 0.3583
40| Comp Mole Frac (H202) 0.0000 0.0000 0.0000 0.0000 0.0000
41] Comp Mole Frac (CO) 0.0001 0.0001 0.0281 0.0281 0.1339
42| Comp Mole Frac (Hydrogen) 0.0432 0.0432 0.3158 0.3158 0.4486
43| Comp Mole Frac (i-Butane) 0.0000 0.0000 0.0000 0.0000 0.0000
44| Comp Mole Frac (n-Pentane) 0.0000 0.0000 0.0000 0.0000 0.0000
45| Comp Mole Frac (i-Pentane) 0.0000 0.0000 0.0000 0.0000 0.0000
46| Comp Mole Frac (n-Hexane) 0.0000 0.0000 0.0000 0.0000 0.0000
47| Comp Mole Frac (HCN) 0.0000 0.0000 0.0000 0.0000 0.0000
48| Comp Mole Frac (Ammonia) 0.0002 0.0002 0.0001 0.0001 0.0000
ﬁ
ﬂ
i
5_2
i
1544
1954
1564
1574
158
159
1604
1614
62
63| Aspen Technology Inc. Aspen HYSYS Version 11 Page 2 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

47

* Specified by user.

(Waspentech

NORWEGIAN UNIVERSITY OF

Bedford, MA

USA

Case Name: case_28.06.22_TemporarilyDone.hsc
Unit Set: NewUser
Date/Time: Fri Jul 15 14:32:16 2022

Workbook: Case (Main) (continued)

EEFEEFEERE

Compositions (continued) Fluid Pkg: All
Name 9 02 10 11 12

12| Comp Mole Frac (Methane) 0.0018 0.0000 * 0.0018 0.0018 0.0018
13| Comp Mole Frac (Ethane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
14| Comp Mole Frac (Propane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
15| Comp Mole Frac (n-Butane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
16/ Comp Mole Frac (CO2) 0.0564 0.0000 * 0.0564 0.1853 0.1853
17 Comp Mole Frac (Oxygen) 0.0000 1.0000 * 0.0000 0.0000 0.0000
18| Comp Mole Frac (Nitrogen) 0.0009 0.0000 * 0.0009 0.0009 0.0009
19| Comp Mole Frac (H2S) 0.0000 0.0000 * 0.0000 0.0000 0.0000
20| Comp Mole Frac (H20) 0.3583 0.0000 * 0.3583 0.2295 0.2295
21| Comp Mole Frac (H202) 0.0000 0.0000 * 0.0000 0.0000 0.0000
22| Comp Mole Frac (CO) 0.1339 0.0000 * 0.1339 0.0051 0.0051
23| Comp Mole Frac (Hydrogen) 0.4486 0.0000 * 0.4486 0.5774 0.5774
24| Comp Mole Frac (i-Butane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
25| Comp Mole Frac (n-Pentane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
26| Comp Mole Frac (i-Pentane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
27| Comp Mole Frac (n-Hexane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
28| Comp Mole Frac (HCN) 0.0000 0.0000 * 0.0000 0.0000 0.0000
29| Comp Mole Frac (Ammonia) 0.0000 0.0000 * 0.0000 0.0000 0.0000
30| Name 13 14 15 H2 Tailgas
311 Comp Mole Frac (Methane) 0.0018 0.0023 0.0000 0.0000 * 0.0092
32| Comp Mole Frac (Ethane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
33| Comp Mole Frac (Propane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
34| Comp Mole Frac (n-Butane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
35| Comp Mole Frac (CO2) 0.1853 0.2392 0.0023 0.0000 * 0.9479
36| Comp Mole Frac (Oxygen) 0.0000 0.0000 0.0000 0.0000 * 0.0000
37| Comp Mole Frac (Nitrogen) 0.0009 0.0012 0.0000 0.0000 * 0.0046
38| Comp Mole Frac (H2S) 0.0000 0.0000 0.0000 0.0000 * 0.0000
39| Comp Mole Frac (H20) 0.2295 0.0030 0.9975 0.0000 * 0.0119
40| Comp Mole Frac (H202) 0.0000 0.0000 0.0000 0.0000 * 0.0000
41] Comp Mole Frac (CO) 0.0051 0.0066 0.0000 0.0000 * 0.0263
42| Comp Mole Frac (Hydrogen) 0.5774 0.7476 0.0000 1.0000 * 0.0000
43| Comp Mole Frac (i-Butane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
44| Comp Mole Frac (n-Pentane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
45| Comp Mole Frac (i-Pentane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
46| Comp Mole Frac (n-Hexane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
47| Comp Mole Frac (HCN) 0.0000 0.0000 0.0000 0.0000 * 0.0000
48| Comp Mole Frac (Ammonia) 0.0000 0.0000 0.0001 0.0000 * 0.0000
% Energy Streams Fluid Pkg: All
511 Name E-100-Duty E-101-Duty GHR-Duty E-102-Duty ITR-Duty
52| Heat Flow (kJ/h) 1.321e+008 1.509e+007 1.004e+008 1.004e+008 -8.249e+007
53| Name E-103-Duty
54| Heat Flow (kJ/h) 9.048e+007
155 | .
o Unit Ops
57 Operation Name Operation Type Feeds Products Ignored Calc Level
58 . H20 1
E MIX-100 Mixer NG No 500.0 *
60 1 2
—1 E-100 Heater No 500.0 *
61 E-100-Duty
62| E-101 Heater 3 5 No 500.0 *
63| Aspen Technology Inc. Aspen HYSYS Version 11 Page 3 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

48

* Specified by user.

Case Name: case_28.06.22_TemporarilyDone.hsc
NORWEGIAN UNIVERSITY OF
@aspentECh Bedford, MA Unit Set: NewUser
USA
Date/Time: Fri Jul 15 14:32:16 2022

Workbook: Case (Main) (continued)

Unit Ops (continued)

EEFEEFEERE

Operation Name

Operation Type

Feeds

Products

Ignored

Calc Level

E-101

Heater

E-101-Duty

No

500.0 *

ADJ-1

Adjust

No

3500 ~

ADJ-2

Adjust

No

3500 *

ADJ-3

Adjust

No

3500 ~

SPRDSHT-1

Spreadsheet

No

500.0 *

SPRDSHT-2

Spreadsheet

No

500.0 *

Prereformer

Gibbs Reactor

No

500.0 *

GHR

5

Gibbs Reactor

GHR-Duty

o (N |w >

GHR-Duty

No

500.0 *

ATR

6

9

Gibbs Reactor

02

8

No

500.0 *

Isothermal Reactor

10

12

Gibbs Reactor

ITR-Duty

11

ITR-Duty

No

500.0 *

E-102

10

Cooler

E-102-Duty

No

500.0 *

E-103

13

Cooler

E-103-Duty

No

500.0 *

V-100

15

Separator

14

No

500.0 *

X-100

H2

Component Splitter

Tailgas

No

500.0 *

Aspen Technology Inc.

Aspen HYSYS Version 11

Page 4 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

49

* Specified by user.

Hysys simulation with 90% oxygen

L Case Name: case_28.06.22_TemporarilyDone.hsc
12| NORWEGIAN UNIVERSITY OF
13] @aspentECh Bedford, MA Unit Set: NewUser

4 USA
? Date/Time: Fri Jul 15 14:32:16 2022
i
7] Workbook: Case (Main)

8

9
ol Material Streams Fluid Pkg: Al
111 Name H20 NG 1 2 3

12| Vapour Fraction 0.0000 1.0000 * 0.3181 1.0000 1.0000
13| Temperature (©) 150.0 * 38.00 * 117.9 420.0 * 382.4
14| Pressure (kPa) 3000 * 3000 * 3000 3000 * 3000
15| Molar Flow (kgmole/h) 2368 * 1000 * 3368 3368 3466
16| Mass Flow (kg/h) 4.265e+004 1.687e+004 5.952e+004 5.952e+004 5.952e+004
17] Liquid Volume Flow (m3/h) 42.74 54.89 97.63 97.63 101.3
18| Heat Flow (kJ/h) -6.541e+008 -7.604e+007 -7.302e+008 -5.981e+008 -5.981e+008
191 Name 4 5 6 7 8

20| Vapour Fraction 0.0000 1.0000 1.0000 0.0000 1.0000
21| Temperature (C) 3824 480.0 * 700.0 700.0 1050
22| Pressure (kPa) 3000 3000 * 3000 3000 3000
23| Molar Flow (kgmole/h) 0.0000 3466 4096 0.0000 5428
24| Mass Flow (kg/h) 0.0000 5.952e+004 5.952e+004 0.0000 7.410e+004
25| Liquid Volume Flow (m3/h) 0.0000 101.3 122.9 0.0000 147.9
26| Heat Flow (kJ/h) 0.0000 -5.830e+008 -4.826e+008 0.0000 -4.796e+008
27| Name 9 02 10 11 12

28| Vapour Fraction 0.0000 1.0000 1.0000 1.0000 0.0000
29| Temperature (C) 1050 250.0 546.8 250.0 * 250.0
30| Pressure (kPa) 3000 3000 * 3000 3000 3000
31| Molar Flow (kgmole/h) 0.0000 4556 * 5428 5428 0.0000
32 Mass Flow (kg/h) 0.0000 1.458e+004 7.410e+004 7.410e+004 0.0000
33| Liquid Volume Flow (m3/h) 0.0000 12.82 147.9 168.2 0.0000
34| Heat Flow (kJ/h) 0.0000 3.069e+006 -5.800e+008 -6.624e+008 0.0000
35| Name 13 14 15 H2 Tailgas

36| Vapour Fraction 0.7723 1.0000 0.0000 1.0000 0.9971
37| Temperature (C) 40.00 * 40.00 40.00 40.00 * 59.06
38| Pressure (kPa) 3000 * 3000 3000 3000 * 3000
39| Molar Flow (kgmole/h) 5428 4192 1236 3134 1058
40| Mass Flow (kg/h) 7.410e+004 5.175e+004 2.234e+004 6318 4.543e+004
41| Liquid Volume Flow (m3/h) 168.2 145.8 22.42 90.44 55.37
42| Heat Flow (kJ/h) -7.529e+008 -4.003e+008 -3.526e+008 1.342e+006 -4.017e+008
ﬁ
ﬁ
1454
461
1474
1484
1494
1504
15
12
1534
1544
155
1564
1574
158
159
1604
1614

62

63| Aspen Technology Inc. Aspen HYSYS Version 11 Page 1 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

50

* Specified by user.

(Waspentech

NORWEGIAN UNIVERSITY OF
Bedford, MA
USA

Case Name: case_28.06.22_TemporarilyDone.hsc
Unit Set: NewUser
Date/Time: Wed Jul 27 14:08:55 2022

Workbook: Case (Main) (continued)

EEFEEFEERE

Compositions Fluid Pkg: All
Name H20 NG 1 3

12| Comp Mole Frac (Methane) 0.0000 * 0.9470 * 0.2812 0.2812 0.2857
13| Comp Mole Frac (Ethane) 0.0000 * 0.0420 * 0.0125 0.0125 0.0000
14| Comp Mole Frac (Propane) 0.0000 * 0.0020 * 0.0006 0.0006 0.0000
15| Comp Mole Frac (n-Butane) 0.0000 * 0.0002 * 0.0001 0.0001 0.0000
16/ Comp Mole Frac (CO2) 0.0000 * 0.0030 * 0.0009 0.0009 0.0152
17 Comp Mole Frac (Oxygen) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
18| Comp Mole Frac (Nitrogen) 0.0000 * 0.0050 * 0.0015 0.0015 0.0014
19| Comp Mole Frac (H2S) 0.0000 * 0.0000 * 0.0000 0.0000 0.0000
20| Comp Mole Frac (H20) 1.0000 * 0.0000 * 0.7030 0.7030 0.6544
21| Comp Mole Frac (H202) 0.0000 * 0.0000 * 0.0000 0.0000 0.0000
22| Comp Mole Frac (CO) 0.0000 * 0.0000 * 0.0000 0.0000 0.0001
23| Comp Mole Frac (Hydrogen) 0.0000 * 0.0002 * 0.0001 0.0001 0.0432
24| Comp Mole Frac (i-Butane) 0.0000 * 0.0002 * 0.0001 0.0001 0.0000
25| Comp Mole Frac (n-Pentane) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
26| Comp Mole Frac (i-Pentane) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
27| Comp Mole Frac (n-Hexane) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
28| Comp Mole Frac (HCN) 0.0000 * 0.0000 * 0.0000 0.0000 0.0000
29| Comp Mole Frac (Ammonia) 0.0000 * 0.0000 * 0.0000 0.0000 0.0002
30| Name 4 5 6 8
311 Comp Mole Frac (Methane) 0.2857 0.2857 0.1650 0.1650 0.0017
32| Comp Mole Frac (Ethane) 0.0000 0.0000 0.0000 0.0000 0.0000
33| Comp Mole Frac (Propane) 0.0000 0.0000 0.0000 0.0000 0.0000
34| Comp Mole Frac (n-Butane) 0.0000 0.0000 0.0000 0.0000 0.0000
35| Comp Mole Frac (CO2) 0.0152 0.0152 0.0616 0.0616 0.0561
36| Comp Mole Frac (Oxygen) 0.0000 0.0000 0.0000 0.0000 0.0000
37| Comp Mole Frac (Nitrogen) 0.0014 0.0014 0.0012 0.0012 0.0102
38| Comp Mole Frac (H2S) 0.0000 0.0000 0.0000 0.0000 0.0000
39| Comp Mole Frac (H20) 0.6544 0.6544 0.4282 0.4282 0.3558
40| Comp Mole Frac (H202) 0.0000 0.0000 0.0000 0.0000 0.0000
41] Comp Mole Frac (CO) 0.0001 0.0001 0.0281 0.0281 0.1326
42| Comp Mole Frac (Hydrogen) 0.0432 0.0432 0.3158 0.3158 0.4436
43| Comp Mole Frac (i-Butane) 0.0000 0.0000 0.0000 0.0000 0.0000
44| Comp Mole Frac (n-Pentane) 0.0000 0.0000 0.0000 0.0000 0.0000
45| Comp Mole Frac (i-Pentane) 0.0000 0.0000 0.0000 0.0000 0.0000
46| Comp Mole Frac (n-Hexane) 0.0000 0.0000 0.0000 0.0000 0.0000
47| Comp Mole Frac (HCN) 0.0000 0.0000 0.0000 0.0000 0.0000
48| Comp Mole Frac (Ammonia) 0.0002 0.0002 0.0001 0.0001 0.0001
ﬁ
ﬂ
i
5_2
i
1544
1954
1564
1574
158
159
1604
1614
62
63| Aspen Technology Inc. Aspen HYSYS Version 11 Page 2 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

51

* Specified by user.

(Waspentech

NORWEGIAN UNIVERSITY OF

Bedford, MA

USA

Case Name: case_28.06.22_TemporarilyDone.hsc
Unit Set: NewUser
Date/Time: Wed Jul 27 14:08:55 2022

Workbook: Case (Main) (continued)

EEFEEFEERE

Compositions (continued) Fluid Pkg: All
Name 9 02 10 11 12

12| Comp Mole Frac (Methane) 0.0017 0.0000 * 0.0017 0.0017 0.0017
13| Comp Mole Frac (Ethane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
14| Comp Mole Frac (Propane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
15| Comp Mole Frac (n-Butane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
16/ Comp Mole Frac (CO2) 0.0561 0.0000 * 0.0561 0.1836 0.1836
17 Comp Mole Frac (Oxygen) 0.0000 0.9000 * 0.0000 0.0000 0.0000
18| Comp Mole Frac (Nitrogen) 0.0102 0.1000 * 0.0102 0.0102 0.0102
19| Comp Mole Frac (H2S) 0.0000 0.0000 * 0.0000 0.0000 0.0000
20| Comp Mole Frac (H20) 0.3558 0.0000 * 0.3558 0.2283 0.2283
21| Comp Mole Frac (H202) 0.0000 0.0000 * 0.0000 0.0000 0.0000
22| Comp Mole Frac (CO) 0.1326 0.0000 * 0.1326 0.0051 0.0051
23| Comp Mole Frac (Hydrogen) 0.4436 0.0000 * 0.4436 0.5711 0.5711
24| Comp Mole Frac (i-Butane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
25| Comp Mole Frac (n-Pentane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
26| Comp Mole Frac (i-Pentane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
27| Comp Mole Frac (n-Hexane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
28| Comp Mole Frac (HCN) 0.0000 0.0000 * 0.0000 0.0000 0.0000
29| Comp Mole Frac (Ammonia) 0.0001 0.0000 * 0.0001 0.0001 0.0001
30| Name 13 14 15 H2 Tailgas
311 Comp Mole Frac (Methane) 0.0017 0.0022 0.0000 0.0000 * 0.0085
32| Comp Mole Frac (Ethane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
33| Comp Mole Frac (Propane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
34| Comp Mole Frac (n-Butane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
35| Comp Mole Frac (CO2) 0.1836 0.2367 0.0023 0.0000 * 0.9047
36| Comp Mole Frac (Oxygen) 0.0000 0.0000 0.0000 0.0000 * 0.0000
37| Comp Mole Frac (Nitrogen) 0.0102 0.0131 0.0000 0.0000 * 0.0502
38| Comp Mole Frac (H2S) 0.0000 0.0000 0.0000 0.0000 * 0.0000
39| Comp Mole Frac (H20) 0.2283 0.0030 0.9973 0.0000 * 0.0115
40| Comp Mole Frac (H202) 0.0000 0.0000 0.0000 0.0000 * 0.0000
41] Comp Mole Frac (CO) 0.0051 0.0065 0.0000 0.0000 * 0.0250
42| Comp Mole Frac (Hydrogen) 0.5711 0.7383 0.0000 1.0000 * 0.0000
43| Comp Mole Frac (i-Butane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
44| Comp Mole Frac (n-Pentane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
45| Comp Mole Frac (i-Pentane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
46| Comp Mole Frac (n-Hexane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
47| Comp Mole Frac (HCN) 0.0000 0.0000 0.0000 0.0000 * 0.0000
48| Comp Mole Frac (Ammonia) 0.0001 0.0000 0.0004 0.0000 * 0.0001
% Energy Streams Fluid Pkg: All
511 Name E-100-Duty E-101-Duty GHR-Duty E-102-Duty ITR-Duty
52| Heat Flow (kJ/h) 1.321e+008 1.509e+007 1.004e+008 1.004e+008 -8.384e+007
53| Name E-103-Duty
54| Heat Flow (kJ/h) 9.103e+007
155 | .
o Unit Ops
57 Operation Name Operation Type Feeds Products Ignored Calc Level
58 . H20 1
E MIX-100 Mixer NG No 500.0 *
60 1 2
—1 E-100 Heater No 500.0 *
61 E-100-Duty
62| E-101 Heater 3 5 No 500.0 *
63| Aspen Technology Inc. Aspen HYSYS Version 11 Page 3 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

52

* Specified by user.

Case Name: case_28.06.22_TemporarilyDone.hsc
NORWEGIAN UNIVERSITY OF
@aspentECh Bedford, MA Unit Set: NewUser
USA
Date/Time: Wed Jul 27 14:08:55 2022

Workbook: Case (Main) (continued)

Unit Ops (continued)

EEFEEFEERE

Operation Name

Operation Type

Feeds

Products

Ignored

Calc Level

E-101

Heater

E-101-Duty

No

500.0 *

ADJ-1

Adjust

No

3500 ~

ADJ-2

Adjust

No

3500 *

ADJ-3

Adjust

No

3500 ~

SPRDSHT-1

Spreadsheet

No

500.0 *

SPRDSHT-2

Spreadsheet

No

500.0 *

Prereformer

Gibbs Reactor

No

500.0 *

GHR

5

Gibbs Reactor

GHR-Duty

o (N |w >

GHR-Duty

No

500.0 *

ATR

6

9

Gibbs Reactor

02

8

No

500.0 *

Isothermal Reactor

10

12

Gibbs Reactor

ITR-Duty

11

ITR-Duty

No

500.0 *

E-102

10

Cooler

E-102-Duty

No

500.0 *

E-103

13

Cooler

E-103-Duty

No

500.0 *

V-100

15

Separator

14

No

500.0 *

X-100

H2

Component Splitter

Tailgas

No

500.0 *

Aspen Technology Inc.

Aspen HYSYS Version 11

Page 4 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

53

* Specified by user.

D Hysys simulation with 40% oxygen

L Case Name: case_28.06.22_TemporarilyDone.hsc
12| NORWEGIAN UNIVERSITY OF
13] @aspentECh Bedford, MA Unit Set: NewUser

4 USA
? Date/Time: Fri Jul 15 14:32:16 2022
i
7] Workbook: Case (Main)

8

9
ol Material Streams Fluid Pkg: Al
111 Name H20 NG 1 2 3

12| Vapour Fraction 0.0000 1.0000 * 0.3181 1.0000 1.0000
13| Temperature (©) 150.0 * 38.00 * 117.9 420.0 * 382.4
14| Pressure (kPa) 3000 * 3000 * 3000 3000 * 3000
15| Molar Flow (kgmole/h) 2368 * 1000 * 3368 3368 3466
16| Mass Flow (kg/h) 4.265e+004 1.687e+004 5.952e+004 5.952e+004 5.952e+004
17] Liquid Volume Flow (m3/h) 42.74 54.89 97.63 97.63 101.3
18| Heat Flow (kJ/h) -6.541e+008 -7.604e+007 -7.302e+008 -5.981e+008 -5.981e+008
191 Name 4 5 6 7 8

20| Vapour Fraction 0.0000 1.0000 1.0000 0.0000 1.0000
21| Temperature (C) 3824 480.0 * 700.0 * 700.0 1050
22| Pressure (kPa) 3000 3000 * 3000 3000 3000
23| Molar Flow (kgmole/h) 0.0000 3466 4096 0.0000 5428
24| Mass Flow (kg/h) 0.0000 5.952e+004 5.952e+004 0.0000 7.410e+004
25| Liquid Volume Flow (m3/h) 0.0000 101.3 122.9 0.0000 147.9
26| Heat Flow (kJ/h) 0.0000 -5.830e+008 -4.826e+008 0.0000 -4.796e+008
27| Name 9 02 10 11 12

28| Vapour Fraction 0.0000 1.0000 1.0000 1.0000 0.0000
29| Temperature (C) 1050 250.0 546.8 * 250.0 * 250.0
30| Pressure (kPa) 3000 3000 * 3000 3000 3000
31| Molar Flow (kgmole/h) 0.0000 4556 * 5428 5428 0.0000
32 Mass Flow (kg/h) 0.0000 1.458e+004 7.410e+004 7.410e+004 0.0000
33| Liquid Volume Flow (m3/h) 0.0000 12.82 147.9 168.2 0.0000
34| Heat Flow (kJ/h) 0.0000 3.069e+006 -5.800e+008 -6.624e+008 0.0000
35| Name 13 14 15 H2 Tailgas

36| Vapour Fraction 0.7723 1.0000 0.0000 1.0000 0.9971
37| Temperature (C) 40.00 * 40.00 40.00 40.00 * 59.06
38| Pressure (kPa) 3000 * 3000 3000 3000 * 3000
39| Molar Flow (kgmole/h) 5428 4192 1236 3134 1058
40| Mass Flow (kg/h) 7.410e+004 5.175e+004 2.234e+004 6318 4.543e+004
41| Liquid Volume Flow (m3/h) 168.2 145.8 22.42 90.44 55.37
42| Heat Flow (kJ/h) -7.529e+008 -4.003e+008 -3.526e+008 1.342e+006 -4.017e+008
ﬁ
ﬁ
1454
461
1474
1484
1494
1504
15
12
1534
1544
155
1564
1574
158
159
1604
1614

62

63| Aspen Technology Inc. Aspen HYSYS Version 11 Page 1 of 4

Licensed to: NORWEGIAN UNIVERSITY OF * Specified by user.

o4

(Waspentech

NORWEGIAN UNIVERSITY OF
Bedford, MA
USA

Case Name: case_27.07.22_0.402.hsc
Unit Set: NewUser
Date/Time: Wed Jul 27 14:11:02 2022

Workbook: Case (Main) (continued)

EEFEEFEERE

Compositions Fluid Pkg: All
Name H20 NG 1 3

12| Comp Mole Frac (Methane) 0.0000 * 0.9470 * 0.2812 0.2812 0.2857
13| Comp Mole Frac (Ethane) 0.0000 * 0.0420 * 0.0125 0.0125 0.0000
14| Comp Mole Frac (Propane) 0.0000 * 0.0020 * 0.0006 0.0006 0.0000
15| Comp Mole Frac (n-Butane) 0.0000 * 0.0002 * 0.0001 0.0001 0.0000
16/ Comp Mole Frac (CO2) 0.0000 * 0.0030 * 0.0009 0.0009 0.0152
17 Comp Mole Frac (Oxygen) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
18| Comp Mole Frac (Nitrogen) 0.0000 * 0.0050 * 0.0015 0.0015 0.0014
19| Comp Mole Frac (H2S) 0.0000 * 0.0000 * 0.0000 0.0000 0.0000
20| Comp Mole Frac (H20) 1.0000 * 0.0000 * 0.7030 0.7030 0.6544
21| Comp Mole Frac (H202) 0.0000 * 0.0000 * 0.0000 0.0000 0.0000
22| Comp Mole Frac (CO) 0.0000 * 0.0000 * 0.0000 0.0000 0.0001
23| Comp Mole Frac (Hydrogen) 0.0000 * 0.0002 * 0.0001 0.0001 0.0432
24| Comp Mole Frac (i-Butane) 0.0000 * 0.0002 * 0.0001 0.0001 0.0000
25| Comp Mole Frac (n-Pentane) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
26| Comp Mole Frac (i-Pentane) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
27| Comp Mole Frac (n-Hexane) 0.0000 * 0.0001 * 0.0000 0.0000 0.0000
28| Comp Mole Frac (HCN) 0.0000 * 0.0000 * 0.0000 0.0000 0.0000
29| Comp Mole Frac (Ammonia) 0.0000 * 0.0000 * 0.0000 0.0000 0.0002
30| Name 4 5 6 8
311 Comp Mole Frac (Methane) 0.2857 0.2857 0.1650 0.1650 0.0011
32| Comp Mole Frac (Ethane) 0.0000 0.0000 0.0000 0.0000 0.0000
33| Comp Mole Frac (Propane) 0.0000 0.0000 0.0000 0.0000 0.0000
34| Comp Mole Frac (n-Butane) 0.0000 0.0000 0.0000 0.0000 0.0000
35| Comp Mole Frac (CO2) 0.0152 0.0152 0.0616 0.0616 0.0518
36| Comp Mole Frac (Oxygen) 0.0000 0.0000 0.0000 0.0000 0.0000
37| Comp Mole Frac (Nitrogen) 0.0014 0.0014 0.0012 0.0012 0.1213
38| Comp Mole Frac (H2S) 0.0000 0.0000 0.0000 0.0000 0.0000
39| Comp Mole Frac (H20) 0.6544 0.6544 0.4282 0.4282 0.3254
40| Comp Mole Frac (H202) 0.0000 0.0000 0.0000 0.0000 0.0000
41] Comp Mole Frac (CO) 0.0001 0.0001 0.0281 0.0281 0.1160
42| Comp Mole Frac (Hydrogen) 0.0432 0.0432 0.3158 0.3158 0.3842
43| Comp Mole Frac (i-Butane) 0.0000 0.0000 0.0000 0.0000 0.0000
44| Comp Mole Frac (n-Pentane) 0.0000 0.0000 0.0000 0.0000 0.0000
45| Comp Mole Frac (i-Pentane) 0.0000 0.0000 0.0000 0.0000 0.0000
46| Comp Mole Frac (n-Hexane) 0.0000 0.0000 0.0000 0.0000 0.0000
47| Comp Mole Frac (HCN) 0.0000 0.0000 0.0000 0.0000 0.0000
48| Comp Mole Frac (Ammonia) 0.0002 0.0002 0.0001 0.0001 0.0003
ﬁ
ﬂ
i
5_2
i
1544
1954
1564
1574
158
159
1604
1614
62
63| Aspen Technology Inc. Aspen HYSYS Version 11 Page 2 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

55

* Specified by user.

(Waspentech

NORWEGIAN UNIVERSITY OF

Bedford, MA

USA

Case Name: case_27.07.22_0.402.hsc
Unit Set: NewUser
Date/Time: Wed Jul 27 14:11:02 2022

Workbook: Case (Main) (continued)

EEFEEFEERE

Compositions (continued) Fluid Pkg: All
Name 9 02 10 11 12

12| Comp Mole Frac (Methane) 0.0011 0.0000 * 0.0011 0.0011 0.0011
13| Comp Mole Frac (Ethane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
14| Comp Mole Frac (Propane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
15| Comp Mole Frac (n-Butane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
16/ Comp Mole Frac (CO2) 0.0518 0.0000 * 0.0518 0.1636 0.1636
17 Comp Mole Frac (Oxygen) 0.0000 0.4000 * 0.0000 0.0000 0.0000
18| Comp Mole Frac (Nitrogen) 0.1213 0.6000 * 0.1213 0.1213 0.1213
19| Comp Mole Frac (H2S) 0.0000 0.0000 * 0.0000 0.0000 0.0000
20| Comp Mole Frac (H20) 0.3254 0.0000 * 0.3254 0.2136 0.2136
21| Comp Mole Frac (H202) 0.0000 0.0000 * 0.0000 0.0000 0.0000
22| Comp Mole Frac (CO) 0.1160 0.0000 * 0.1160 0.0042 0.0042
23| Comp Mole Frac (Hydrogen) 0.3842 0.0000 * 0.3842 0.4959 0.4959
24| Comp Mole Frac (i-Butane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
25| Comp Mole Frac (n-Pentane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
26| Comp Mole Frac (i-Pentane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
27| Comp Mole Frac (n-Hexane) 0.0000 0.0000 * 0.0000 0.0000 0.0000
28| Comp Mole Frac (HCN) 0.0000 0.0000 * 0.0000 0.0000 0.0000
29| Comp Mole Frac (Ammonia) 0.0003 0.0000 * 0.0003 0.0003 0.0003
30| Name 13 14 15 H2 Tailgas
311 Comp Mole Frac (Methane) 0.0011 0.0014 0.0000 0.0000 * 0.0037
32| Comp Mole Frac (Ethane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
33| Comp Mole Frac (Propane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
34| Comp Mole Frac (n-Butane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
35| Comp Mole Frac (CO2) 0.1636 0.2071 0.0020 0.0000 * 0.5585
36| Comp Mole Frac (Oxygen) 0.0000 0.0000 0.0000 0.0000 * 0.0000
37| Comp Mole Frac (Nitrogen) 0.1213 0.1539 0.0000 0.0000 * 0.4150
38| Comp Mole Frac (H2S) 0.0000 0.0000 0.0000 0.0000 * 0.0000
39| Comp Mole Frac (H20) 0.2136 0.0031 0.9968 0.0000 * 0.0083
40| Comp Mole Frac (H202) 0.0000 0.0000 0.0000 0.0000 * 0.0000
41] Comp Mole Frac (CO) 0.0042 0.0053 0.0000 0.0000 * 0.0143
42| Comp Mole Frac (Hydrogen) 0.4959 0.6293 0.0000 1.0000 * 0.0000
43| Comp Mole Frac (i-Butane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
44| Comp Mole Frac (n-Pentane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
45| Comp Mole Frac (i-Pentane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
46| Comp Mole Frac (n-Hexane) 0.0000 0.0000 0.0000 0.0000 * 0.0000
47| Comp Mole Frac (HCN) 0.0000 0.0000 0.0000 0.0000 * 0.0000
48| Comp Mole Frac (Ammonia) 0.0003 0.0001 0.0011 0.0000 * 0.0002
% Energy Streams Fluid Pkg: All
511 Name E-100-Duty E-101-Duty GHR-Duty E-102-Duty ITR-Duty
52| Heat Flow (kJ/h) 1.321e+008 1.509e+007 1.004e+008 1.004e+008 -1.022e+008
53| Name E-103-Duty
54| Heat Flow (kJ/h) 9.852e+007
155 | .
o Unit Ops
57 Operation Name Operation Type Feeds Products Ignored Calc Level
58 . H20 1
E MIX-100 Mixer NG No 500.0 *
60 1 2
—1 E-100 Heater No 500.0 *
61 E-100-Duty
62| E-101 Heater 3 5 No 500.0 *
63| Aspen Technology Inc. Aspen HYSYS Version 11 Page 3 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

56

* Specified by user.

Case Name: case_27.07.22_0.402.hsc
NORWEGIAN UNIVERSITY OF
@aspentECh Bedford, MA Unit Set: NewUser
USA
Date/Time: Wed Jul 27 14:11:02 2022

Workbook: Case (Main) (continued)

Unit Ops (continued)

EEFEEFEERE

Operation Name

Operation Type

Feeds

Products

Ignored

Calc Level

E-101

Heater

E-101-Duty

No

500.0 *

ADJ-1

Adjust

No

3500 ~

ADJ-2

Adjust

No

3500 *

ADJ-3

Adjust

No

3500 ~

SPRDSHT-1

Spreadsheet

No

500.0 *

SPRDSHT-2

Spreadsheet

No

500.0 *

Prereformer

Gibbs Reactor

No

500.0 *

GHR

5

Gibbs Reactor

GHR-Duty

o (N |w >

GHR-Duty

No

500.0 *

ATR

6

9

Gibbs Reactor

02

8

No

500.0 *

Isothermal Reactor

10

12

Gibbs Reactor

ITR-Duty

11

ITR-Duty

No

500.0 *

E-102

10

Cooler

E-102-Duty

No

500.0 *

E-103

13

Cooler

E-103-Duty

No

500.0 *

V-100

15

Separator

14

No

500.0 *

X-100

H2

Component Splitter

Tailgas

No

500.0 *

Aspen Technology Inc.

Aspen HYSYS Version 11

Page 4 of 4

Licensed to: NORWEGIAN UNIVERSITY OF

57

* Specified by user.

	Job description
	Process description
	Flowsheet

	Simulation
	Aspen Hysys Model
	Case simulation

	Model in Python
	Gas heated- and autothermal reformer
	Initial complete model
	Improved new model

	Results and discussion
	Future considerations
	Python code
	Defining and unpacking variables
	Enthalpy
	Equilibrium constant
	Gas heated reformer
	Autothermal reformer
	Initial model
	Mixing temperature
	Prereformer
	Post ATR temperature
	Isothermal temperature shift reactor
	New improved model
	Stream summary print function
	Error output
	Mass balance check function
	Composition print function

	Hysys simulation with pure oxygen
	Hysys simulation with 90% oxygen
	Hysys simulation with 40% oxygen

