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Abstract

The main objective of this specialization project is to study the implementation

of Real Time Optimization via Modifier Adaptation in an experimental lab rig, which

represents a subsea oil well network with gaslift. RTO aims to maximize the rev-

enue and minimize the operational costs of a process plant in real time. The RTO

layer is followed by a faster control layer that accounts for fast corrective actions.

Implementation of traditional RTO is challenging, mainly because it requires rigorous

first-principles based models. Incorrect model structures lead to severe plant-model

mismatch, which can result in the algorithm converging to the incorrect optimum.

Modifier Adaptation can be a possible solution to these challenges. In contrast to tra-

ditional RTO, the MA method relies on a fixed nominal steady-state process model.

The advantage of MA lies in its proven ability to converge to plant optimum despite

plant-model mismatch. This is ensured by modifiers, which modifies the optimization

problem in such a way that plant optimum is achieved. However, there is a gap in the

literature when it comes to MA implementations. Only a few MA implementations in

real systems are reported in the literature. This project is attempting to contribute

to fill this gap.

Since plant optimality is ensured by the modifiers in the MA algorithm, the idea is

to study if a simple model can be used instead of a rigorous one. Accurate modelling

of oil well networks can be very difficult and time consuming. Firstly, a few different

simple steady-state models for the experimental rig were obtained. This was done by

obtaining steady-state data from the rig. Then, statistical methods were used to obtain

and evaluate the models. Secondly, standard MA and Output Modifier Adaptation

were applied to the chosen obtained model and implemented in a simulation case

study of the experimental rig. The difference in the two approaches lies in how they

modify the optimization problem. They both use modifiers, but the modifiers are

calculated from different plant measurements and gradients. The simulation results

showed that the implementations with the simple model were able to drive the system

to its optimum. However, this only yield when the measurement noise is low. Lastly,

a trial run in the actual experimental rig was carried out. The experimental results

showed that the output modifier adaptation approach has a potential. But, this

requires significant better gradient estimation.
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1 Introduction

Optimal operation of continuously process plants is of great economic importance in the

chemical industry. Optimal operation requires meeting goals in different time scales ran-

ging from long-term planning to fast regulation for stable operation. Realizing all these

goals as a whole is unrealistic and difficult. Operation is hence decomposed into various

decision making layers. Figure 1 illustrates the plant decision hierarchy, where the third

layer is of interest in this project. Real Time Optimization (RTO) aims to maximize the

revenues and minimize the cost of hour-by-hour operation and typically provides setpoints

to the lower layer [1]. The lower layer can be, among other things, an MPC controller or

a PID controller. RTO incorporate measurements of the process plant in the optimiza-

tion to drive the processes to optimal performance, without violating the constraints [2].

However, optimal operation can be difficult to achieve with inaccurate process models or

in the presence of disturbances [3].

Figure 1: Plant decision hierarchy.

Source: Darby, Mark L., et al. ”RTO: An overview and assessment of current practice.” Journal of

Process Control 21.6 (2011): 874-884.

Traditional steady-state RTO typically uses rigorous process models. These models are

very costly to develop and obtaining them requires a very good understanding of the

process. Incorrect model structures lead to plant-model mismatch, which can result in the

RTO converging to an incorrect optimum. There are also computational issues associated

to solving and simulating detailed and complex models, which can lead to convergence

issues and numerical failure. An RTO variant called Modifier Adaptation (MA) can be

used for addressing these issues. While traditional RTO uses measurements of the plant

to improve the model, standard MA uses the measurements to modify the optimization

problem and relies on a fixed model. The idea behind MA is to modify the optimization

problem by adding correction terms to the cost and constraint functions and enforce plant

optimality, despite the presence of parametric and structural plant-model mismatch.

Using MA can solve some of the traditional RTO challenges, but there are still some
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challenges which need to be addressed:

• Steady-state wait time. MA is, as traditional RTO, a steady-state optimization

method. The algorithm is only running at steady-state. The plant needs time to

stabilize before the next RTO iteration, which can be very time consuming. For

instance, in case of frequent disturbances.

• Accurate measurements are needed to detect steady-state and especially for gradient

estimation. Noisy measurements are very challenging for gradient estimation.

• Dynamic limitations. Since MA is a steady-state optimization method, it does not

take the dynamics of the process into account. The RTO layer does not care about

how to actually reach the optimal value, because it does not consider the transients.

1.1 Specialization Project goals

The goal of this specialization project is to get a better understanding of the implement-

ation of MA in real systems and the challenges that follows. The project covers:

• Steady-state model estimation of an experimental lab rig. This model is used in the

implementation of MA.

• Implementation of MA and Output Modifier Adaptation (MAy), which is an al-

ternative to the standard MA, in a simulation case study of the experimental rig.

This simulation consists of a dynamic model representing the behaviour of the rig.

The simulation case study is used to study the tuning parameters that affect the

performance, as well as to study the performance of the estimated model.

• Implementation of MAy in the actual experimental rig. A trial run is carried out in

the rig to study the performance of the algorithm. The performance of MAy in the

rig is compared to a previously developed traditional RTO algorithm.

4



2 Theory and Background

2.1 Production Optimization

2.1.1 Steady-State Optimization

The steady-state production optimization problem for the plant can be formulated as:

min
u

Jp(u) := J(u,yp(u,d))

s.t. Gp(u) := g(u,yp(u,d)) ≤ 0,

uL ≤ u ≤ uU

(1)

The notation p is used for variables associated with the plant. u ∈ Rnu denotes the decision

variables and yp ∈ Rny denotes the measured output variables of the plant. nu and ny are

the number of inputs and outputs respectively. Jp: Rnu×Rny → R is the operational costs

of the plants which should be minimized. g is a set of ng inequality constraint functions,

where gi: Rnu × Rny → R, i = 1, . . . , ng. The inequality constraints are often operational

limitations. yp(u,d) represents the steady-state input-output mapping of the plant, where

d ∈ Rnd are representing plant parameters and disturbances. nd is the number of plant

parameters and disturbances. uL and uU are the lower and upper bounds of u respectively.

These bounds are not dependent on yp and are therefore not affected by uncertainty. The

cost and constraint functions are assumed to be known directly from the measurements.

Since yp(u,d) is typically unknown, a steady-state process model is used for solving the

problem in Eq. (1).

f(u,x,d) = 0

y = h(u,x,d)
(2)

where f is the steady-state process model and y ∈ Rny is the output variables predicted by

the model. x ∈ Rnx are representing the state variables. For simplicity, y can be expressed

as a function of only u and d. The solution u∗ to the original optimization problem can

be obtained by solving to the following NLP problem:

arg min
u

J(u) := J(u,yp(u,d))

s.t. G(u) := g(u,d) ≤ 0,

uL ≤ u ≤ uU

(3)

However, it should be mentioned that it is not guaranteed that the optimal solution to this

problem, u∗, coincide with the optimal plant value u∗
p [3]. In the presence of plant-model

mismatch, it could be likely that u∗ converge to an incorrect optimum.
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2.1.2 Necessary Conditions of Optimality

The local minima of Problem (3) can be characterized by the Karush-Kuhn-Tucker (KKT)

conditions. A solution u∗ is a KKT point if there exist unique Langrange multipliers

µ∗ ∈ Rng such that the following holds:

G ≤ 0, µTG = 0, µ ≥ 0

∂L
∂u

=
∂J

∂u
+ µT ∂G

∂u
= 0

(4)

where L(u, µ) := J(u) + µTG(u) is the Lagrangian function. The KKT conditions alone

do not sufficiently charaterize an optimum. Two additional conditions must hold; The

Linear Independence Constraint Qualification (LICQ) and a second order necessary con-

dition. LICQ requires that the gradients of the active constraints are linearly independent

at u∗. The second order necessary conditions require that the reduced Hessian of the

Lagrangian is positive semi-definite at u∗ [2].

2.1.3 Modifier Adaptation

The RTO method selected in this project is Modifier Adaptation. While traditional RTO

is updating the model by estimating model parameters and disturbances, MA relies on a

fixed process model. The advantage of MA lies in its proven ability to converge to the

plant optimum despite the plant-model mismatch. The idea is to modify the optimization

problem in such a way that a KKT point for the model coincide with the real optimum

of the plant.

The standard MA scheme uses measurements of the plant constraints and estimates of

plant gradients to modify the cost and constraint functions in the optimization problem. At

the kth RTO iteration with input uk, the modified cost and constraint functions become:

Jm,k(u) := J(u) + εJk + (λJk )T (u− uk) (5)

Gm,i,k(u) := Gi(u) + εGi
k + (λGi

k )T (u− uk) ≤ 0, i = 1, . . . , ng (6)
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with εJk , εGi
k , λJk and λGi

k given by:

εJk = Jp(uk) + J(uk)

εGi
k = Gp,i(u) +Gi(u), i = 1, . . . , ng

(λJk )T =
∂Jp
∂u

(uk)−
∂J

∂u
(uk)

(λGi
k )T =

∂Gp,i
∂u

(uk)−
∂Gi
∂u

(uk), i = 1, . . . , ng

(7)

where ng is the number of constraints. The modifiers εJk and εGi
k represent the differences

between the plant values and the predicted values at the kth RTO iteration. λJk and λGi
k

represent the differences between the plant gradients and the model gradients at the kth

RTO iteration. The next optimal input sequence u∗
k+1 is found by solving the modified

optimization problem:

arg min
u

Jm,k(u) := J(u) + (λJk )Tu

s.t. Gm,i,k(u) := Gi(u) + εGi
k + (λGi

k )T (u− uk) ≤ 0, i = 1, . . . , ng,

uL ≤ u ≤ uU

(8)

The constant term εJk−(λJk )Tuk does not affect the solution and, hence only the linear term

in u is included in the objective function. The main implementation difficulty with this

algorithm is the need to estimate cost and constraint gradients at each iteration. These

gradients can not be measured directly and they have to be estimated based on noisy plant

measurements. Since the modifiers and the optimal inputs are sensitive to measurement

noise, first-order filters are often applied to both the modifiers and the optimal inputs, as

shown in Eqs. (9).

εGi
k+1 = (1− bi)εGi

k + bi(Gp,i(u) +Gi(u)), i = 1, . . . , ng

(λJk+1)
T = (1− d)(λJk )T + d(

∂Jp
∂u

(uk)−
∂J

∂u
(uk))

(λGi
k+1)

T = (1− qi)(λGi
k )T + qi(

∂Gp,i
∂u

(uk)−
∂Gi
∂u

(uk)), i = 1, . . . , ng

uk+1 = uk + K(u∗
k+1 − uk)

(9)

where bi, d, qi and K have values (0,1] [3].

2.1.4 Modification of Output Variables

Output Modifier Adaptation (MAy) is an alternative to the standard Modifier Adapta-

tion method. Instead of modifying the cost and constraint functions, the outputs y are
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modified. At the kth RTO iteration, the expression for the modified outputs are as follows:

ym,k(u) := y(u) + εyk + (λy
k)
T (u− uk) (10)

with εyk and λy
k given by:

εyk = yp(uk)− y(uk)

(λy
k)
T =

∂yp
∂u

(uk)−
∂y

∂u
(uk)

(11)

The next optimal inputs u∗
k+1 are found by solving the following modified optimization

problem:

arg min
u

J(u,ym,k(u))

s.t. ym,k(u) = y(u) + εyk + (λy
k)
T (u− uk),

Gi(u,ym,k(u)) ≤ 0 i = 1, . . . , ng,

uL ≤ u ≤ uU

(12)

First-order filters are also applied to these modifiers and to the optimal inputs, as shown

in Eqs. (9).

2.1.5 Gradient Estimation

There are many methods available for estimating plant gradients. One very common ap-

proach is to use Finite-difference approximation (FDA). This method is a steady-state

perturbation method, which relies on steady-state data. The FDA approach require usu-

ally nu + 1 steady-state operating points to estimate the gradients. The Forward-finite-

differencing (FFD) approach is perturbing each input individually around the current RTO

point to get an estimate of the gradient [2]. As an example, the gradient of the output

with respect to uj at the kth RTO iteration is esimated as:

∂̂yp
∂uj

(uk) = [yp(uk + hej)− yp(uk)]/h, h > 0 (13)

where h is the step size and ej is the j th unit vector. The Central-finite-differencing (CDF)

approach is an alternative to FFD. In this method, each input is perturbed twice. This

yields more accurate approximations. The gradient of the output, with respect to uj , at
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the kth RTO iteration is esimated as:

∂̂yp
∂uj

(uk) = [yp(uk + hej)− yp(uk − hej)]/2h, h > 0 (14)

Both methods contain noisy measurements, which can lead to poor gradient estimates.

Ideally, h should be as small as possible to obtain good gradients. However, h can not be

too small in the presence of noisy measurements.

2.2 Model Identification

2.2.1 The Method of Least Squares

The method of least squares is used for fitting empirical functions to data. It can be useful

to develop a model,

y = f(ξ,θ) + ε (15)

where y is the output, f(ξ,θ) is the mean level of the output and ε is the experimental

error [4]. The experimental error is the error associated with the data, e.g. measurement

error. The output is affected by the variables ξ, which can include inputs and disturbances.

In addition, the model contains parameters θ. Different experimental runs at n different

sets of conditions are necessary to obtain such model.

The method of least squares selects the best estimate of θ such that the sum of the errors

{y1 − f(ξ1,θ)}, {y2 − f(ξ2,θ)},. . . , {yn − f(ξn,θ)} become as small as possible. This is

done by minimizing the sum of squares of the deviations, as follows:

arg min
θ

S(θ) =
n∑
j=1

{yj − f(ξj ,θ)}2 (16)

where S(θ) is the sum of squared errors. The solution to this problem will be the estimated

parameters, θ̂.

A great simplification in the computation of the parameter estimates can be done if the re-

sponse function is linear in the parameters, as shown in Eq. (17). Adding the experimental

error, we get the model shown in Eq. (15).

f(ξ,θ) = θ1z1 + θ2z2 + . . . θpzp (17)

y = θ1z1 + θ2z2 + . . . θpzp + ε (18)
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p is the number of parameters and the z’s are known functions of the experimental condi-

tions, ξ e.g. zi = u2d. These types of models are said to be linear because they are linear

in the parameters.

If a model structure such as the one in Eq. (17) has been proposed and experimental

data from n different sets of conditions have been obtained, then the model can relate the

observations y1, y2,. . . , yn to the known zij ’s and the unknown θi’s by n equations:

y1 = θ1z11 + θ2z21 + . . .+ θpzp1 + ε1

y2 = θ2z12 + θ2z22 + . . .+ θpzp2 + ε2

. . .

. . .

yn = θ1z1n + θ2z2n + . . .+ θpzpn + εn

(19)

Which in matrix form can be written as:

y = Zθ + ε (20)

where

y =


y1

y2
...

yn

 , Z =


z11 z21 . . . zp1

z12 z22 . . . zp2
...

...
...

z1n z2n . . . zpn

 , θ =


θ1

θ2
...

θp

 , ε =


ε1

ε2
...

εn

 (21)

The sum of squared errors can now be written as:

S(θ) = εT ε = (y− Zθ)T (y− Zθ) (22)

The least squares estimates θ̂, which minimizes S(θ) are found by solving the following

equation:

ZTZθ̂ = ZTy (23)

which gives:

θ̂ = (ZTZ)−1ZTZ (24)
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The fitted equation ŷ is therefore:

ŷ = θ̂1z11 + θ̂2z21 + . . .+ θ̂pzp1 (25)

2.2.2 The R-squared Statistic

The R2 statistic often represents the overall fit for the model. It represents the proportion

of variance about the mean that is explained by the fitted model [4]. R2 can take values

between 0 and 1. Generally, a higher value indicates a better fit for the model. The R2

statistic is given by:

R2 =
θ̂
T
ZTy−Nȳ2

yTy−Nȳ2
(26)

where ȳ is the overall mean value of y and N is the total number of observations.

2.2.3 The Akaike Information Criterion

The Akaike Information Criterion (AIC) is a widely used method for choosing between

different competing models. AIC takes the model complexity into account, in addition

to how well the model reproduces the data. The model complexity is determined by the

number of independent variables used to build the model. AIC for ordinary least squares

models is given by:

AIC = nln(

∑n
j=1(yj − ŷj)2

n
) + 2(p+ 1) (27)

Lower AIC scores are better, because AIC penalizes models that contain more parameters.

If two models reproduce the data with the same level of precision, the one with fewer

parameters will have the lowest AIC score [5].

2.2.4 Confidence Intervals

A confidence interval refers to the probability that a parameter will fall between a set of

values for a certain proportion of times. It can be shown that a 1− α confidence interval

for θ̂i is given by:

θ̂i ± tα/2(ν)(s2cii)1/2 (28)

where t(ν) represents a t distribution with ν = N − p degrees of freedom. cii denotes the

ith diagonal term of (ZTZ)-1 and s2 denotes the estimate of the variance of y. Confidence

11



intervals are useful because they show the region that includes the true value of θ with a

given probability. However, they do not light the correlations between the different θ̂i’s

[4].
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3 System Description

3.1 Subsea Oil Well Networks

The overall goal in subsea oil production is to maximize the production of oil from the

reservoirs. Typically, the reservoir pressure drives the fluids from below the seafloor to

the top facilities trough risers. A gaslift can be applied to the system if this pressure is

not large enough. A simplified figure of the system is shown in Figure 2. The injected gas

reduces the bulk density and decreases the hydrostatic pressure on the reservoir. However,

if the gas injection rate becomes too large, the frictional pressure drop effect dominates

and the injected gas will have a negative effect [6].

Figure 2: Simple model diagram of one gas lifted well. Qg is the gas lift rate and Ql is

the oil production rate.

3.2 Experimental Lab Rig Setup

The experimental rig represents a subsea oil well network with three parallel gas lifted

wells. The setup in the rig uses water and air as working fluids instead of oil and gas.

A flowsheet of the rig is shown in Figure 3. The system measurements are the well

top pressure (PI101, PI102 and PI103), the pump outlet pressure (PI104), the liquid

flowrates (FI101, FI102, FI103) and the gas flowrates (FI104, FI105, FI106). The reservoir

valve openings (CV101, CV102, CV103) are known disturbances in the experiments. The

different valve openings represents different behaviours of the reservoir. The pump outlet

pressure PI104 represents the reservoir pressure and is kept constant by a PI controller.

Three PI controllers are used for controlling the gas flowrates, whose setpoints are the

system inputs.

13



Figure 3: Flowsheet of the experimental rig.

3.3 The Optimization Problem

The objective is to maximize the economic profit J by determine the optimal injection

rate (the setpoints of flow controllers FIC104, FIC105 and FIC106). J is a function of the

liquid flowrates. The outputs y and the inputs u are:

y = [Ql1 Ql2 Ql3 ]T

u = [Qg1 Qg2 Qg3 ]T

The three parallel wells have different priority in the objective function due to economic

reasons. This is indicated by using different weights. Gas availability constraints and gas

injection bounds have to be respected. Maximum gas availability is 7.5 sL/min and the

upper and lower bounds of each gas injection rate is 1 and 5 sL/min respectively. The

optimization problem becomes:

max
Qg1 , Qg2 , Qg3

J = 20Ql1 + 10Ql2 + 30Ql3

s.t. Qg1 +Qg2 +Qg3 ≤ 7.5,

1 ≤ Qg1 , Qg2 , Qg3 ≤ 5

(29)

where Ql1 , Ql2 and Ql3 are the liquid flowrates FI101, FI102 and FI103 respectively.

Qg1 , Qg2 and Qg3 are the setpoints to the flow controllers FIC104, FIC105 and FIC106

respectively.
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3.4 Experimental Rig Simulations

Before testing the optimization method in the actual experimental lab rig, some simulation

was done using a rigorous first-principles model as the plant, while the simple model of

Section 4 is used in the Modifier Adaptation layer for economic optimization purposes.

The model (plant in the simulation) of the three gas lifted wells is obtained from [7]. The

model has been implemented in MATLAB to test and tune different optimization methods

before they have been applied to the experimental rig. A model diagram is shown in Figure

4. The model uses mass balances of the different phases, density models, pressure models

and flow models, which become the following differential algebraic equation (DAE):

ẋi = fi(xi, zi,ui,pi)

gi(xi, zi,ui,pi) = 0 ∀i ∈ N = {1, . . . , nw}
(30)

where the subscript i is referring to a well in the set N . xi is the differential states, zi

is the algebraic states, ui is the decision variables and pi is the uncertain variables. nw

is the number of wells, i.e. nw=3 in this case. fi(xi, zi, ui, pi) is the set of differential

equations and gi(xi, zi, ui, pi) is the set of algebraic equations. The MATLAB code with

these equations is shown in Appendix A.

Figure 4: Model diagram of one single well.

The differential states, the algebraic states and the decision variables are given by:

xi = [mgi mli ]
T

zi = [wli wtotali prhi pbii ρmix ρgi wgouti wlouti ]
T

ui = [Qgi voi ppump]
T

(31)

where mgi is the gas hold up and mli is the liquid hold up. wli is the water rate from

the reservoir and wtotali is the total well production rate. prhi is the riser head pressure
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and pbii is the pressure before injection point. ρmix is the mixture density in the system

and ρgi is the density of the gas. wgouti and wlouti is the well outlet gas and liquid outlet

flowrate respectively. Qgi is the gas lift injection rate, voi is the valve opening from the

reservoir and ppump is the reservoir pressure.

Note that the valve opening vo is included as a decision variable in the model, but its seen

as a (measured) disturbance in the simulation. ppump is held at a constant value in the

simulation.
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4 Model Estimation

Four different steady-state models of the experimental rig were obtained from an experi-

ment. All the obtained models are linear with respect to the parameters. The method of

least squares was used to fit the models to the data. Then statistical methods were used

for evaluation, and the fourth model turned out to be preferred over the other ones. The

idea of obtaining simplified models of the process is to study if they can be used in the

optimization instead of more complex ones, and still give good results.

4.1 Estimation of models

An experiment was carried out in the experimental rig to establish the steady-state rela-

tionship between the gas flowrates Qgi and the valve openings voi and the liquid flowrates

Qli , shown in Eq. (32). The experimental grid is shown in Figure 5.

Qli = f(Qgi , voi ,θ) + ε (32)

1 3 5

Q
g
 [sL/min]

0.25

0.5

0.75

v
o
 [
%

]
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2

3 4

5

6 7

8

9

Figure 5: Experimental grid. The numbers 1-9 represents the different sets of conditions.

The experiment was carried out at 9 different sets of conditions. These are shown in

the experimental grid. Four different steady-state model structures were suggested and

since the models are linear w.r.t the parameters, ordinary least squares was used to fit the

models to the data and obtain the different model parameters. The structures of model

1, 2, 3 and 4 are shown in Eqs. (33), (34), (35) and (36) respectively. The models are

shown for one well. The structures were chosen arbitrarily, but based on a priori process

knowledge. Model 1 is the simplest model of the four, i.e. it contains the smallest number

of parameters. Model 2 is expanded with two terms and, hence has two more parameters.

As the goal is to find the simplest model as possible, which also fits the dataset in a good

way, two other models were obtained. Model 3 and 4 are equal to the second model with
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one term removed and, therefore have one less parameter than the second model.

Model 1 : Q̂l = θ̂1 + θ̂2Qg + θ̂3vo + θ̂4Qgvo (33)

Model 2 : Q̂l = θ̂1 + θ̂2Qg + θ̂3vo + θ̂4Qgvo + θ̂5Q
2
g + θ̂6v

2
o (34)

Model 3 : Q̂l = θ̂1 + θ̂2Qg + θ̂3vo + θ̂4Qgvo + θ̂5Q
2
g (35)

Model 4 : Q̂l = θ̂1 + θ̂2Qg + θ̂3vo + θ̂4Q
2
g + θ̂5v

2
o (36)

Instead of relying on physical knowledge to obtain the models, it is chosen to represent

the process by using simple mathematical expressions for describing the input-output

relationship. Instead of choosing more complex model structures, it is chosen to use only

polynomials because they are linear in the parameters, and can represent the first and

second order effects of the inputs on the outputs. Thus, the models in Eqs. (33)-(36) are

referred to as simple. The estimated parameters are shown in Table 2, where the first

number in each row is representing the first well, the second is representing second well

and the third is representing third well.

Table 2: Estimated parameters in model 1, 2, 3 and 4.

Model 1 Model 2

θ̂ Well 1 Well 2 Well 3 θ̂ Well 1 Well 2 Well 3

θ̂1 3.657 2.924 2.892 θ̂1 0.572 -0.361 -0.753

θ̂2 0.182 0.265 0.210 θ̂2 0.274 0.488 0.580

θ̂3 4.813 5.642 5.298 θ̂3 19.153 20.277 21.039

θ̂4 0.054 -0.059 0.059 θ̂4 0.053 -0.058 0.091

θ̂5 -0.015 -0.037 -0.065

θ̂6 -14.338 -14.639 -15.713

Model 3 Model 4

θ̂ Well 1 Well 2 Well 3 θ̂ Well 1 Well 2 Well 3

θ̂1 3.567 2.688 2.549 θ̂1 0.493 -0.274 -0.883

θ̂2 0.267 0.489 0.556 θ̂2 0.300 0.459 0.620

θ̂3 4.813 5.640 5.320 θ̂3 19.312 20.102 21.313

θ̂4 0.054 -0.059 0.093 θ̂4 -0.015 -0.037 -0.064

θ̂5 -0.014 -0.037 -0.061 θ̂5 -14.338 -14.639 -15.714
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4.2 Simulation of the models

A simulation of the four models was obtained to visualize how good they fit the dataset.

Figure 6 shows the simulation of all the four models. The models for each individual well

are plotted in the feasible region of operation, where Ql is showed on the z-axis. The

true value and the model estimated value are shown as well. Table 3 shows the absolute

residuals in each datapoint.
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Figure 6: Surface plot of the four models and each well. True output value and model estimated output value marked on each plot. Each column

is a different model while each row represents a different well.
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Table 3: Abolute residuals.

Model 1 Model 2

Point Well 1 Well 2 Well 3 Well 1 Well 2 Well 3

1 -0.244 -0.355 -0.382 0.0753 -0.0011 0.0207

2 0.510 0.560 0.522 -0.0680 -0.0004 -0.0475

3 -0.322 -0.354 -0.410 -0.0035 0.0016 0.0116

4 -0.250 -0.222 -0.136 0.0077 -0.0168 0.0167

5 0.771 0.737 0.869 0.133 0.0277 0.0457

6 -0.409 -0.218 -0.188 -0.152 -0.0122 -0.0225

7 -0.243 -0.342 -0.406 0.0764 0.0133 0.0286

8 0.511 0.533 0.561 -0.0646 -0.0273 0.0057

9 -0.324 -0.340 -0.430 -0.0042 0.0152 -0.0235

Model 3 Model 4

Point Well 1 Well 2 Well 3 Well 1 Well 2 Well 3

1 -0.225 -0.306 -0.313 0.102 -0.0302 0.0650

2 0.529 0.610 0.602 -0.0680 -0.0004 -0.0488

3 -0.303 -0.304 -0.320 -0.0300 0.0308 -0.0351

4 -0.288 -0.322 -0.300 0.0077 -0.0168 0.0191

5 0.733 0.638 0.711 0.133 0.0276 0.0484

6 -0.447 -0.317 -0.340 -0.152 -0.0123 -0.0198

7 -0.224 -0.292 -0.303 0.0500 0.0425 -0.0165

8 0.530 0.583 0.655 -0.0646 -0.0272 0.0046

9 -0.306 -0.290 -0.357 0.0223 -0.0140 0.0210

4.3 R-squared statistic and AIC of the models

The R2 statistic and AIC score were calculated for each of the four models of the three

wells. Table 4 shows the mean R2-value and the mean AIC score of the three wells for

each model.

Table 4: Mean R2 statistic and AIC score for the estimated models.

Model R2 AIC

1 0.8453 -4.44

2 0.9722 -47.2

3 0.8491 -2.73

4 0.9718 -44.8
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4.4 Confidence intervals for parameters

A 95% confidence intervals for the model parameters in the second and fourth model are

shown in Table 5.

Table 5: Confidence intervals for model parameters

Model 2

θ̂ Well 1 Well 2 Well 3

θ̂1 0.572 ± 0.51 -0.361 ± 0.36 -0.753 ± 0.50

θ̂2 0.274 ± 0.19 0.488 ± 0.13 0.580 ± 0.18

θ̂3 19.153 ± 1.87 20.277 ± 1.33 21.039 ± 1.88

θ̂4 0.053 ± 0.16 -0.058 ± 0.11 0.091 ± 0.16

θ̂5 -0.015 ± 0.028 -0.037 ± 0.020 -0.065 ± 0.028

θ̂6 -14.338 ± 1.79 -14.639 ± 1.28 -15.713 ± 1.80

Model 4

θ̂ Well 1 Well 2 Well 3

θ̂1 0.493 ± 0.45 -0.274 ± 0.32 -0.883 ± 0.45

θ̂2 0.300 ± 0.17 0.459 ± 0.12 0.620 ± 0.17

θ̂3 19.312 ± 1.81 20.102 ± 1.29 21.313 ± 1.82

θ̂4 -0.015 ± 0.028 -0.037 ± 0.020 -0.064 ± 0.027

θ̂5 -14.338 ± 1.79 -14.639 ± 1.28 -15.714 ± 1.80

4.5 Discussion and conclusion

The simulation of the models clearly shows that model 1 and model 3 have the largest

deviation from the true values. Table 3 shows that model 2 and model 4 have lower

residuals all over the feasible region. Model 2 is expected to fit the dataset the best

because it includes the first and second order input-output interaction terms, as well as a

cross term of the two inputs.

The residuals of model 4 show that this model is almost as good as model 2 one, despite

the fact that the second model contains an extra term. Table 2 shows that the parameters

of the second and the fourth model are almost identical, except for θ̂4 in model 2, which

is from the cross term Qgvo. The cross term is the only difference between model 2 and

4. It could be likely that this term is not needed.

Table 4 shows the mean R2 statistic of the models, as well as the mean AIC score. The R2

statistic shows that the second and the fourth model are the best suited for the dataset,

since they have values closer to 1 than the other two models. However, these values, as

well as the residuals, are only showing how well the models suit the dataset from the

experimental grid. These values may be different for a different experimental grid and

22



a different dataset. The mean AIC score of the models also show poor values for model

1 and 3, which is expected from the previous analysis. Model 2 and 4 have significantly

smaller AIC scores, which is preferred.

Since the first and the third model showed such bad residuals compared to the other

two, in addition to a lower R2 value and a poor AIC score, confidence intervals were

only computed for the second and the fourth model. These are shown in Table 5. The

intervals are not showing the correlations between the different parameters, it only shows

the uncertainty in the parameters when the others are held constant. The interval of θ̂1

stands out as very large. It has a interval approximately 100% its value in both of the

models. θ̂3 in both models shows an acceptable value, as well as the θ̂6 in the first model

and θ̂5 in the fourth model. The other θ̂’s show quite large intervals, which is expected

since the models are relatively simple.

The R2 value and the AIC score of model 2 and 4 can be considered as equivalent, due to

the fact that that only 9 experimental points are used in the experiment. Since model 4

has fewer parameters than the second, and shows a similar accuracy, this model is chosen

to be implemented in the optimization.
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5 Modifier Adaptation Case Study

Modifier Adaptation is implemented in a simulation case study of the experimental rig,

described in Section 3. The optimization problem is Problem (29). The plant is the

dynamic model of the experimental rig and the model is the estimated steady state-model

from Section 4,

Ql = θ1 + θ2Qg + θ3vo + θ4Q
2
g + θ5v

2
o

The model is shown for one well.

5.1 Method

Before optimizing the system using Modifier Adaptation, first-order modifiers λJ need

to be calculated. For computing them, the plant gradients need to be estimated. The

Forward-finite differencing approach is used in this implementation, where the inputs are

perturbed individually around the current operating point. Then, the plant gradient
∂Jp
∂u (uk) is estimated as:

∂Jp
∂uj

(uk) = [Jp(uk + hej)− Jp(uk)]/h (37)

where j is representing the j th input and k is representing the kth MA iteration. Jp is

calculated from plant measurements. Note that the plant must be perturbed nu times at

each MA iteration (here, nu = 3). Additionally, it is required that the system reaches

steady-state after every perturbation before computing the gradients. Based on previous

knowledge, a sampling time of 60 seconds is enough to guarantee stationarity of the system

after perturbations. Then the modifiers are computed as:

(λJk+1)
T = (1− d)(λJk )T + d(

∂Jp
∂u

(uk)−
∂J

∂u
(uk)) (38)

where d is the filter gain coefficient. The model gradient ∂J
∂u(uk) is calculated from plant

measurements of the gas flow rates and the valve openings. After obtaining λJ and insert

y = [Ql1 Ql2 Ql3 ]T and u = [Qg1 Qg2 Qg3 ]T , the modified economic optimization problem
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becomes:

arg max
Qg1 , Qg2 , Qg3

Jm,k := 20Ql1 + 10Ql2 + 30Ql3 + (λJk )T [Qg1 Qg2 Qg3 ]T

s.t. Qli = θ1i + θ2iQgi + θ3ivoi,k + θ4iQ
2
gi + θ5iv

2
oi,k
, i = 1, 2, 3,

Qg1 +Qg2 +Qg3 ≤ 7.5− h,

1 ≤ Qg1 , Qg2 , Qg3 ≤ 5

(39)

voi,k is the measured valve opening of well i at the kth iteration. A backoff equal to the step

size h in the perturbation is added to the gas availability constraint. Filters are applied to

the optimal inputs. Algorithm 1 is lighting the most important steps of the algorithm. As

described in Section 3, the inputs are the setpoints to the PI controllers used for controlling

the gas flowrates. The ”controller action” is implemented in the simulation by adding a

5 seconds delay to the inputs, in addition to input noise. The measurement noise in the

simulation is drawn from a normal distribution with a variance σ2. The variance of the

noise was computed to represent the actual noise level in the experimental rig.

Algorithm 1 MA

for k = 0→∞ do

1. Get steady-state measurements from the plant at uk. Calculate model gradient

and evaluate the objective function.

2. Perturb each input individually → uj = uk + hej

3. Get steady-state measurements from the plant at each of the perturbed points.

Evaluate the objective function in each perturbed point.

4. Estimate gradients of the objective function w.r.t each input.

→ ∂Jp
∂uj

(uk) = [Jp(uk + hej)− Jp(uk)]/h
5. Update modifiers → (λJk+1)

T = (1− d)(λJk )T + d(
∂Jp
∂u (uk)− ∂J

∂u(uk))

6. Modify objective function → Jm,k(u) = J(u) + (λJk )Tu

7. Solve modified NLP, u∗
k+1

8. Apply filter on optimal inputs → uk+1 = uk + K(u∗
k+1 − uk)

end for
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5.2 Results

The results for the Modifier Adaptation implementation in the simulation case study are

presented in this section. The algorithm is first applied to the case study without any noise.

Then, it is applied to the system with both measurement noise and added controller action

for the PI controllers. The Forward-finite-differencing approach is used to estimate the

gradients. The tuning parameters for the simulations are shown in Table 6.

Table 6: Tuning parameters for MA.

Parameter Description Value

K u filter gain coefficient 0.8

d λJ filter gain coefficient 0.5

5.2.1 No noise

Figure 7a and 7b show the simulation results with no noise. This means that the meas-

urements are perfect, as well as we do not have any controller delay, that is Qg = Qg,sp.

Figure 7a shows the valve openings of each well, the liquid flow rates of each well and the

objective function (instantaneous profit). The valve openings are held constant. Figure

7b shows the three inputs. The simulation shows that the method is able to drive the

inputs to the optimal operating point, which was previously computed. The step size for

the perturbation is set to h = 0.01 in this simulation because of no noise. Figure 8 shows

the estimated gradients, as well as the true plant gradients.
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Figure 7: Simulation results with MA and no noise.
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Figure 8: Estimated OF gradients with MA and no noise.

5.2.2 Noisy measurements

Figure 9a and 9b show the simulation results with added noise and controller action for the

PI controller. A 10th-order one-dimensional median filter is applied to the measurement

of the objective function in Figure 9a. The valve openings are still constant. Figure 10

shows the estimated gradients, as well as the true plant gradients. The step size for the

perturbation is in this case increased to h = 0.2 because of significant measurement noise.
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Figure 9: Simulation results with MA. Measurement noise and controller delay is included.
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Figure 10: Estimated OF gradients with MA. Measurement noise and controller delay is

included.

5.3 Discussion

The first simulation, without measurement noise, converged very nicely to plant optimum

after some iterations. The third input has the highest optimal value because the liquid flow

rate of well 3 is the most prioritized in the objective function. The liquid flow rate of well

2 is the least prioritized output in the objective function, which makes the second input

the smallest and at its lower bound. The estimated gradients in this simulation almost

overlapped with the true plant gradients in the end of the simulation. The perturbation

of the inputs can not easily be seen from this simulation because of the small step size.

The perturbation is clearly shown in the second simulation with measurement noise and

implemented controller delay. The inputs are perturbed individually, as can be seen in

Figure 9b. For example at time 6, 7 and 8 minutes. The gradients and optimal inputs are

then computed at time 9 minutes.

The second simulation showed that noise affects the performance significantly. Figure 9b

shows that the inputs do not converge to plant optimum. Figure 10 shows the estimated

objective function gradients. The gradients are always four minutes behind the true gradi-

ents, because of the chosen perturbation method. As an example, at time 17 minutes a

new gradient is estimated. This gradient is representing the gradient of the plant four

minutes before, at time 13 minutes. The estimated gradient at time 17 minutes for the

first well is approximately equal to the true gradient at 13 minutes. However, it seems like
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this is barely never the case in the rest of the plot. The gradient of the objective function

w.r.t. the first and the second input are at some points negative, which does not make

physical sense. There are a lot of uncertainty in these gradients. The objective function is

a function of the measured outputs, which are affected by noise. The three outputs have

different priority in the objective function due to economic reasons, which is indicated by

using the weights 20, 10 and 30 respectively. Thus, accurate estimates of the objective

function and its gradients are hard to obtain with a steady-state perturbation method like

FFD.

The fact that the inputs converged to the optimal operating point in the simulation without

noise shows that the MA method does not require an accurate model, since the true

optimum is found by enforcing the plant KKT conditions. However, the challenge with

MA lies in accurate gradient estimation. Instead of trying to improve the solution with

standard MA, another case study with Output Modifier Adaptation was carried out, which

is showed in the next section.
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6 Output Modifier Adaptation Case Study

From the simulations with the standard Modifier Adaptation approach, it was seen that

the simple model was enough to make the optimization method converge to plant op-

timum in the case of no measurement noise. The challenge lies in the gradient estimation.

Output Modifier Adaptation is an alternative to the former standard approach, which

does not calculate the gradient of the objective function. Instead, MAy uses gradients of

the outputs. In addition, the Central-finite-differencing approach is used as perturbation

method instead of FFD to improve accuracy.

6.1 Method

Before optimizing the system using MAy, zeroth-order modifiers εy and first-order mod-

ifiers λy need to be calculated. Ouput gradients of the plant need to be estimated for

obtaining λy. The CFD approach is used in this implementation, where each input is

perturbed around the current operating point twice. Since the inputs are independent,

they are perturbed at the same time. Then, the plant gradient
∂yp,j
∂uj

(uk) is estimated as:

∂yp,j
∂uj

(uk) = [yp,j(uk + hej)− yp,j(uk − hej)]/2h (40)

where j is representing the j th input and k is representing the kth MAy iteration. The

plant is perturbed twice in each MAy iteration. Steady-state has to be obtained after

every perturbation before computing the gradients. A sampling time of 60 seconds is used

in this implementation, which is enough to guarantee stationarity of the system. Then,

the modifiers are computed as:

εyk+1 = (1− b)εyk + b(yp(uk)− y(uk))

(λy
k+1)

T = (1− d)(λy
k)
T + d(

∂yp
∂u

(uk)−
∂y

∂u
(uk))

(41)

where b is the εy filter gain coefficient and d is the λy filter gain coefficient. The ouput value

of the model y(uk) and the model gradient
∂yj
∂uj

(uk) is calculated from plant measurements

of the gas flow rates and the valve openings. yp(uk) is the measured output value. After

obtaining the modifiers and insert y = [Ql1 Ql2 Ql3 ]T and u = [Qg1 Qg2 Qg3 ]T , the modified
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economic optimization problem becomes:

max
Qg1 , Qg2 , Qg3

J = 20Ql1,m,k
+ 10Ql2,m,k

+ 30Ql3,m,k

s.t. Qli,m,k
= θ1i + θ2iQgi + θ3ivoi,k + θ4iQ

2
gi + θ5iv

2
oi,k

+ εyi,k + λyi,k(Qgi −Qgi,k), i = 1, 2, 3,

Qg1 +Qg2 +Qg3 ≤ 7.5− h,

1 ≤ Qg1 , Qg2 , Qg3 ≤ 5

(42)

The step size of the perturbation is still h = 0.2. Therefore, a backoff equal to 0.2 is added

to the gas availability constraint. εyi,k and λyi,k are the values of the modifiers of output i

at the kth MAy iteration. Qgi,k and voi,k are the measured gas rate and valve opening of

well i at the kth iteration respectively. A filter is applied to the optimal inputs before they

are implemented. Algorithm 2 summarizes the main steps in the MAy algorithm. The

inputs are the setpoints to the PI controllers used for controlling the gas flowrates. The

”controller action” is implemented in the simulation by adding a 5 seconds delay to the

inputs, in addition to input noise. The measurement noise in the simulation is drawn from

a normal distribution with a variance σ2, which was computed to represent the actual

noise level in the experimental rig.

Algorithm 2 MAy

for k = 0→∞ do

1. Get steady-state measurements from the plant and model at uk. Calculate model

gradient.

2. Perturb each input at the same time → uj = uk + hej or uj = uk − hej

3. Get steady-state measurements from the plant at each perturbed point.

4. Estimate output gradients of each well

→ ∂yp,j
∂uj

(uk) = [yp,j(uk + hej)− yp,j(uk − hej)]/2h

5. Update modifiers → εyk+1, λ
y
k+1

6. Modify outputs → ym,k(u) = y(u) + εyk + (λy
k)
T (u− uk)

7. Solve modified NLP, u∗
k+1

8. Apply filter on optimal inputs → uk+1 = uk + K(u∗
k+1 − uk)

end for
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6.2 Results

The simulation results for the MAy implementation are presented in this section. The

algorithm is first applied to the case study with measurement noise and controller action

for the PI controllers. The valve opening of each well is kept constant in this simulation

to compare the results with the last simulation of MA. Then, step-wise disturbances are

added to the system to see how well the algorithm is able to drive the system to the new

optimum. Both simulations use the Central-finite-differencing approach to estimate plant

gradients. The tuning parameters used in both simulations is shown in Table 7.

Table 7: Tuning parameters for MAy.

Parameter Description Value

K u filter gain coefficient 0.8

b εy filter gain coefficient 0.7

d λy filter gain coefficient 0.3

6.2.1 Noisy measurements

Figure 11a shows the valve openings, the measured liquid flow rates and the objective

function. The objective function is filtered with a 10-th-order one-dimensional median

filter in the plot. The valve opening of each well is kept constant in this simulation.

Figure 11b shows the implemented inputs and Figure 12 shows the estimated gradients,

as well as the true plant gradients.
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(a) Disturbance profile, liquid flowrated and the objective function with MAy.
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(b) Implemented inputs with MAy.

Figure 11: Simulation results with MAy.
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Figure 12: Estimated output gradients with MAy.

6.2.2 Noisy measurements + step-wise disturbances

In contrast to the previous simulations, the simulation in this section contains step-wise

disturbances applied to the system. Figure 13 shows the simulation results for MAy

implemented in the simulation case study with measurement noise and controller delay.

Step-wise disturbances are applied to the system at time 10 min and time 20 min. The

objective function is filtered with a 10th-order one-dimensional median filter in the plot.

Figure 14a shows the estimated gradients, as well as the true gradient of the plant. Fig-

ure 14b shows the estimated output values by the algorithm, which is used for gradient

estimation. The estimated output values are calculated as the mean values of the noisy

measurements in the steady-state period, while the true output values are the actual values

without noise.
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(a) Disturbance profile, liquid flowrates and the objective function with MAy. Step-wise

disturbances are applied to the system.
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(b) Implemented inputs with MAy.

Figure 13: Simulation results with MAy. Step-wise disturbances are applied to the system.
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(a) Estimated output gradients with MAy.
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(b) Estimated output values used for gradient estimation with MAy.

Figure 14: Estimated outputs and gradients with MAy and step-wise disturbances.
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6.3 Discussion

6.3.1 Simulation results

Both simulations starts from a suboptimal operating point where all the inputs are equal

to 2.5 sL/min. After two perturbations, a new optimal operating point is calculated.

The first optimal inputs are estimated at time 4 min. Then two other perturbations are

carried out, and the next optimal inputs are hence estimated every 3 minutes. From

the first MAy simulation with constant valve openings (no disturbances), Figure 11, it

seems like the inputs converge more easily to the true optimum than the inputs with MA.

The gradients in Figure 12 still have potential for improvement, but at least they are not

negative as some of the gradients estimated in the MA algorithm.

Figure 13b shows the implemented inputs in the second MAy simulation with added

disturbances. The inputs are converging to the first optimal operating point after some

iterations. At time 10 min, Figure 13a shows that the valve opening of well 1 drops from

0.8% to 0.2%. As a result, the liquid flow of well 1 drops rapidly. The true optimal

operating point changes, and it seems like the inputs are converging to the optimum

after a while. At time 20 min, the valve opening of well 3 drops from 0.6% to 0.25%.

As a consequence, the true optimum changes. The inputs seem to converge to the new

optimum, but something unexpected is happening at approximately time 34 min. At time

34 min, the algorithm computes a new optimal input sequence which is far from the correct

optimum. As seen from Figure 14a, the gradients of the wells are generally poor. The

gradients are estimated from the operating point 3 minutes before, because of the chosen

perturbation scheme. The gradients are especially poor around time 34 min, which leads

to a sub optimal input sequence.

The gradient estimation is a severe challenge in the simulation. From Figure 14b it looks

like the estimated outputs are almost identical to the true outputs. However, the gradients

are very sensitive to measurement noise, and just a slight deviation from the true output

gives poor gradients.

6.3.2 Tuning parameters

Since the greatest challenge in the MAy implementation is the gradient estimation, the

tuning parameter d becomes the most decisive. This parameter is the λy filter gain

coefficient. If this coefficient is high, less information of the previous calculated λy is used

to calculate the new λy
k. In the system of interest, d should be small, otherwise the

inferred gradients can be inaccurate due to noise. A low value will avoid λy to overreact

to measurement noise. However, a small value also leads to a slower response and a slower

convergence to the optimum because less information of the current operating point is

used in the modified optimization problem.

39



7 Trial Run in Experimental Lab Rig

A trial run in the experimental lab rig was carried out with MAy. In addition, a previ-

ously developed traditional steady-state RTO algorithm was run to compare the results.

Both methods were run with a sampling time of 60 seconds. The MAy tuning and the

disturbance profile is the same as in Section 6. The MATLAB code of the implemented

MAy is shown in Appendix B.

7.1 Results

7.1.1 MAy trial run

Figure 15 shows the estimated output gradients of each well in the experimental run with

MAy. Figure 16a shows the disturbance profile, the liquid measurements and the objective

function. Figure 16b shows the implemented inputs and the estimated gradients.

7.1.2 MAy trial run and traditional RTO comparison

Figure 17a shows both the implemented inputs by the MAy algorithm and the implemented

inputs by the traditional RTO algorithm. Figure 17b compares the total gas injection rate

and the objective function of the two implementations.
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Figure 15: Estimated output gradients in the MAy experimental run.
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with MAy.
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Figure 16: Experimental results with MAy.

41



0 5 10 15 20 25 30

time [min]

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Q
g
 [
s
L
/m

in
]

Implemented inputs with MAy

w
1

w
2

w
3

0 5 10 15 20 25 30

time [min]

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Q
g
 [
s
L
/m

in
]

Implemented inputs with RTO

w
1

w
2

w
3

(a) Comparison of the implemented inputs with MAy and traditional RTO.
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Figure 17: Comparison of MAy and traditional RTO.
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7.2 Discussion

7.2.1 MAy trial run

The disturbance profile is the same as in the last simulation with MAy. At time 10 min,

the valve opening of the first well drops. Then at time 20 min, the third valve opening

drops. The implemented input of well 3 seems to converge to a higher level than the

input of well 1 in the first disturbance region, which was also observed in the second

simulation with MAy in Section 6.2.2. This is expected since the liquid flow rate in well

3 is prioritized over the liquid flow rate in well 2 in the objective function. In the second

region, the input of well 3 drops and converge to a very low level. This is not expected,

but can be explained by the estimated gradients. In the second disturbance region, the

estimated gradient of the third well is significantly smaller than the other gradients. In

the last disturbance region, the input of well 3 drops to an even lower level. It is expected

that the input drops when the valve opening of the respective well drops. However, the

liquid flow rate of well 3 is still the most prioritized in the objective function, so the third

input should not converge to its lower bound.

7.2.2 MAy trial run and traditional RTO comparison

The implemented input profiles with MAy and traditional RTO are very different. The

inputs implemented by RTO are not perturbed and converge very nicely to a computed

optimum. From Figure 17a the input of the third well is always larger than the first,

and the second is always the smallest. This is expected from the weights in the objective

function and were also observed in the second simulation of MAy in Section 6.2.2. When

the valve openings drop, the corresponding input also drops.

Even though the input profiles of the two experimental runs are very different, the profit is

not significantly affected. However, we can still see that the profit of the MAy run is lower

than the RTO run. The optimization problem has a constraint on the total gas injection

rate. The total injection rate from both experiments are shown in Figure 17b. The MAy

algorithm violates the constraint in the first perturbation, because the constraint are not

introduced until the first optimization. The other violations are due to measurement error

in both experiments. Because of the perturbation in the MAy run, the total gas injection

drops to 7.1 sL/min every 3 minutes.
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8 Conclusion

In this specialization project a steady-state model of an experimental rig was estimated

to be used in the implementation of Modifier Adaptation and Output Modifier Adapta-

tion. The experimental rig represents a gas lifted well network with three parallel wells.

The model of each well was obtained from steady-state data from the rig and statistical

methods.

Both MA and MAy were applied to the obtained model and implemented in a simulation

case study of the experimental rig. The simulation results showed that the obtained

simple model was able to drive the system to its optimum. However, the simulations also

showed that the core challenge in both methods lies in accurate gradient estimation in the

presence of noisy measurements. A trial run in the actual rig was carried out in the end

of the project to test the MAy implementation and compare the results with a previously

developed traditional RTO algorithm. The results showed that the MAy implementation

still has a huge potential for improvement.

As the greatest challenge in MA application is obtaining accurate gradient estimates, the

next step should be to investigate other gradient estimation methods. Paper [2] describes

several ways to estimate gradients. In addition to steady-state perturbation methods, it

describes some dynamic perturbation methods such as dynamic model identification, in

which the parameters of a simple dynamic input-output model are updated online based on

transient plant data. Then, the steady-state gradients are obtained by application of the

final-value theorem. To guarantee that the transient data is informative enough, the inputs

need to be perturbed periodically (e.g. a sinusoidal dither) to excite the system such that

the model parameters can be estimated properly. Dynamic perturbation methods will

be considered and further investigated in the context of MA. Another alternative is to

combine the simple model of the rig with data-based models, such as Gaussian process

[8] to capture plant-model mismatch. As a consequence, the gradient estimation step is

avoided and the MAy performance enhanced. This future work can be valuable to whether

MA methods can be used for optimizing subsea oil well networks.
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A Experimental rig modelling

The model uses mass balances of the different phases, density models, pressure models

and flow models, which become the following differential algebraic equation (DAE)

ẋi = fi(xi, zi,ui,pi)

gi(xi, zi,ui,pi) = 0 ∀i ∈ N = {1, . . . , nw}
(43)

where fi(xi, zi, ui, pi) is the set of differential equations and gi(xi, zi, ui, pi) is the set of

algebraic equations. nw is the number of wells, i.e. nw=3 in this case. The subscript i is

referring to a well in the set N . xi is the differential states, zi is the algebraic states, ui

is the decision variables.

The differential states, the algebraic states and the decision variables are given by

xi = [mgi mli ]
T

zi = [wli wtotali prhi pbii ρmix ρgi wgouti wlouti ]
T

ui = [Qgi voi ppump]
T

(44)

where mgi is the gas hold up and mli is the liquid hold up. [wli is the water rate from

the reservoir and wtotali is the total well production rate. prhi is the riser head pressure

and pbii is the pressure before injection point. ρmix is the mixture density in the system

and ρgi is the density of the gas. wgouti and wlouti is the well outlet gas and liquid outlet

flowrate respectively. Qgi is the gas lift injection rate, voi is the valve opening from the

reservoir and ppump is the reservoir pressure.

In addition, the model contains some constant parameters and some uncertain parameters.

These parameters are given by

pi = [patm T R Mw ρl µmix Lw Aw Lr Hr Dbh θres θtop]
T

where patm is the atmospheric pressure, T is the room temperature, R is the gas constant,

Mw is the molecular weigth of air, ρl is the desity of water, µmix is the mixture viscosity,

Lw is the well length, Aw is the well pipes cross section area, Lr is the riser length, Ar is

the riser pipes cross section area, Hr is the riser height and D is well below injection. θres

is the reservoir valve flow coefficient and θtop is the top valve flow coefficient ([6]).

The code for the dynamic model is shown in the section below. The differential equations

are f = [df1 df2]
T , while the algebraic equations are g = [f1 f2 f3 f4 f5 f6 f7 f8]

T .
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A.1 ErosionRigDynModel.m

function [F,S_xx,S_zz,S_xz,S_xp,S_zp,x_var,z_var,u_var,p_var,diff,alg,L]

= ErosionRigDynModel(par)↪→

% Creates a dynamic model of the rig and computes the sensitivity

% matrices for EKF

% Inputs:

% par = system parameters

%

% Outputs:

% F: system integrator

% S's: system sensitivities

% x_var,z_var,u_var,p_var, diff,alg,L: Model in CasADi form

% Other m-files required: none

% MAT-files required: none

addpath('/Applications/casadi-osx-matlabR2014b-v3.5.5')

import casadi.*

%% Parameters

%number of wells

n_w = par.n_w; %[]

%gas constant

R = par.R; %[m3 Pa K^-1 mol^-1]

%air molecular weigth

Mg = par.Mw; %[kg/mol] -- Attention: this unit is not usual

%properties

%density of water - dim: nwells x 1

rho_l = par.rho_o; %[kg/m3]

%mixture viscosity

mu_mix = par.mu_oil;% [Pa s]

%project - dim: nwells x 1

% well length

L_w = par.L_w; %[m]

% well pipes cross section area

A_w = par.A_w;%[m2]
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% riser length

L_r = par.L_r; %[m]

% riser pipes cross section area

A_r = par.A_r;%[m2]

%riser height

H_r = par.H_r; %[m]

%well below injection

D = par.D_bh; %[m]

%% System states

% differential

%gas holdup

m_g = MX.sym('m_g',n_w); % 1:3 [1e-4 kg]

%water holdup

m_l = MX.sym('m_l',n_w); % 4:6 [kg]

% algebraic

%water rate from reservoir

w_l = MX.sym('w_l',n_w); % 1:3 [1e-2 kg/s]

%total well production rate

w_total = MX.sym('w_total',n_w); % 4:6 [1e-2 kg/s]

%riser head pressure

p_rh = MX.sym('p_rh',n_w); % 7:9 [bar]

%pressure - before injection point (bottom hole)

p_bi = MX.sym('p_bi',n_w); % 10:12 [bar]

%mixture density in system

rho_mix = MX.sym('rho_mix',n_w); % 13:15 [1e2 kg/m3]

%density gas

rho_g= MX.sym('rho_g',n_w); % 16:18 [kg/m3]

%well outlet flowrate (gas)

w_gout = MX.sym('w_gout',n_w); % 19:21 [1e-5 kg/s]

%riser head gas production rate gas

w_lout = MX.sym('w_lout',n_w); % 22:24 [1e-2 kg/s]

%% System input

%gas lift rate

Q_gl = MX.sym('Q_gl',n_w); % 1:3 [sL/min]

%valve oppening
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vo = MX.sym('vo',n_w); % 4:6 [0-1]

%pump outlet pressure

Ppump = MX.sym('Ppump',1); % 7 [bar]

%% parameters

%%%%%%%%%

% fixed %

%%%%%%%%%

%room temperature

T = MX.sym('T',1); %[K]

%atmospheric pressure

p_atm = MX.sym('p_atm',1); %[bar]

%time transformation: CASADI integrates always from 0 to 1 and the USER

does the time↪→

%scaling with T --> sampling time

t_samp = MX.sym('t_samp',1); %[s]

% estimable

%scaled reservoir valve parameters

res_theta = MX.sym('res_theta',n_w);

%scaled top valve parameters

top_theta = MX.sym('top_theta',n_w);

%% Modeling

% Algebraic

%conversion

CR = 60*10^3; % [L/min] -> [m3/s]

%reservoir outflow

f1 = -Ppump*ones(n_w,1)*1e5 +

(w_l.*1e-2).^2.*(res_theta.*1e9)./(vo.^2.*rho_l) + p_bi.*1e5 ;↪→

% total system production

f2 = - (w_total.*1e-2) + ((w_gout.*1e-5) + (w_lout.*1e-2));

%riser head pressure

f3 = -p_rh.*1e5 + (w_total.*1e-2).^2.*(top_theta.*1e8)./(rho_mix.*1e2) +

p_atm.*1e5 ;↪→

%before injection pressure

f4 = -p_bi.*1e5 + (p_rh.*1e5 + (rho_mix.*1e2).*9.81.*H_r +

128.*mu_mix.*(L_w+L_r).*(w_l.*1e-2)./(3.14.*D.^4.*(rho_mix.*1e2)));↪→

%mixture density
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f5 = -(rho_mix.*1e2) + (((m_g.*1e-4) + m_l).*

p_bi.*1e5.*Mg.*rho_l)./(m_l.*p_bi.*1e5.*Mg +

rho_l.*R.*T.*(m_g.*1e-4));

↪→

↪→

%gas density (ideal gas law)

f6 = -rho_g + p_bi.*1e5.*Mg/(R*T);

% Simplifying assumption!

% liquid fraction in the mixture

xL = (m_l./((m_g.*1e-4) + m_l));

%Liquid outlet flowrate

f7 = -(w_lout.*1e-2) + xL.*(w_total.*1e-2);

% Total volume constraint

f8 = -(A_w.*L_w + A_r.*L_r) + (m_l./rho_l + (m_g.*1e-4)./rho_g);

% Differential

% gas mass balance

df1= 1e4*(-(w_gout.*1e-5) + Q_gl.*rho_g/CR);

% liquid mass balance

df2= -(w_lout.*1e-2) + (w_l.*1e-2);

% Form the DAE system

diff = vertcat(df1,df2);

alg = vertcat(f1,f2,f3,f4,f5,f6,f7,f8);

% give fixed parameter values

alg = substitute(alg,p_atm,par.p_s);

alg = substitute(alg,T,par.T_r);

% concatenate the differential and algebraic states

x_var = vertcat(m_g,m_l);

z_var = vertcat(w_l,w_total,p_rh,p_bi,rho_mix,rho_g,w_gout,w_lout);

u_var = vertcat(Q_gl,vo,Ppump);

p_var = vertcat(res_theta,top_theta,t_samp);

%objective function

L = 20*((w_lout(1)*1e-2)*CR/rho_l(1)) + 10*((w_lout(2)*1e-2)*CR/rho_l(2))

+ 30*((w_lout(3)*1e-2)*CR/rho_l(3));↪→

%end modeling

%% Casadi commands
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%declaring function in standard DAE form (scaled time)

dae =

struct('x',x_var,'z',z_var,'p',vertcat(u_var,p_var),'ode',t_samp*diff,'alg',alg);↪→

%calling the integrator, the necessary inputs are: label; integrator;

function with IO scheme of a DAE (formalized); struct (options)↪→

F = integrator('F','idas',dae);

% ================================================

% Calculating sensitivity matrices

% ================================================

S_xx = F.factory('sensStaStates',{'x0','z0','p'},{'jac:xf:x0'});

S_zz = F.factory('sensStaStates',{'x0','z0','p'},{'jac:zf:z0'});

S_xz = F.factory('sensStaStates',{'x0','z0','p'},{'jac:xf:z0'});

S_xp = F.factory('sensParStates',{'x0','z0','p'},{'jac:xf:p'});

S_zp = F.factory('sensParStates',{'x0','z0','p'},{'jac:zf:p'});

end
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B MATLAB Code MAy

InitializationLabViewMain.m sets the sampling time in the experiment. ssModel.m con-

tains the model used for optimization. LabViewMain.m contains the MAy algorithm.

B.1 InitializationLabViewMain.m

%clear

%clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BE CAREFUL - it should match sampling time in LABVIEW interface %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Optimization sampling time

nExec = 60; %[s] 10

B.2 ssModel.m

function [y_model_ss,modelGrad] = ssModel(u, v0)

% u = [FIC104; FIC105; FIC106]

% v0 = [CV101; CV102; CV103]

% J = 20*y1 + 10*y2 + 30*y3

theta_well1 = [0.492764910641654; 0.300443533757929; 19.3122131197183;

-0.0153700130556438; -14.3380841612070];

theta_well2 = [-0.273738047663130; 0.459291990662657;

20.1022897064108;↪→

-0.0373720166243209; -14.6387961216287];

theta_well3 = [-0.883020415785438; 0.619837772512701;

21.3127342608823;↪→

-0.0640840666704814; -15.7140573084694];

y_well1_ss = theta_well1(1) + theta_well1(2)*u(1) +

theta_well1(3)*v0(1) ...↪→

+ theta_well1(4)*u(1)^2 + theta_well1(5)*v0(1)^2;

y_well2_ss = theta_well2(1) + theta_well2(2)*u(2) +

theta_well2(3)*v0(2) ...↪→

+ theta_well2(4)*u(2)^2 + theta_well2(5)*v0(2)^2;
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y_well3_ss = theta_well3(1) + theta_well3(2)*u(3) +

theta_well3(3)*v0(3) ...↪→

+ theta_well3(4)*u(3)^2 + theta_well3(5)*v0(3)^2;

modelGrad_well1 = theta_well1(2) + 2*theta_well1(4)*u(1);

modelGrad_well2 = theta_well2(2) + 2*theta_well2(4)*u(2);

modelGrad_well3 = theta_well3(2) + 2*theta_well3(4)*u(3);

y_model_ss = [y_well1_ss; y_well2_ss; y_well3_ss];

% dydu

modelGrad = [modelGrad_well1; modelGrad_well2; modelGrad_well3];

end

B.3 LabViewMain.m

% Main program

% Run Initialization file first

addpath ('C:\Users\lab\Documents\casadi-windows-matlabR2016a-v3.4.5')

import casadi.*

%%%%%%%%%%%%%%%%

% Get Variables

%%%%%%%%%%%%%%%%

% disturbances

%valve opening [-]

cv101 = P_vector(1);

cv102 = P_vector(2);

cv103 = P_vector(3);

% if value is [A] from 0.004 to 0.020

% if you want to convert to 0 (fully closed) to 1 (fully open)

% vo_n = (vo - 0.004)./(0.02 - 0.004);

%pump rotation [%]

pRate = P_vector(4);

% if value is [A] from 0.004 to 0.020

% if you want to convert to (min speed - max speed)

% goes from 12% of the max speed to 92% of the max speed

% pRate = 12 + (92 - 12)*(P_vector(4) - 0.004)./(0.02 - 0.004);
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% always maintain the inputs greater than 0.5

% inputs computed in the previous MPC iteration

% Note that the inputs are the setpoints to the gas flowrate PID's

fic104sp = P_vector(5);

fic105sp = P_vector(6);

fic106sp = P_vector(7);

%current inputs of the plant

u0old=[P_vector(5);P_vector(6);P_vector(7)];

% cropping the data vector

nd = size(I_vector,2);

dataCrop = (nd - BufferLength + 1):nd;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MOST RECENT VALUE IS THE LAST ONE! %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% liquid flowrates [L/min]

fi101 = I_vector(1,dataCrop);

fi102 = I_vector(2,dataCrop);

fi103 = I_vector(3,dataCrop);

% actual gas flowrates [sL/min]

fic104 = I_vector(4,dataCrop);

fic105 = I_vector(5,dataCrop);

fic106 = I_vector(6,dataCrop);

% pressure @ injection point [mbar g]

pi105 = I_vector(7,dataCrop);

pi106 = I_vector(8,dataCrop);

pi107 = I_vector(9,dataCrop);

% reservoir outlet temperature [oC]

ti101 = I_vector(10,dataCrop);

ti102 = I_vector(11,dataCrop);

ti103 = I_vector(12,dataCrop);

% DP @ erosion boxes [mbar]

dp101 = I_vector(13,dataCrop);

dp102 = I_vector(14,dataCrop);
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dp103 = I_vector(15,dataCrop);

% top pressure [mbar g]

% for conversion [bar a]-->[mbar g]

% ptop_n = ptop*10^-3 + 1.01325;

pi101 = I_vector(16,dataCrop);

pi102 = I_vector(17,dataCrop);

pi103 = I_vector(18,dataCrop);

% reservoir pressure [bar g]

% for conversion [bar g]-->[bar a]

% ptop_n = ptop + 1.01325;

pi104 = I_vector(19,dataCrop);

% number of measurements in the data window

dss = size(pi104,2);

%%%%%%%%%%%%%%%%%%

% CODE GOES HERE %

%%%%%%%%%%%%%%%%%%

% check for first iteration

if ~exist('k','var')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BE CAREFUL - it should match sampling time in LABVIEW interface %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Optimization sampling time

nExec = 60; %[s] 10

% Modifier Adaptation

% Filters

K = 0.8;

d_lam = 0.3;

b_eps = 0.7;

% Modifiers

lam_k = 0;

eps_k = 0;

% Other things

% Perturbation 0, optimization 1
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flagOpt = 0;

% For steady state detection

k = 1;

flagSS = 1;

% Perturbation step

h = 0.2;

end

% run SS identification

% relevant measurements are only the liquid flowrates

yPlant = [fi101;fi102;fi103];

if flagSS == 1 % we are at steady state at the current instant

% excitation or optimization - flagOpt == 1 optimization, flagOpt ==

0↪→

% excitation

uPlant = [fic104;

fic105;

fic106;

cv101*ones(1,dss); %workaround - just have the last

measurement here. Since it is the disturbance, it

doesn't really matter;

↪→

↪→

cv102*ones(1,dss);

cv103*ones(1,dss)];

uEst = mean(uPlant(:,end - nExec/2:end),2);

yEst = mean(yPlant(:,end - (nExec/2+10):end),2);

if flagOpt == 0

switch k

case 1

uEstOld = uEst;

yEstOld = yEst;

[ymodelssOld, modelGradOld] = ssModel(uEst(1:3),

uEst(4:6));↪→

modelGradOld = diag(modelGradOld); % nu x ny
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% save old optimal values

O_vector_old = u0old;

O_vector = O_vector_old' + [h,h,-h];

k = 2;

case 2

yEsth = yEst;

O_vector = O_vector_old' + [-h,-h,h];

flagOpt = 1;

k = 1;

end

SS = 1;

Estimation = 0;

Optimization = 0;

Result = 0;

Parameter_Estimation = [0,0,0,0,0,0];

State_Variables_Estimation = [0,0,0,0,0,0];

State_Variables_Optimization = [0,0,0,0,0,0];

Optimized_Air_Injection = [yEst(1),yEst(2),yEst(3)];

else

flagOpt = 0;

yEst2h = yEst;

plantGrad_est = [(yEsth(1)-yEst2h(1))/(2*h);

(yEsth(2)-yEst2h(2))/(2*h); (yEst2h(3)-yEsth(3))/(2*h)];↪→

% Estimate of output gradient

plantGrad_estimated = diag([(yEsth(1)-yEst2h(1))/(2*h);

(yEsth(2)-yEst2h(2))/(2*h); (yEst2h(3)-yEsth(3))/(2*h)]);↪→

% Filter on modifier

lam_k = (1-d_lam)*lam_k + d_lam*(plantGrad_estimated -

modelGradOld); % nu x ny↪→

eps_k = (1-b_eps)*eps_k + b_eps*(yEstOld - ymodelssOld);
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% Symbols to the optimization problem

u = MX.sym('u',3); % FIC104SP, FIC105SP, FIC106SP

y = MX.sym('x',3); % FI101, FI102, FI103

% Ss model

ss_model_well1 = theta_well1(1) + theta_well1(2)*u(1) +

theta_well1(3)*uEst(4) ...↪→

+ theta_well1(4)*u(1)^2 + theta_well1(5)*uEst(4)^2 -

y(1);↪→

ss_model_well2 = theta_well2(1) + theta_well2(2)*u(2) +

theta_well2(3)*uEst(5) ...↪→

+ theta_well2(4)*u(2)^2 + theta_well2(5)*uEst(5)^2 -

y(2);↪→

ss_model_well3 = theta_well3(1) + theta_well3(2)*u(3) +

theta_well3(3)*uEst(6) ...↪→

+ theta_well3(4)*u(3)^2 + theta_well3(5)*uEst(6)^2 -

y(3);↪→

% Modify output

y_m_k = y + eps_k + lam_k*(u-O_vector_old);

J = 20*y_m_k(1) + 10*y_m_k(2) + 30*y_m_k(3);

gas_constraint = u(1) + u(2) + u(3);

nlp = struct('x', [u;y], 'f', -J, 'g',

[ss_model_well1;ss_model_well2;ss_model_well3;gas_constraint]);↪→

solver = nlpsol('solver','ipopt',nlp);

sol = solver('x0', [O_vector_old;yEst], 'lbx', [1;1;1;0;0;0],

'ubx', [5;5;5;inf;inf;inf], 'lbg', [0;0;0;0], 'ubg',

[0;0;0;7.5-h]);

↪→

↪→

opt = full(sol.x);

u_opt = opt(1:3);

J_opt = full(sol.f);
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%filter on u

u_opt = O_vector_old + K*(u_opt-O_vector_old);

O_vector = u_opt';

SS = 1;

Estimation = 0;

Optimization = 0;

Result = J_opt;

Parameter_Estimation =

[plantGrad_estimated(1,1),plantGrad_estimated(2,2),plantGrad_estimated(3,3),modelGradOld(1,1),modelGradOld(2,2),modelGradOld(3,3)];↪→

State_Variables_Estimation =

[yEstOld(1),yEstOld(2),yEstOld(3),ymodelssOld(1),ymodelssOld(2),ymodelssOld(3)];↪→

State_Variables_Optimization =

[lam_k(1,1),lam_k(2,2),lam_k(3,3),eps_k(1),eps_k(2),eps_k(3)];↪→

Optimized_Air_Injection = [yEst(1),yEst(2),yEst(3)];

end

else

% compute new values for the gas flow rate setpoints

O_vector = u0old'; % dummy

SS = 0;

Estimation = 0;

Optimization = 0;

Result = 0;

Parameter_Estimation = [0,0,0,0,0,0];

State_Variables_Estimation = [0,0,0,0,0,0];

State_Variables_Optimization = [0,0,0,0,0,0];

Optimized_Air_Injection = [yEst(1),yEst(2),yEst(3)];

end
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