
Norwegian University of Science and Technology

TKP4580 - Chemical Process Technology, Specialization project

Scientific Machine Learning:
Tuning out the Noise

Real-Time Optimization via Modifier Adaptation using Gaussian Processes

Author
Frida Bjørnstad Konow

Supervisor
Johannes Jäschke
Co-Supervisor

Evren Turan

December 17, 2021

Abstract

Real-time optimization ensures process plant operation is continuously optimized to the
economic optimum. In chemical process plants, developing an accurate process model to
use in real-time optimization can be challenging. When doing static real-time optimiza-
tion, utilizing measurements and plant gradients makes it possible to handle structural
plant-model mismatch. Modifier adaptation is a type of real-time optimization that uses
measurements in correction terms. The correction terms enables convergence to the plant
optimum even with structural plant-model mismatch. However, first order modifiers de-
pend on approximating plant gradients. Plant gradient estimation is a common challenge
in control, especially in presence of measurement noise.

In this project thesis a proposed implementation of real-time optimization through
modifier adaptation is presented, where the non-parametric regression approach Gaussian
processes are used describe the plant-model mismatch. The objective is to enable real-time
optimization with structural plant-model mismatch and in the presence of measurement
noise. An implementation of standard modifier adaptation scheme is compared with a
the proposed modifier adaptation with Gaussian processes scheme. The Williams-Otto
reactor is used as case study for implementation of the different schemes.

Contents
1 Introduction 1

2 Theory 2
2.1 Real-Time Optimization . 2

2.1.1 Building Blocks . 3
2.1.2 Implementation . 3
2.1.3 Challenges . 4

2.2 Modifier Adaptation . 5
2.3 Gaussian Processes . 5

2.3.1 Linear Regression . 6
2.3.2 Gaussian Process Regression . 6
2.3.3 Kernel Functions . 7
2.3.4 Hyperparameters . 8

3 Problem Formulation 9
3.1 Steady State Optimization Problem . 9
3.2 Necessary Conditions of Optimality . 9
3.3 Modifier Adaptation . 10
3.4 Modifier Adaptation with Gaussian Processes 12

4 Case Study: Williams-Otto Reactor 14
4.1 Plant and Model Equations . 15
4.2 Optimization Problem . 16

5 Results and Discussion 17
5.1 The Case Studies . 17
5.2 Programming Environment . 18
5.3 Standard Modifier Adaptation without Noise 18
5.4 Standard Modifier Adaptation with Noise . 20
5.5 Modifier Adaptation with Gaussian Processes without Noise 22
5.6 Modifier Adaptation with Gaussian Processes with Noise 23

5.6.1 Base case . 23
5.6.2 GP Version 2: Additional Training Data at New Point 25
5.6.3 GP Version 3: Two iid Estimates of Plant Response at uk 26

5.7 Possible Improvements . 27

6 Conclusion 30

A Gradient Approximation - Finite Differences 33

B Algorithms 34
B.1 Standard Modifier Adaptation . 34
B.2 Modifier Adaptation with Gaussian Processes 35

List of Figures
2.1 Levels of process control hiearchy and belonging time scales. Figure reproduced

from Figure 19.1 in [1]. 2
2.2 Block diagram for static RTO. Figure reconstructed from figure in [2]. 4
2.3 Block diagram of the modifier adaptation scheme. 5
2.4 Three random samples from a GP prior distribution and three random samples

from the GP posterior with the belonging GP mean, a 95% confidence interval
and the actual function. Figure created based on Figure 2.2 in [3]. 7

3.1 Graphical representation of the modified constraint function Gm,i,k with the
belonging modifiers εi,k, λΦk and λGi

k . Figure based on Figure 1 in [4] and Figure
1 in [5]. 11

4.1 Illustration of the Williams-Otto reactor with feed streams FA and FB , outlet
stream F and the plant reactions. 14

5.1 Plot of input iterations for standard MA without noise. Each star represents
one iteration and the dotted line shows the order of the iterations. The final
iteration is labelled ufk . g1 and g2 are the constraints that bound the feasible
region indicated with the blue area. 19

5.2 Plant profit, TR and FB plotted against iterations for standard MA without noise. 19
5.3 Weight fraction xA and xG plotted against iterations for standard MA without

noise. The constraint values are indicated with red dotted lines. 20
5.4 Plot of standard MA with 4 different noise levels. Plot A and B have equal noise

for constraint and cost function. Plot C and D have cost noise calculated from
Equation 5.1. 20

5.5 Plot of input iterations for standard MA with different filter parameters. k1 and
k2 are filter parameters for the inputs, a, b and c are filter parameters for the
modifiers. The measurement noise level is equal to 2 · 10−7 for all plots. 21

5.6 Plot of input iterations for MA with GP without noise. 22
5.7 Plot of input iterations for the base case of MA with GP for 4 different noise

levels. 24
5.8 Plot of input iterations for the second version of MA with GP for 4 different

noise levels. 25
5.9 Plot of input iterations for the third version of MA with GP for 4 different noise

levels. 26

List of Tables
4.1 Kinetic parameters for the plant and model reactions. Values from the plant are

obtained from [6] and model parameters were decided through personal commu-
nication. 16

4.2 Prices for the products P and E, and the feed reactants A and B [7]. 16
5.1 The optimal values of the flow rate of B, F ∗B , the reactor temperature, T ∗R, the

profit or negative cost, −Φ∗p, and the constrained weight fractions, x∗A and x∗G,
from simulation of the standard MA without noise. 18

5.2 The optimal values F ∗B , T
∗
R, −Φ

∗
p, and x∗A and x∗G, from simulation of MA with

GP without noise. 22
5.3 Final hyperparameters, RBF length scale, l, and white noise, σ2

n, for the three
GPs for the base case MA with GP. 25

5.4 Final hyperparameters, RBF length scale, l, and white noise, σ2
n, for the three

GPs for the second version of MA with GP. 26
5.5 Final hyperparameters, RBF length scale, l, and white noise, σ2

n, for the three
GPs for the third version of MA with GP. 27

Nomenclature

Acronymes

Abbreviation Description

RTO Real-time optimization
MA Modifier adaptation
GP Gaussian processes
NLP Nonlinear programming
NCO Necessary conditions of optimality
LICQ Linear independence constraint qualification
KKT Karush–Kuhn–Tucker (conditions)
IID Independent and identically distributed
MPC Model predictive control
RBF Radial basis function

Symbol list

Symbol Description Unit

Theory
Φ Cost function $/s
x State -
u Input -
d Disturbance -
F Feed flow rate kg/s
P Product flow rate kg/s
Q Energy usage energy/s
pF Feed price $/kg
pF Product price $/kg
pQ Energy price $/energy
d̂ Estimated disturbances/parameters -
y Measurement/output -
u∗k Optimal input calculated from RTO -

ulower Input for lower level -
f Unknown function -
ν Noise in data -
α Regression parameter -
β Regression parameter -
N Normal distribution -
σ2 Variance -
u Input vector -
µ Mean function -

k(·, ·) Covariance/kernel function -
u Input data -
y Output data -
y∗ Predicted output -

kRBF Radial basis function/squared exponential kernel -
σ2
f Radial basis function variance -
l Radial basis function length scale -

kw White noise kernel -
σ2
n White noise variance -
K Combined RBF and white noise kernel -

LML Log-marginal-likelihood function -
θ Collection of hyperparameters -

Symbol Description Unit

Problem formulation
Φp Plant evaluated cost function $/s
Φ Model evaluated cost function $/s
yp Measured outputs -
y Estimated outputs -

Gp,i Plant evaluated constraints -
Gi Model evaluated constraints -
ng Number of constraints -
nu Number of inputs -
ny Number of outputs -
U Upper and lower input bounds -
uL Lower input bound -
uU Upper input bound -
F Process model -
A Set of active constraints -
u∗ Optimal input -
L Lagrangian function -
γγγ Lagrangian multiplier -
k Current iteration -

uk Current operating point -
Φm,k Modified cost function at operating point -
Gm,i,k Modified constraint function i at operating point -

εi,k Zero order modifier -
λλλΦk First order modifier for cost function -
λλλGi

k First order modifier for constraint function -
K Input filter matrix -
ki Input filter parameter for input i -
ai Zero order modifier filter parameter for constraint i -
bi First order modifier filter parameter for constraint i -
c First order modifier filter parameter for cost function -
y∗ Predicted output -

εi,k,GP Zero order modifier calculated with GP -
λλλΦGP

k First order modifier for cost function calculated with GP -
λλλ
Gi,GP

k First order modifier for constraint function i calculated with GP -
(GP)(Φp−Φ) GP calculating plant-model difference in cost function -

(GP)(Gp,i−Gi) GP calculating plant-model difference in constraint function i -

Case study
A Reactant -
B Reactant -
C Intermediate product -
P Product -
E Product -
G Byproduct -
FA Feed flow rate of A kg/s
FB Feed flow rate of B kg/s
F Total flow rate kg/s
xi Weight fraction of i ∈ {A,B,C, P,E,G} -
ki Reaction rate constant for reaction i ∈ {1, 2, 3, 1∗, 2∗} s−1
Ai Pre-exponential factor for reaction i ∈ {1, 2, 3, 1∗, 2∗} s−1

Ea,i Activation energy for reaction i ∈ {1, 2, 3, 1∗, 2∗} K
TR Reactor temperature
ri Reaction rate for reaction i ∈ {1, 2, 3, 1∗, 2∗} s−1
Mt Total mass kg
Pi Price of i ∈ {A,B, P,E} $
σ Measurement noise -

σΦ Cost function noise -

1 Introduction
This project examines the use of Gaussian processes in a modifier adaptation framework to
enable real time optimization despite plant-model mismatch and measurement noise.

Real-time optimization (RTO) of process systems aims to ensure system operation, while meet-
ing quality and safety constraints and optimize an economic objective. Optimization based
solely on a model, will often not converge due to structural plant-model mismatch. Even with
accurate models, optimality might be infeasible if the system is exposed to disturbances that
changes the optimum. As a result, real time optimization needs process measurements in order
to ensure convergence and optimal operation [7].

Modifier adaptation (MA) is a type of RTO that utilize measurements in the optimization with
correction terms called modifiers. The modifiers represent the plant-model mismatch for cost
and constraint functions. Compared to standard RTO, MA possess the ability to converges to
the plant optimum, given certain prerequisites, even with plant-model mismatch. However, it
requires estimation of the plant gradients. Accurate gradient approximation can be costly and
sometimes unattainable, especially when the system exposed to measurement noise.

Gaussian process (GP) regression is a probabilistic, nonparametric, Bayesian approach to re-
gression that is gaining attention in machine learning field [8]. It can be used to estimate
unknown functions, and interpreted as an extension of multivariate normal distribution to in-
finitely many random variables [7]. GP regression has several advantages, working well on small
datasets, having the ability to provide direct uncertainty measurements on the predictions and
capture complex unknown functions. These abilities are highly sought in the setting of RTO.

The objective for the project is is to implement RTO through MA and use GP to represent
the plant-model mismatch in presence of measurement noise. First a standard MA will be
formulated, then extended by introducing GP. Three different version of implementing GP in
the MA framework will be proposed. All schemes will be applied in a case study with the
Williams-Otto reactor with and without measurement noise to compare the performance in
terms of efficiency and convergence ability.

1

2 Theory

In this section theory and background relevant for the project will be introduced. We start
by presenting RTO, with its building blocks and implementation, followed by some challenges
with RTO. Further the concept of modifier adaptation is introduced. Gaussian processes are
presented from a practical perspective to describe how it will be applied in the project.

2.1 Real-Time Optimization

There are five main levels in the process control hierarchy, presented in Figure 2.1. The hier-
archy represents control decisions within optimization, monitoring and data acquisition in the
different relative time scales of a plant [1]. Each block in the hierarchy is conceptual, as the
different blocks might use the same computations. The highest level is called planning and
scheduling and includes demand forecasting, supply chain management and scheduling of raw
materials and product. This level has a long time scale that can vary from days to months
and is typically carried out by the plant manager. The decisions involve planning of retail-
ing, distribution, transportation and manufacturing, and the output is obtaining production
and inventory targets and optimal operating conditions for the plant. The fourth level is real
time optimization (RTO), both plantwide and of the individual units, and includes parameter
estimation, supervisory control, and data reconciliation, with a time scale of hours to days.
Decisions are made considering the explicit economical objectives. The RTO level can be inter-
preted as an online calculation of the optimal set-points for the lower level called supervisory
control [1].

Figure 2.1: Levels of process control hiearchy and belonging time scales. Figure reproduced from Figure 19.1
in [1].

2

2.1 Real-Time Optimization

Level 3b, multivariable and constraint control or model predictive control (MPC), allows the
plant to operate near the constraints. In level 3a regulatory control techniques are performed
for single- or multi-loop control, to guarantee that variables are kept on the set points. Level 2
includes safety, environmental and equipment protection, while level 1 represents measurements
and actuation. The arrows back and forth the levels symbolize communication between the
sequential levels, where the higher sets the objective for the lower level. The lower-level pass
on current operation data to the higher level, which it can base the decisions on. For this
project level 4 with RTO will be the center of attention.

RTO optimizes the plant economics. From around the 1990s, RTO has gained attention when
it comes to plant control [1]. The reason is that use of RTO can lead to considerable economic
gain, since it continuously optimizes the operating conditions based on an economic objective
or cost function [5]. If variables in the cost function change frequently, for example the price of
electricity, RTO can adjust the optimal operating conditions for high and low electricity prices.
RTO can smoothly be built into computers with control systems, because of rapid development
in hardware and software field [1].

2.1.1 Building Blocks

In RTO there are three main building blocks; the economic model, the process model and the
process constraints [2]. The steady state optimization problem is stated in Equation 2.1, where
Φ(x, u, d) is the economic model, f(x, u, d) is the process model and g(x, u, d) is the process
constraints:

min
u

Φ(x, u, d)

s.t. f(x, u, d) = 0,

g(x, u, d) ≤ 0,

(2.1)

The economic model, also called the cost function, Φ(x, u, d), is dependent on the states x, the
inputs u and the disturbances d. The general objective for the process operation in the RTO is
to minimize the cost and maximize the profit. It typically includes the costs of the raw material
for the feed, value of the products and the cost of utilities, often energy. Operational costs can
also be included, although they can often be assumed fixed for the time scale of interest [2].
With that assumption and energy as the only utility the cost function can be expressed as

Φ =
∑

pFF +
∑

pQQ−
∑

ppP, (2.2)

where F , Q and P indicates feed flow rate, energy usage per time unit and product flow rate
respectively [2]. pi is the prices of the different flows and energy in unit [$/kg] and [$/energy].

f(x, u, d) in Equation 2.1 is the process steady state model. This model is usually derived
through fundamental equations, like mass and energy balances, or through experimental data.
The role of the model is to use the operating conditions for each unit, as flow variables,
temperatures, and pressures, to obtain the yield of product, and other variables needed in the
cost function. The process constraints g(x, u, d) are typically set from requirements on product
purity, amount of waste and the equipment’s capacity [9]. In practice, are often f and g merged
in the problem formulation as a set of constraints, where f are equality constraints and g are
inequality constraints.

2.1.2 Implementation

A block diagram for a conventional steady state RTO is presented in Figure 2.2 [2]. The
figures show the steps needed for implementation of RTO. It consists of parameter estimation,
including steady state detection, which yields the parameters needed for the "Static RTO",
where the plant is re-optimized to find the new optimal steady state.

3

2.1 Real-Time Optimization

The measurements y are provided from the process. Due to steady state models in the opti-
mization in RTO, it is necessary to ensure that the process is at steady state before executing
the optimization. Therefore, there is a block that uses the measurements and continuously
check if the process has reached steady state. This is the steady state detection. There are
several methods that are possible to use for the purpose of detecting steady state. Statistical
tests are one common group of methods [2].

In the parameter estimation, the objective is to estimate the unmeasured disturbances and
the parameter values d, given the steady state process measurements y, inputs u and a pro-
cess model. An optimization problem is solved, where the norm of the deviation between the
measured y and calculated values for y based on the process model, is minimized. The con-
straints for the optimization problem are the process model and the operational constraints.
When solving this optimization problem, the calculated d̂ yields the smallest deviation between
system measurements and model subject to the constraints [1].

When steady state is detected and the unknown parameters are calculated, the system is re-
optimized in the static RTO block. The optimization problem in Equation 2.1 is solved, which
results in new inputs that are implemented as set-points in the plant.

Figure 2.2: Block diagram for static RTO. Figure reconstructed from figure in [2].

2.1.3 Challenges

To generalize RTO can be seen as a two-step approach consisting of 1) parameter estimation,
and steady state detection, and 2) optimization, which is repeatedly executed in iterations. This
approach needs two requirements to be fulfilled to perform well. First there needs to be small
structural plant-model mismatch and secondly that the difference in the optimal operating
points between each iteration give enough excitation to enable estimation of the unknown
model parameters. However, it is rare that both requirements are fulfilled in reality [4].

Whenever there is a mismatch between the model and the plant, the result is generally that
the RTO is not able to satisfy the necessary conditions for optimality, NCO (Section 3.2).
The reason is that the parameters estimated, will not be a sufficient representation of the
plant resulting in calculated setpoints that are sub-optimal. To overcome this challenge, use
of measurements and identification of plant gradients can be introduced to ensure that the
NCO are fulfilled [5]. Further, a solution to ensuring enough excitation to estimate the model
parameters, is to increase the number of identifiable parameters. To overcome these challenges
a group of methods called fixed-model methods have evolved, where the model-parameter
update is not necessary [10]. The choice of RTO method always depends on the plant that is
controlled, but there are three main features that are highly emphasized. The first is guaranteed
optimality upon convergence, secondly that the method converge quickly and finally that the
convergence leads to a feasible point with no constraint violation [5].

4

2.2 Modifier Adaptation

2.2 Modifier Adaptation
Modifier adaptation (MA) is a fixed-model RTOmethod. Common for all fixed-model methods,
is that they use a nominal process model together with plant measurements in the optimiza-
tion [10]. A nonlinear programming, NLP, problem including a nominal process model is solved
repeatedly [4]. In contrast with two-step RTO approach, the parameters are not estimated at
each iteration. Instead, the measurements are used to update the cost and constraint functions.
In MA measurements are utilized in correction terms called modifiers that are calculated prior
optimization at each iteration. The modifiers ensure that NCO is fulfilled when the optimiza-
tion converges [4]. In MA schemes, the modifiers are calculated based on the deviation between
the plant measurements and the process model. For standard MA, two orders of modifiers are
introduced: zero and first order. Zero order modifiers represent the direct deviations, while
first order represent the deviations in the gradients with respect to the inputs. In Section 3.3
the mathematical equations for MA are presented. The main advantage of MA is its ability to
converge to the optimum even in presence of structural plant-model mismatch [5].

The standard MA scheme is illustrated with a block diagram in Figure 2.3. Compared with the
two-step RTO approach in Figure 2.2, the parameter estimation block is replaced with a block
for modifier calculation. As a result, it is not the estimated parameters, but the modifiers that
are fed to the optimization block. Here the optimizer calculates the optimal inputs based on
the modified optimization problem with the modifiers present in the cost and the constraint
functions. The rest of the scheme is unchanged, where the optimal inputs provide the setpoints
for the lower level.

Figure 2.3: Block diagram of the modifier adaptation scheme.

In terms of fulfilling the three desired RTO features, the second property of quick convergence
and third property on feasible convergence, both rely on the plant and process model. It can
be observed that these properties might be contradictory, as fast convergence can mean large
steps for each iteration, while feasible convergence favours smaller steps are desired [5]. MA
fulfills the first property of converging to the plant optimum, given accurate plant evaluations
and gradients. As mentioned MA has an advantage of fulfilling the NCO compared with two-
step RTO approach, even with structural plant model mismatch. However, obtaining accurate
gradients introduce a new challenge, as approximating sufficient plant gradients can be costly
and sometimes infeasible. The challenge amplifies for systems with high measurement noise
levels. Therefore, measures to handle gradient estimation in the presence of noise could be
beneficial for MA implementation.

2.3 Gaussian Processes
Gaussian processes, or GP, provides a non-parametric approach to Bayesian regression, which
has gained attention for its abilities in the machine learning [11], namely it’s ability to perform
well despite few data points and describe uncertainty. To introduce GP let us first consider
linear regression.

5

2.3 Gaussian Processes

2.3.1 Linear Regression

Regression is commonly used to study how one or several independent variables, u, affect a
dependent variable, y. The independent variables can also be referred as inputs or explanatory
variables, and the dependent variable as the output or response. The simplest form of regression
is linear regression and can be written on the form

f(u) = α+ βu, y = f(u) + ν. (2.3)

f(u) is the function value and y is the observed value [3]. ν explains the noise in the observed
data, which is typically assumed to be independent, and identically Gaussian distributed with
zero mean and variance σ2 given as [3]

ν ∼ N (0, σ2). (2.4)

In Equation 2.3 α and β are regression parameters. To obtain a function for the relationship
between the variables f(u), the parameters must be decided. The strategy for deciding the
parameters in linear regression is to find the "best fit" for the data points, by minimizing
sum cost function, typically the sum of squared errors. This means the parameters minimize
the squared distance from each data point to the regression line. If the data points are not
well described by a linear function, either increasing order of the polynomial or introducing
are several input variables can be considered. In statistical practice, these two cases can be
interpreted the same way, if one defines the higher order input, e.g. u2, as a new independent
variable [12].

When increasing the order of the regression polynomial or adding independent variables, several
parameters will be included in the regression model. One challenge with regression can be if
there is no obvious "best fit" to the data. Statistical parameters like R2, p-values and mallows
cp can be studied to determine the best fit [12]. However, the best regression model based on
one of these parameter might be contradictory to the best regression model based on another
parameter. Therefore it can be difficult to determine which model to use. One way to overcome
this challenge, is to use nonparametric regression like Gaussian process regression.

2.3.2 Gaussian Process Regression

Gaussian process (GP) regression is a nonparametric, probabilistic regression approach [11].
Regular regression yields one regression function and the uncertainty for the function, but
in practice there could possibly be an infinite number of functions that describe the data.
GP regression considers all these functions as it describes a distribution over functions [11].In
addition, it possesses a useful property to quantify the uncertainty in a prediction. It is a
Bayesian approach to regression with a prior and posterior distribution [3].

Gaussian processes, can be defined as follows:

Definition 2.1 (Gaussian Process). A Gaussian process is a collection of random variables,
any finite number of which have a joint Gaussian distribution [3]

When GP is used in the context of regression to predict an unknown function, it is referred
to as GP regression. Further a brief introduction on how to utilize GP with respect to this
project will follow. A full introduction and mathematical derivations can be found in [3].

Consider an unknown function f : Rnu 7→ R that we want to approximate using GP. The
function is dependent on the input u of dimension nu and the output of the unknown function
can be referred to as y, with the noise ν:

y = f(u) + ν. (2.5)

Note that this is analogous to the relation presented in the last part of Equation 2.3, except
now the function is unknown. A Gaussian process prior is defined by a mean function µ(u),

6

2.3 Gaussian Processes

and a covariance or kernel function, k(u,u′) of f(u) as stated in Equation 2.6. The mean
function describes the average of all the functions included in the distribution. The kernel
function can either be constructed or chosen from pre-defined kernels (Section 2.3.3). The GP
can be interpreted as an infinite multivariate Gaussian distribution [7]. This implies that any
collection of points described by a GP are joint Gaussian distributed as stated in Definition
2.1. The prior GP does not contain any information of observed data.

f(u) ∼ GP (µ(u), k(u,u′)). (2.6)

Assume that there are np observed input-output data points (ui, yi), i = 1, ..., np. The input
vector can be given as u = [u1,u2, ...,unp] of dimension nu×np and output y = [y1, y2, ..., ynp]

T

of dimension np × 1. The datapoints are typically labeled the GPs "training data" [3]. The
objective is to enable a sufficient prediction of a new output, y∗, based on the given data
points. In Bayesian regression, this is done by conditioning the prior on the training data, to
give a posterior distribution [3]. By construction, the posterior of the GP can be calculated
with relative ease.

Figure 2.4 illustrate one example of three random prior distributions followed by three random
posteriors restricted by the training data. The posteriors are plotted together with the mean
function, µ, of all the posteriors and the actual function that the data was sampled from. The
figure gives some intuition of how the update of the prior distribution is done by "rejecting"
all functions that does not match the given data. For example, all the three prior functions
displayed are rejected, as they do not go through the data points.

Figure 2.4: Three random samples from a GP prior distribution and three random samples from the GP
posterior with the belonging GP mean, a 95% confidence interval and the actual function. Figure
created based on Figure 2.2 in [3].

Given the unknown function f , a simplified notation that describes the output distribution y
from the GP given the datapoints (u, y) can be written as the following,

y∗ = (GP)f (u|u,y) (2.7)

For evaluation at a new query point u∗ the predicted mean of Equation 2.7 is used.

2.3.3 Kernel Functions

In the general expression for a GP, Equation 2.6, k(·, ·) represents a covariance function, also
referred to as a kernel function. The function models the correlation between each input
pair in u, (ui,uj). Once the kernel function is specified, the GP yields a distribution over
functions [3]. Valid kernel functions give a positive definite covariance matrix, meaning that
it is has the properties of being symmetric and invertible. There are several kernel functions

7

2.3 Gaussian Processes

that are often used to model processes. Kernels can be combined by linear operations. The
choice of kernel determines the properties of a GP model and can influence the efficiency of
the GP [13].

One of the most used kernel functions is the squared exponential, which is described by Equa-
tion 2.8. The squared exponential kernel is also called radial basis function, RBF, or Gaussian
kernel. This kernel function results in a smooth prior distribution, which can be observed in
Figure 2.4 where the is used. l is the characteristic length scale, which is called the kernel’s
hyperparameter that are optimized during the fitting of the GP [3]. The length scale determines
the smoothness of the function, by setting an "extrapolation limit". Typically, it is not possible
to extrapolate more than one length scale away from the data [13].

kRBF (ui,uj) = exp
[
−‖ui − uj‖2

2l2

]
(2.8)

The white noise kernel is possibly the simplest kernel and is stated in Equation 2.9. It allows
the GP functions to not have to pass through every data point, by assuming there is some
noise in the measurements. The kernel consists of the noise variance σ2

n multiplied with the
identity matrix of dimension nu × nu. The resulting covariance matrix is a diagonal matrix
with the variance of each random variable on the diagonal. This implies that all covariances
between different variables are zero since the noise is not correlated [13]. The kernel is mainly
used with other kernels.

kw(ui,uj) = σ2
nI (2.9)

The squared exponential kernel can be combined with the white noise kernel to describe noisy
observations, which can be defined the following way [7]

K(ui,uj) = kRBF + kw = exp
[
−‖ui − uj‖2

2l2

]
+ σ2

nI. (2.10)

2.3.4 Hyperparameters

As mentioned l and σ2
n are referred to as hyperparameters of the kernels. These parameters

are learned during the fitting of the GP to the data by maximizing the log marginal likelihood
function given in Equation 2.11 [7]. Here Θ is a collective term for the hyperparameters. For
the combined kernel in Equation 2.10 Θ would be l and σ2

n. The numerical values of the
hyperparametes can provide insight on how the GP fits the data.

LML(Θ,u,y) = −1

2
yTk(Θ|u)y− 1

2
log |k(Θ|u)| − n

2
log 2π (2.11)

8

3 Problem Formulation
Building on the theory section, the mathematical equations for the different optimization prob-
lems will be presented. First the general steady state RTO problem is introduced followed by
the necessary conditions of optimality. Further the modifiers are defined and the modified op-
timization problem presented for MA. Finally GPs are introduced to represent the plant-model
mismatch and included in the MA formulation to propose a version of MA with GP.

3.1 Steady State Optimization Problem
In Equation 2.1 the general RTO optimization problem was presented. The steady state
optimization problem for the plant can be mathematically formulated as [7];

min
u

Φp(u) := φ(u,yp(u))
s.t. Gp,i(u) := gi(u,yp(u)) ≤ 0 i = 1,, ng

u ∈ U
(3.1)

The decision variables or inputs are u ∈ Rnu , while the measured outputs are yp ∈ Rny . The
cost function is φ : Rnu × Rny → R, which is going to be minimized. The belonging set of
constraints for the optimization problem are listed as gi : Rnu×Rny → R where i goes from 1 to
ng. The input is limited by the upper and lower bounds U = {u ∈ Rnu : uL ≤ u ≤ uU}. The
subscript (·)p indicates a quantity related to the plant. The cost and/or constraint functions
are typically nonlinear, and then the problem is referred to as a NLP problem [4].

Usually the precise steady state input-output map of the plant, u 7→ yp, is unknown. This
could for example be due to unavailable measurements of yp. Therefore one relies on an
approximation given by the best available process model, F(x,u), which is often a nonlinear
steady state model [5], where x are the states.

F(x,u) = 0 (3.2)
y = F(x,u) (3.3)

By solving this system of equations the estimated outputs y(u) can be obtained. Although we
would like to minimize Equation 3.1 we are only able to minimize the model:

min
u

Φ(u) := φ(u,y(u))
s.t. Gi(u) := gi(u,y(u)) ≤ 0 i = 1,, ng

u ∈ U
(3.4)

Compared with the plant optimization problem in Equation 3.1 the actual measured outputs
yp are replaced with y estimated from the process model in Equation 3.3. Note that the cost
function φ and constraint functions gi are the same, but since y changed, the evaluations will
be different. One can interpret the model equations as additional equality constraints for the
optimization problem 3.4. Due to plant-model mismatch and disturbances, the solutions to
Problem 3.1 and 3.4 are usually different and implementation of the optimum of 3.4 as setpoints
may result in constraint violation and infeasible operation of the plant.

3.2 Necessary Conditions of Optimality
In order to obtain a feasible point upon convergence, the necessary conditions of optimality,
NCO, has to be satisfied. The optimum from the optimization problem in Equation 3.4 can be
characterized via the NCO. The set of active constraints, A, at a point u for the optimization
problem in Equation 3.4 is formulated as

A(u) = {i ∈ {1, ..., ng} | Gi = 0}. (3.5)

9

3.3 Modifier Adaptation

Assume that the Linear Independence Constraint Qualification (LICQ) holds at the optimum
u∗, and that the functions Φ and Gi are differentiable at u∗. A vector of all constraints Gi can
be denoted G. Then there exists unique Lagrange multipliers γ∗ ∈ Rng that fulfill the first
order KKT conditions [5]. The Lagrange multiplier can be interpreted as a knob that can be
modified to adjust the value of u. The Lagrangian function is the sum of the original objective
function and a term including the constraint functions multiplied by a vector of the Lagrange
multipliers:

L(u,γ) := Φ(u) + γᵀG(u). (3.6)

The first order KKT conditions can be formulated as the following;

G ≤ 0 (3.7)

γᵀG = 0 (3.8)

γ ≤ 0,
∂L
∂u

=
∂Φ

∂u
+ γᵀ ∂G

∂u
= 0 (3.9)

These three equations make up NCO and are known as primal feasibility, Equation 3.7, com-
plimentarity conditions, Equation 3.8, and dual feasibility conditions, Equation 3.9. If all of
the NCO equations holds for u, u is a feasible point.

3.3 Modifier Adaptation
MA uses first-order corrections to the cost and constraint functions in order to fulfill the NCO
of the plant upon convergence. Correction terms depending on the current input are added
to the cost and constraint functions of Problem 3.4. At the kth iteration with the operating
point uk the modified cost function , Φm,k can be formulated as

Φm,k := Φ(u) + (λΦk)ᵀ (u− uk) (3.10)

where λΦk ∈ Rnu is the first order modifier for the cost function defined as

(λ
Φ
k)ᵀ :=

∂Φp

∂u
(uk)−

∂Φ

∂u
(uk). (3.11)

Further, the modified constraint functions Gm,i,k can be set up as

Gm,i,k := Gi(u) + εi,k + (λGi
k)ᵀ (u− uk) ≤ 0, i = 1,, ng (3.12)

with the zero order constraint modifier εi,k ∈ R and the first order modifier λGi

k ∈ Rnu given
by

εi,k := Gp,i(uk)−Gi(uk) (3.13)

(λGi

k)ᵀ :=
∂Gp,i

∂u
(uk)−

∂Gi

∂u
(uk). (3.14)

Note that the modified cost function does not include a zero order modifier, due to it being a
constant term that would not affect the optimal point.

10

3.3 Modifier Adaptation

Figure 3.1 shows a graphical representation of the modified constraint function together with
the modifiers. It is evident from the figure that the zeroth order modifier εi,k describes the
difference in constraints calculated from the plant measurements and the predicted values
from the process model at uk. Further, the first order modifiers λΦk and λGi

k correspond to
the deviation in the plant gradients and the model gradients. Calculation of the first order
modifiers require that the cost and constraint gradients are available at the current uk. The
estimation of the plant gradients at each RTO iteration can be a challenge with MA, especially
if the measurements are noisy.

Figure 3.1: Graphical representation of the modified constraint function Gm,i,k with the belonging modifiers
εi,k, λΦk and λ

Gi
k . Figure based on Figure 1 in [4] and Figure 1 in [5].

At the current point uk, the succeeding optimal inputs uk+1 are computed by solving the
following modified optimization problem:

u∗k+1 = argmin
u

Φ(u) + (λλλΦk)ᵀ (u− uk)

s.t. Gm,i,k := Gi(u) + εi,k + (λλλGi

k+1)
ᵀ (u− uk) ≤ 0,

i = 1,, ng

u ∈ U

(3.15)

A filter can be introduced on the new optimal input to prevent too large changes in the input
update. This is especially relevant in the presence of noise. The filtered new input is given in
Equation 3.16, where K = diag(k1, ..., knu

) ∈ Rnu is a diagonal matrix with the filter values
ki ∈ (0, 1], i = 1, ..., nu, that can be adjusted depending on the magnitude of noise. The filter
acts similarly to a trust region, restricting each new input point to move too far from the
previous point.

u∗k+1 = u∗k +K(u∗k+1 − u∗k) (3.16)

The same strategy can be used to filter the modifiers in order to reduce the sensitivity to
measurement noise. By introducing the filter parameters ai, bi and c for the zeroth order,
constraint first order and cost first order modifiers respectively, the filtered modifiers for the
next iteration can be expressed as the following:

εi,k+1 = (1− ai)εi,k + ai[Gp,i(uk)−Gi(uk)] (3.17)

11

3.4 Modifier Adaptation with Gaussian Processes

(λGi

k+1)
ᵀ = (1− bi)(λGi

k)ᵀ + bi

[
∂Gp,i

∂u
(uk)−

∂Gi

∂u
(uk)

]
(3.18)

(λ
Φ
k+1)

ᵀ = (c− 1)(λ
Φ
k)ᵀ + c

[
∂Φp

∂u
(uk)−

∂Φ

∂u
(uk)

]
. (3.19)

The filters limit the distance between sequential iterations. For larger filter parameters the
iteration steps become smaller, since a higher ratio of the previous value is included in the
updated value. With smaller iteration steps, several iterations will be required to reach the
optimum and convergence rate is slowed down.

Gradient estimation for the first order modifiers is often the bottleneck in standard MA. The
plant gradients are estimated through finite difference approximations(Appendix A), which are
sensitive to noise in the measurement. With increasing number of inputs, gradient estimation
becomes challenging. For nu inputs, one needs to perform nu step changes of the plant in
order to approximate all the input gradients with a first order finite difference. As the plant
has to reach steady state for each of the perturbations, gradient approximation is costly since
it can be time consuming and result in the plant operating at suboptimal points for longer
time periods. To overcome the challenge with approximating the gradients, a scheme that use
GP in the modifier calculation will be introduced.

3.4 Modifier Adaptation with Gaussian Processes
GPs can be used to estimate unknown functions. The idea is to use GPs to calculate the
differences between the plant and the model for both the cost and constraint function. Once
fitted, the GPs can be used to calculate the modifiers. The input data is u and the belonging
output data is y, as previously introduced. The combined RBF and white noise kernel in
Equation 2.10 can be implemented in the GPs, to allow the GPs to explain some variation as
noise. The GPs will be adapted recursively, which means that they will be calculated repeatedly
for each iteration. The distribution to describe a new prediction point y∗ can be written as in
Equation 2.7. In this case f are functions that describe the plant model mismatch in the cost
and constraint functions given as:

f ∈ {Φp − Φ,Gp,1 −G1, ..., Gp,ng
−Gng

} (3.20)

Consequently the following NLP can be solved in the optimizer of the RTO:

u∗k+1 = argmin
u

Φ(u) + (λλλΦGP

k)ᵀ(u− uk)

s.t. Gi(u) + εi,k,GP + (λλλ
Gi,GP

k)ᵀ(u− uk) ≤ 0,
i = 1,, ng

u ∈ U

(3.21)

The GP modifiers λλλΦGP

k , εi,k,GP and λλλGi,GP

k are found from the GP in Equation 2.7 for the
functions in 3.20. Thus the expressions can be stated as the following:

(λ
ΦGP

k)ᵀ =
∂(GP)

(Φp−Φ)
k (u|u,y)
∂u

(3.22)

εi,k,GP = (GP)
(Gp,i−Gi)
k (u|u,y) (3.23)

(λ
Gi,GP

k)ᵀ =
∂(GP)

(Gp,i−Gi)
k (u|u,y)

∂u
(3.24)

12

3.4 Modifier Adaptation with Gaussian Processes

In this work the derivatives are approximated by finite differences in Equation 3.22 and 3.24
(Appendix A). The filter on the optimal inputs in Equation 3.16 can be used for the GP scheme,
since it works as a trust region for the input update. This is useful to keep the evaluations
near the region where the GP has its data. However the filter on the modifiers should not be
necessary, as the GP handle noise in the measurements internally.

13

4 Case Study: Williams-Otto Reactor
In this section a case study with Williams-Otto reactor will be presented. The Williams-Otto
reactor was proposed in 1960 to use for direct comparison of computer control, in order to
expose limitations and performance [14]. The reactor is a hypothetical reactor with fictitious
chemical compounds.

We will use a plant and process model with different model structures. The plant model will
be used to provide measurements for the process model. Consequently, there is structural
plan-model mismatch for the system. The reactor is an ideal continuous stirred tank reactor,
that produces the desires products P and E in addition to an undesired byproduct G.

Figure 4.1 shows a simple illustration of the reactor. The reactor feed consists of FA and
FB , which are continuous flows. The feed flows are pure and consists of 100% A and B
respectivly. FA is constant and has a value of 1.8275 kg/s. FB is varying and is one of the
controlled variables or inputs for the system. The second input is the reactor temperature,
TR. The reactor temperature influences the reaction rates. Thus the input vector becomes
u = [FB , TR]

ᵀ.

Figure 4.1: Illustration of the Williams-Otto reactor with feed streams FA and FB , outlet stream F and the
plant reactions.

The actual reactions that take place in the reactor are presented in Equation 4.1-4.3. The
model describing the complete reactor system will be referred to as the plant. Reaction 4.1
and 4.2 produce the desired products and reaction 4.3 produce the byproduct. Each of the
reactions has a specific reaction rate constant k1, k2 and k3.

A+B
k1−→C (4.1)

C +B
k2−→P + E (4.2)

P + C
k3−→G (4.3)

We use a simplified model for the process model, as if we had incomplete understanding of the
system. Therefore it has a simplified reaction scheme as described in Equation 4.4-4.5. The

14

4.1 Plant and Model Equations

simplification implies that there is no production of the intermediate product C, which results
in changed mass balances and reaction rate constants, k∗1 and k∗2 . Due to the simplification, the
calculated optimum operating points for the plant will be different from the optimum operating
points calculated from the process model.

A+ 2B
k1∗−→P + E (4.4)

A+B + P
k2∗−→G (4.5)

4.1 Plant and Model Equations

The plant and process model have been used in various papers and the model equations used
here are found in [15], except we use mass basis and not molar basis. The reaction rate con-
stants can be calculated through Arrhenius equation, given in Equation 4.6 [16]. Ai is the
pre-exponential factor and Ea,i is the activation energy in K associated with the reaction i.
TR is the reactor temperature in °C.

ki = Aie
−Ea,i/(TR+273.15), i = 1, 2, 3, 1∗, 2∗ (4.6)

The system equation for the plant and the process model are used to calculate the states for a
given input. The states for the plant, xp, are the mass fractions of the different components in
the reactor, [xA, xB , xC , xE , xP , xG]ᵀ, while for the process model it is the same mass fractions
except xC , x = [xA, xB , xE , xP , xG]

ᵀ . The reaction rates for the plant reactions can then from
rate expressions be written as [16];

r1 = k1xAxBMt (4.7)
r2 = k2xBxCMt (4.8)
r3 = k3xCxPMt. (4.9)

Mt denotes the total mass in the reactor, which is constant and equal to 2105.2 kg [17]. Similarly
the reaction rates for the model are given as

r1∗ = k1∗xAxB
2Mt (4.10)

r2∗ = k2∗xAxBxPMt. (4.11)

The total flow rate F is the sum of the reactant flow rates, FA + FB . Due to the conservation
of mass and closed system, the flow rate out of the reactor equals F . Finally, the steady
state mass balances for the plant can be defined from mass conservation laws and expressed as
follows,

FxA = FA − r1
Fxb = FB − r1 − r2 + Fxb

FxC = 2r1 − 2r2 − r3
FxE = 2r2

FxP = r2 − 0.5r3

FxG = 1.5r3.

(4.12)

15

4.2 Optimization Problem

For the process model the steady state mass balances are given as,

FxA = FA − r1∗ − r2∗
FxB = FB − 2r1∗ − r2∗
FxE = 2r1∗

FxP = r1∗ − r2∗
FxG = 3r2∗ .

(4.13)

The numerical values of the kinetic constants are given in Table 4.1.

Table 4.1: Kinetic parameters for the plant and model reactions. Values from the plant are obtained from [6]

and model parameters were decided through personal communication.

Reaction Pre-exponential factor Activation energy
Parmeter Value Unit Parameter Value Unit

1 A1 1.6599·106 1/s Ea,1 6666.7 K
2 A2 7.2117·108 1/s Ea,2 8333.3 K
3 A3 2.6745·1012 1/s Ea,3 11111 K
1* A1∗ 0.04979 1/s Ea,1∗ 6513.6 K
2* A2∗ 0.01832 1/s Ea,2∗ 11111.3 K

4.2 Optimization Problem
The objective for the reactor is to maximize the economical plant profit by manipulating the
inputs [FB , TR]

ᵀ. The cost function is presented in Equation 4.14 with the belonging constraints
and consists of a sum of product profit subtracted by the cost of the feed flows. Note that the
unit of the cost function is $/s. The cost of utilities are neglected and Pi is the price for the
component i. There are two constraints that limits the weight fractions on two states, xA and
xG. In addition there are upper and lower bounds on the inputs.

max
FB ,TR

Φp = PPxPF + PExEF − PAFA − PBFB

s.t. gp,1 = xA − 0.12 ≤ 0,

gp,2 = xG − 0.08 ≤ 0,

FB ∈ [4, 7],

TR ∈ [70, 100]

Eq.4.12

(4.14)

In addition to the inequality constraints and the bounds, the plant equations, Equation 4.12,
have to be fulfilled to optimize the plant profit. Note that although we want to optimize the
plant we only have the process model available, 4.13 (see Section 3.1). The prices for the
different chemical compounds are presented in Table 4.2. The measurements are obtained
using the plant equations 4.12.

Table 4.2: Prices for the products P and E, and the feed reactants A and B [7].

Price PP PE PA PP Unit

Value 1043.38 20.92 79.23 118.34 [$/kg]

16

5 Results and Discussion
Simulation of the standard MA and the MA with GP schemes for optimizing the Williams-Otto
reactor is carried out for different cases, studying the effect of measurement noise. Since we
measure the weight fractions, x = [xA, xB , xC , xE , xP , xG]

ᵀ, which are the states, we get that
x = y. We assume that these measurements are exposed to the same random noise, which
is assumed to be independent and identically distributed by a normal distribution with zero
mean and some standard deviation, σ.

The noise in the constraints will be equal to the measurement noise since the constraints
only contain one measurement (Equation 4.14). The actual noise of the cost function requires
some calculation, since it includes two measurements. From statistical calculation rules [18],
the following expression for the noise in the cost function is

σΦ =
√

(PPFAσ)2 + (PEFAσ)2. (5.1)

The first term represents the measurement noise in xP and the second term is the noise in
xE . By including the numerical values of PP and PE in Table 4.2 and the constant value
of FA = 1.8275 kg/s, it is evident that the magnitude of the noise in the cost function is
significantly larger than for the constraints. Consequently, one can expect that increase in the
measurement noise would have large impact on the cost calculation.

5.1 The Case Studies
The influence of noise on standard MA is studied by changing the noise in the system. The first
case is with zero noise in the plant measurements. Further, constant noise for cost function
and constraint function is added to the system and solved. The magnitude of noise is varied
in order to find the limit where the algorithm does not converge to the optimum. Further, the
actual cost noise from Equation 5.1, is introduced. Finally, alternative solutions for tackling
convergence challenges in the presence of noise is suggested for the standard MA. The algorithm
for the standard MA implementation for Williams-Otto reactor is outlined in Algorithm 1.

In the MA and GP scheme, a similar approach will be used, and we will also investigate different
formulations of the GP. In the first case there is no measurement noise. Secondly, four different
noise levels with noise of the cost function from Equation 5.1, are investigated for three versions
of the GP scheme. In the first version, the current operating point uk and system response is
added to the GP training data at every iteration. The other versions provide more training
data. In the second version an additional point for 0.95 · uk is included in the training data
at every iteration. In the third version an extra response at the current operating point is
provided, i.e. we add two identical and independently distributed samples to the training date
in each iteration. The different versions are studied in order to detect the best performance.
An outline of the algorithm for the MA with GP is presented in Appendix 2.

In all simulations u0 is [7, 70]ᵀ, and the maximum number of iterations is 20. Plant gradients
are calculated with finite differences (Appendix A), where the perturbation in u, h, is set to
10−4 for the standard MA. In the cases with GP, the gradients of the first order modifiers in
Equation 3.22 and 3.24 are calculated with h = 10−8. The filter parameters from Equation 3.16,
3.17, 3.18 and 3.19 are set to ki = 0.4, i ∈ 1, 2 for the input filter and ai = bi = c = 0.6, i ∈ 1, 2
for the modifier filters. The filters on the modifiers are only implemented for the standard MA.
Further, the initial training points for the GPs include u0 and 4 arbitrarily chosen surrounding
points of u0, together with the respective output evaluations for the three GPs (Equation 2.7
and 3.20). The global optimum for the plant is u = [4.3894, 80.4948]ᵀ, which is the desired
ending point the algorithms should converge to. The model optimum is u = [4.5684, 100]ᵀ,
which substantiate the structural plant-model mismatch. These optimums are obtained by
optimization of the plant and the model separately in Problem 4.14.

In the following sections the programming environment is described and the results of the
different schemes are presented and discussed. Note that for all the plots with presence of

17

5.2 Programming Environment

noise, one random run of the relevant scheme is presented as an example. Due to the noise
being random, there are in practise an infinite number of scenarios, and the presented plots
can be seen as a snapshot of the schemes behavior for the current settings.

5.2 Programming Environment

For implementation and simulation of the different optimization schemes, Python version 3.9.9
was used. CasADi [19] was used as a tool for setting up and solving the optimization prob-
lems, with IPopt [20] used for the optimization. Further, the numpy package [21] was used for
mathematical programming, and Sklearn [22] was used for the GPs.

5.3 Standard Modifier Adaptation without Noise

The first simulation is the standard MA with zero noise. The calculated optimal values of
the inputs F ∗B and T ∗R, the profit, which is negative cost −Φ∗p, and the weight fractions with
constraints, x∗A and x∗G are presented in Table 5.1. It is evident that the scheme converges to
the global optimum, where both of the inequality constraints are active. However, there is a
small deviation from the true plant optimum in T ∗R of approximately 0.01 °C. This could be
due to the error in the finite difference approximation of the gradients (Appendix A). For this
first simulation, several plots will be provided to study how the cost, inputs and constrained
variables develop towards the optimum.

Table 5.1: The optimal values of the flow rate of B, F ∗
B , the reactor temperature, T ∗

R, the profit or negative
cost, −Φ∗

p, and the constrained weight fractions, x∗A and x∗G, from simulation of the standard MA
without noise.

Parameter F ∗B [kg/s] T ∗R [°C] −Φ∗p [$/s] X∗A [−] X∗G [−]

Value 4.3894 80.5057 75.9075 0.1200 0.0800

Figure 5.1 shows a plot of the calculated inputs for every iteration, where reactor temperature,
TR, is plotted as a function of flow rate of B, FB . Each blue star represents the one uk and the
dotted line shows the order of the iteration points. The final input is marked with a red star
and is denoted uf

k . The initial input, u0, is the point in the lower right corner. It can observed
that the system moves closer to the optimum with every iteration, and by approximately 9
iterations the plant the optimum is reached. The red lines represents the constraints, where
the lower is g1 and the upper is g2. The feasible region is the light blue coloured area in the
plot. From the plot it is visible that the intersection of the constraints is the plant optimum,
and the only point within the operating region where both constraints are active.

18

5.3 Standard Modifier Adaptation without Noise

Figure 5.1: Plot of input iterations for standard MA without noise. Each star represents one iteration and
the dotted line shows the order of the iterations. The final iteration is labelled ufk . g1 and g2 are
the constraints that bound the feasible region indicated with the blue area.

The development of the plant profit, −Φ, together with the inputs are plotted against iteration
number in Figure 5.2. It can be observed that the plant profit is at its highest at iteration 5, but
due to constraint violation, this is not the optimum. The profit converges to the optimal value
of 75.9075$/s. Due to a negative initial profit, the inputs change drastically the first iterations.
FB change from 7 to 5 kg/s in two iterations, before it eventually reach the optimum around
4.4 kg/s. In TR an overshoot can be observed for the first iterations. Note that the information
in the input plots can be observed in Figure 5.1 as well, where the stars illustrate the iterations.

Figure 5.2: Plant profit, TR and FB plotted against iterations for standard MA without noise.

Figure 5.3 displays the constrained weight fractions, xA and xG, as a function of iterations
Constraint g2 is violated from iteration 2 to 7. One explanation is that the plant-model
mismatch can lead to calculations that violates the constraint. From Figure 5.1 it can be
observed that model optimum at u = [4.5684, 100]ᵀ would violate constraint g2. This explains
the constraint violation before convergence. Both of the weight fractions reach the constraint
limits at the final iterations, as already observed in Figure 5.1 and Table 5.1. It can be noted
that Figure 5.1 contains most of the information that is obtained in Figure 5.2 and 5.3, except
the plant profit development. Since we are going to study the ability of convergence of different
schemes in the presence of noise, convergence can be studied in the input iteration plot and the
profit development is not necessary. Therefore plots corresponding to Figure 5.1 are presented

19

5.4 Standard Modifier Adaptation with Noise

in in the following sections.

Figure 5.3: Weight fraction xA and xG plotted against iterations for standard MA without noise. The con-
straint values are indicated with red dotted lines.

5.4 Standard Modifier Adaptation with Noise
Noise is introduced on all the measured parameters in the system. Since the gradient calcula-
tions in the standard MA scheme is highly sensitive to noise, the initial noise has a small value
of 8 · 10−8. This equals a ±10−6 deviation on the constraints which is an exceptionally small
error and represent 0.0001% of the constraint value in g2 (Equation 4.14). At first noise in the
constraints is assumed to be equal to the noise in the cost function. As discussed previously
this is unrealistic but serves as a base case. Further the noise is increased by a factor of 10
to 8 · 10−7. These two cases are termed constant noise. Finally the same noise levels are
introduced with actual cost noise calculated from Equation 5.1. The resulting simulations are
presented with the iteration trajectories of TR(FB) in Figure 5.4.

Figure 5.4: Plot of standard MA with 4 different noise levels. Plot A and B have equal noise for constraint
and cost function. Plot C and D have cost noise calculated from Equation 5.1.

The first simulation with equal noise for constraint and cost functions with a value of 8 · 10−8,
converges to the optimum as observed in plot A in Figure 5.4. The trajectory is relatively
similar to the one without noise in Figure 5.1, except from the path being less smooth. At
iteration 9, the input value is approximately at the optimum. When the noise is increased to
8 ·10−7 in the plot B, the trajectory is similar and reach the region of the optimum in the same
number of iterations. Introducing cost function noise calculated from Equation 5.1, results in
the standard MA being unable to converge to the optimum. The reason is that when the actual

20

5.4 Standard Modifier Adaptation with Noise

cost noise is calculated, it introduces a significantly larger error to the system. The increase
in the cost noise is a challenge for the MA and the consequence is that the optimization fails.
This holds for both noise levels equal to 8 · 10−8 and 8 · 10−7, and can be observed in plot C
and D in Figure 5.4.

A measure that can be implemented to improve the performance of the standard MA in presence
of noise, is to increase the filter parameters. Initially the filter parameters are ki = 0.4, i ∈ {1, 2}
for the input filter and ai = bi = c = 0.6, i ∈ {1, 2} for the modifiers. By increasing the filter
parameters on the inputs, it ensures that the sequential input iterations are close to each other
and prevents large iteration steps. The filter on the modifiers acts as a running average, hence
the influence of outliers or high noise measurements are reduced. In Figure 5.5 four plots with
increasing filter values with measurement noise equal to 2 · 10−7 and actual cost noise, are
displayed.

Figure 5.5: Plot of input iterations for standard MA with different filter parameters. k1 and k2 are filter
parameters for the inputs, a, b and c are filter parameters for the modifiers. The measurement
noise level is equal to 2 · 10−7 for all plots.

Plot A in Figure 5.5 has the initial filter settings, that were used in the simulations in Figure
5.4. However, the noise level is different. It can be observed that the MA is unable to converge
for the initial filter settings. In plot B, the filter parameters on the inputs are increased to
0.6 and the noise is unchanged, but the optimum is still not reached. When the input filter
parameters are increased to 0.8, the scheme seems to move closer to the optimum in plot C.
However, with a filter this large on the inputs, the iterations are restricted to move very little
for each step. Therefore the MA would need several iterations in order to converge to the
optimum. Still, for the plot C with ki = 0.8 and ai = bi = c = 0.6 it can be observed that the
last iterations jump back and forth the final point and does not seem to move closer to the
plant optimum. Thus, this scheme would likely not converge to the plant optimum even with
several iterations.

Finally in plot D, the filter parameters on the modifiers are increased to 0.8. The result is a
trajectory that moves slowly but steadily towards the optimum. The final iteration does not
reach the optimum, but with an increased number of iterations it would have converged to
the correct point. Consequently, the simulations prove that the performance of the standard
MA can be improved by heavy filtering. However, the increase in the filter parameters cause a
slower convergence rate compared with the case without noise. It should be emphasized that
the noise used here of 2 · 10−7 is still very small, and for a small increase in the measurement
noise the standard MA would not converge even with the heavy filtering.

21

5.5 Modifier Adaptation with Gaussian Processes without Noise

5.5 Modifier Adaptation with Gaussian Processes without Noise

Gaussian processes are introduced to the optimization problem according to Equation 3.21 with
the plant-model mismatch described by a GP for the cost and constraint functions. In the first
simulation, the system is not exposed to measurement noise. The training data provided for the
GPs is a vector consisting of all previous uk, in addition to the initial u0 and four surrounding
points. The final values of the inputs, the plant profit and the constrained weight fractions are
presented in Table 5.2 and the input trajectory is presented in Figure 5.6.

Table 5.2: The optimal values F ∗
B , T ∗

R, −Φ
∗
p, and x∗A and x∗G, from simulation of MA with GP without noise.

Parameter F ∗B [kg/s] T ∗R [°C] −Φ∗p [$/s] X∗A [−] X∗G [−]

Value 4.3894 80.4946 75.8105 0.1200 0.0800

Compared with the optimal values for the standard MA in Table 5.1, all values except F ∗B and
−Φ∗p are equal. The values for F ∗B and −Φ∗p are lower than for the standard MA case, but
closer to the plant optimum. The reason for the deviation could be the inaccuracy in the finite
difference calculation of the gradients. The perturbation for the finite differences are set to
10−8 for MA with GP compared to 10−4 for standard MA. Gradient calculation is involved in
all the first order modifiers, and due to the decrease in the perturbation, the accuracy of the
MA and GP is expected to be higher. Consequently the optimum obtained for MA with GP
is closer to the plant optimum.

Figure 5.6 validates that the scheme converges to the optimum. From the plot it can be
observed that the system is close to optimum after 9 iterations which is similar to the standard
MA without noise. Compared with the standard MA, the trajectory is more "turbulent" with
larger steps in varying directions for the first iterations. This can be explained by the absence
of the filters on the modifiers that restrict the change in the cost and constraint gradients and
allow for more drastic directional changes from one iteration to the next. As for the standard
MA, constraint g2 is violated due to the plant-model mismatch, before the optimum is reached
at the constraint.

Figure 5.6: Plot of input iterations for MA with GP without noise.

22

5.6 Modifier Adaptation with Gaussian Processes with Noise

5.6 Modifier Adaptation with Gaussian Processes with Noise

In this section the performance of the MA with GP scheme in presence of noise is studied. It
was observed that the standard MA failed to converge for both noise levels 8 ·10−8 and 8 ·10−7
when the actual cost noise was implemented. Since the GP is expected to handle noise well,
the initial noise level introduced is the highest noise level used for the standard MA, 8 · 10−7.
Further the noise level is increased to 8 · 10−4, 8 · 10−3 and finally 1.6 · 10−2. The noise levels
are labeled A, B, C and D respectively in the presented plots and tables. Compared with
the constraint value of g2 the different noises represent a noise percentage on the constraint
of 0.001%, 1%, 10% and 20%. For all cases in this section, the noise for the cost function is
calculated from Equation 5.1.

Three different versions of GP implementation are studied: a base case, providing minimal
training data to the GP, a version with one additional steady state input and a version with
one additional identically and independently distributed (iid) estimate. In the base case, the
training data consists of the initial training points in addition to the calculated uks for the
previous iterations. Thus, the number of training data points increase with one for each itera-
tion, providing the GP with more information. This was the case for the MA with GP without
noise. In order to provide the GP with more information from the beginning, version two and
three are introduced, where the number of training data points are the double compared with
the base case. In version two the training data is supplied with an extra perturbed point at
each iteration using 95% of the current point. This factor was arbitrarily chosen. In the final
version, the training data consists of two iid estimates of the same operating point at each it-
eration. The performance of the MAs with GP are investigated and discussed in the following
sections, by studying the TR(FB) trajectory and the numerical values of the RBF length scale,
l, and the white kernel noise, σ2

n.

5.6.1 Base case

In Figure 5.7 the input trajectories are presented for the base case. For the smallest noise level
in Figure 5.7 A, it is evident that the scheme reach the optimum quickly. After 7 iterations the
input is close to the optimum, which is faster than both the standard MA and the MA with
GP without noise. However, this may be due to advantageous random noise realisations. Note
that the noise level is equal to the largest noise level introduced to the standard MA (Figure
5.4 D), where the optimizer completely failed. Thus, the MA with GP implementation has
already outperformed the standard MA, by being able to converge to the optimum at noise
level 8 · 10−7. To test how much noise the MA with GP can handle, the higher noise levels are
introduced.

In Figure 5.7 B, the noise is significantly increased by a factor of 103 to 8 ·10−4. The converges
to the plant optimum is for this noise level as well, but use several iterations. With noise level
increased to 8 · 10−3 in plot C, the scheme converges to a point that is not the true optimum,
as constraint g1 is violated. When doubling the amount of noise to 1.6 · 10−2, the optimization
fails and the scheme is not converging, as displayed in plot D.

23

5.6 Modifier Adaptation with Gaussian Processes with Noise

Figure 5.7: Plot of input iterations for the base case of MA with GP for 4 different noise levels.

The final hyperparameters of the kernel function for each noise level and GP are presented in
Table 5.3. The values can explain the behaviour in Figure 5.7. As observed for plot A, the MA
converges quickly and the noise level is small. The belonging hyperparameters are displayed
in the first row of Table 5.3. All the white noise levels are equal and have a value of 10−6. The
small value reflects that most of the variations in the data are explained by the RBF kernel
and not by the white noise kernel. This is as expected, since the measurement noise is small.
The magnitude of the measurement noise and the white noise cannot be compared directly,
because the GP is scaling the input and output. However, changes in the white noise versus
the measurement noise can be compared. The RBF length scales, l, are 4.46, 3.6 and 4.04 for
the cost GP, g1 GP and g2 GP respectively. Since this case converge to the optimum and has
sensible white noise, it is reasonable to use these length scales as a benchmark to compare the
other length scales with.

For the noise level in plot B it can be observed that the magnitude of the white noise increase
proportionally with the increased measurement noise. Both increase by a factor of 103, which
indicate that the GPs explain a realistic ratio of variation in the training data with noise. The
length scales are slightly changed, but not drastically. Consequently, the GPs are expected to
have the ability to explain the relationship in the input and output data. The result is that
the optimizer succeeds to converge to the optimum as observed in plot B in Figure 5.7.

With measurement noise level equal to 8 · 10−3, the scheme converges to a point that is close
to, but not at the optimum (Figure 5.7 C). This can be explained by the hyperparameters
for the GP on g1. Here it can be noted that the white noise has decreased to 10−6, which is
significantly smaller than expected. One would expect the white noise to increase from B to C.
Thus, the GP tries to explain more of the variations in the data with the noise-free function.
The small length scale with a value of 0.0605 contributes to increased complexity in the GP
model. This complexity can lead to overfitting of the data, which is likely the case here. The
result is that the GP for constraint function g1 does not provide a sufficient model for the
optimizer, and leads to the constraint being violated at the point of convergence. Therefore
the final point in plot C is not the plant optimum.

The optimization fails for the noise level in plot D. What was observed at noise level C for
constraint g1, can be seen for constraint g2 here. With the same reasoning, the GP attempts
to explain very little of the variations in the data with noise, and therefore the constraint is
violated for at the final point, ufk .

24

5.6 Modifier Adaptation with Gaussian Processes with Noise

Table 5.3: Final hyperparameters, RBF length scale, l, and white noise, σ2
n, for the three GPs for the base

case MA with GP.

Gaussian process hyperparameters

Noise (GP)Φp−Φ (GP)gp,1−g1 (GP)gp,2−g2

Level Value l σ2
n l σ2

n l σ2
n

A 8 · 10−7 4.46 10−6 3.6 10−6 4.04 10−6

B 8 · 10−4 6.02 1.02 ·10−3 2.06 9.11·10−3 3.71 1.27·10−3

C 8 · 10−3 9.0 0.153 0.0605 10−6 1.72 0.0724

D 1.6 · 10−2 9.63 0.431 2.96 0.345 0.077 5.59·10−9

5.6.2 GP Version 2: Additional Training Data at New Point

For the second MA with GP version an extra perturbed point is added at each iteration using
0.95*current point, to provide the GP with more training data to improve the performance.
We are giving the GP more information in the evaluated regions so that the prediction may be
better. In practice, this case can be interpreted as calculating two uk at each iteration, which
requires more time to detect the steady state for both points. The same measurement noises
as for the base case are introduced, and the resulting input trajectories are presented in Figure
5.8 and the belonging final hyperparameters in Table 5.4.

Figure 5.8: Plot of input iterations for the second version of MA with GP for 4 different noise levels.

The first thing that can be noticed in Figure 5.8 is that all the simulations seems to converge
to a point that deviates from the optimum, regardless noise level. By looking at the hyperpa-
rameters, it is evident that many of the GPs are not representing the variations in the data
well. From Table 5.4 it can be observed that the white noises for noise level A are too large
for all of the GPs. In the base case all σ2

n were 10−6 for this noise level. This indicates that
the GP is trying to incorrectly describe variations as noise, which results in an inaccurate
prediction. Further, the length scale for the constraint g2 GP is extremely small, which results
in a overspecified model for noise level A. It should also be noted that the length scale for
constraint g1 is very large for noise level D. This allows for larger extrapolations steps and a
"smoother" function, but can lead to poor accuracy on the described input-output-relation.

25

5.6 Modifier Adaptation with Gaussian Processes with Noise

Table 5.4: Final hyperparameters, RBF length scale, l, and white noise, σ2
n, for the three GPs for the second

version of MA with GP.

Gaussian process hyperparameters

Noise (GP)Φp−Φ (GP)gp,1−g1 (GP)gp,2−g2

Level Value l σ2
n l σ2

n l σ2
n

A 8 · 10−7 6.59 0.598 3.18 3.16·10−3 3.71 ·10−4 0.107

B 8 · 10−4 10.3 0.214 1.92 7.86·10−3 2.87 0.0451

C 8 · 10−3 2.63 0.547 5.52 0.465 6.92 0.263

D 1.6 · 10−2 8.79 0.719 1190 1.02 5.52 0.574

In conclusion, this version with an additional steady state point does not improve the per-
formance of the MA with GP. One reason could be that the additional point is chosen in an
arbitrary direction.

When choosing between the two versions of MA with GP studied so far, the base case would
be the better implementation because it was able to converge to the plant optimum whereas
the second version did not. Choosing the point direction of the additional point with care
could be one method to improve the performance of this version. One can for example choose
a decreasing direction, i.e. the gradient’s direction. This could be advantageous if the plant-
model mismatch is large. Another option is to relocate the extra point closer to the existing
location. The GP can get direct information on the noise level by providing two estimates of
the same point. This will be studied in the next section.

5.6.3 GP Version 3: Two iid Estimates of Plant Response at uk

In this version of MA with GP, the GPs are given two iid estimates of the same operating
point at each iteration. In implementation this implies to calculate the plant-model cost and
constraint deviation subject to random noise twice for the same input uk. If implemented in
a real plant it is important to ensure that the two measurements are independent. This yields
two different estimates of the output training data with equal values for the belonging input
training data at each iteration. Thus the number of datapoints are doubled compared with the
base case, and equal compared with the second version. Once again, the same measurement
noises as for the base case are introduced, and the results are presented in Figure 5.9 and Table
5.5.

Figure 5.9: Plot of input iterations for the third version of MA with GP for 4 different noise levels.

26

5.7 Possible Improvements

For the first and smallest measurement noise level, displayed in plot A in Figure 5.9, the
scheme converges efficiently to the plant optimum. After only 6 iterations, the optimum is
reached, which is the fastest convergence out of all the cases studied. Again, this could be
due to fortunate random noise. The satisfactory performance is validated by the values of the
hyperparameters. The white noises are equal to the values of the base case with noise level A
(Table 5.3). The length scales deviate slightly from the ones obtained as benchmarks in the
base case, but are of the same magnitude and much closer than in the second version.

In plot B the scheme converges to the plant optimum. The changes in white noise is as expected
for the cost GP and constraint g2, increasing the same order of magnitude as the measurement
noise. For constraint g1, the white noise is roughly one decimal larger, and the length scale
smaller. However, it does not seem to affect the convergence ability, and therefore it is not
significant. Further, the plant converges to the optimum for the noise level in plot C. This is
reflected in the hyperparameters, that does not have any remarkable changes. The number
of iterations for the plant to reach the region of the optimum is low, approximately only
4 iterations. However, observe that some iterations seems to oscillate around the optimum.
Regardless, it is evident that this version outperforms the base case on this level of measurement
noise. In the corresponding simulation for the base case, the plant converged to a point that
deviated from the plant optimum. It should be noted that this level of noise is quite high with
±10% deviation on the constraint g2.

With the highest noise level in plot D, the scheme is not converging to the plant optimum.
However, the values of the hyperparameters does not change drastically. The reason is likely
due to the noise level being too high even for this scheme, so the GP has to increase the length
scale of the constraints to a level where too much information about the correlation in the data
is lost. As a result it cannot describe the correct constraints and optimizer cease to function.

Table 5.5: Final hyperparameters, RBF length scale, l, and white noise, σ2
n, for the three GPs for the third

version of MA with GP.

Gaussian process hyperparameters

Noise (GP)Φp−Φ (GP)gp,1−g1 (GP)gp,2−g2

Level Value l σ2
n l σ2

n l σ2
n

A 8 · 10−7 3.9 10−6 2.04 10−6 2.78 10−6

B 8 · 10−4 7.01 1.8·10−3 1.67 0.0122 3.13 1.97·10−3

C 8 · 10−3 6.77 0.274 6.98 0.716 6.01 0.222

D 1.6 · 10−2 7.17 0.399 11.3 0.89 7.29 0.392

5.7 Possible Improvements
After studying the three different versions of the GP with MA, it is evident that the last version
with two iid estimates at each iteration performs best, in terms of noise resistance. However,
there are several options that can be investigated to increase the performance even more, both
in regards to noise tolerance and convergence rate of the schemes. Further a few options will
be discussed.

There are several options to eliminate the finite difference error in the GP schemes. First, the
GPs can be altered to describe the plant-model gradient difference directly. In all versions
the GP is trained on data that describes the cost and constraint plant-model differences itself.
The gradients are calculated using finite differences on the resulting GPs. Since the GPs can
be trained to express any function, it could be trained to find the gradient functions directly.
Then the finite differences and the belonging error would be eliminated, which could lead to

27

5.7 Possible Improvements

more accurate calculations and possibly faster convergence. However, training the GPs to
represent the gradients, would involve evaluation of plant and model gradients for the training
data. This would introduce the challenge of estimating the plant gradients, which is costly
since it requires plant perturbations for each input. Therefore, training the GPs to describe
the plant-model gradient difference would not be beneficial.

Another and more promising option to remove the error of the finite differences in the GP
schemes, is to use automatic or analytical derivatives. Since the GP mean is a function, it
is not necessary with an approximation to calculate the derivatives. However, this also allow
for the step lengths used in the finite difference calculation to be very small. A step length of
h = 10−8 is used, which means that the the error in the finite differences are proportional to
10−8. Therefore, using analytic or automatic derivatives for the gradient calculation for the
GPs would likely not increase the performance of the MA and GP noteworthy, but it can easily
be implemented to increase the accuracy.

Instead of adding one extra iid estimate, one could try to add two in order to increase the
performance. As observed for version 3 of the scheme, one additional iid estimate lead to
faster convergence and higher noise tolerance. With this intuition, it could be expected that
providing even one more iid estimate at each iteration, would lead to the same favourable
outcome. In practice, this would imply staying longer at each iteration point uk in order to
detect enough information for three measurements, with three different values of noise. This
way, the GP would receive 50% more training data, which could make a difference especially
in the first iterations when the training data set is small. However, GPs can become badly
conditioned when doing this, and could lead to failed fitting. One should be especially cautious
about staying at a single point to get multiple measurements if the plant-model mismatch is
transient. The reason is that then the measurements would lead to different values after some
time, and the GP would try to capture the transience. Therefore, it would theoretically be
better to use a design of experiment or Bayesian optimisation methods to select the additional
point.

As an extension of adding extra estimates at each iteration, one could calculate average mea-
surements. This would improve the performance for the standard MA as well, since averaging
can remove a lot of measurement noise. If for example 10 random samples are evaluated at
each iteration, and then the average measurements are calculated, the average value would be
expected to be closer to the noise free evaluations than most of the individual measurements.
This could also improve the performance of the MA with GP, but the average data removes
one important trait of the GP. By providing average data to the GP, it would not be possible
to get a direct measure of the standard deviation in the data from the GP. This is an important
feature. Although the standard deviation is not used here it is valuable because it provides a
direct measurement of variations in the dataset. This could be compared with the white noise
to reveal if the GP represents the input-output relationship of the data efficiently. Further, it
has been observed that the GP handles the noise well. The aim of this implementation is to
"decrease" the noise. Since it would limit the GPs ability to capture the uncertainty, it would
not necessarily be favourable in the MA and GP case if the magnitude of the noise is not too
large. Therefore it this option would be more relevant to implement in the case of standard
MA.

The kernel determines the properties of a GP model and can influence the efficiency of the
GP. One could try to find a better kernel than the one used. Among pre-defined kernels,
there are options that describe for example linear and periodic relations. Since the functions
we try describe are nonlinear and non-periodic, neither of these options would be relevant.
However, there are many other pre-defined kernels and combination of kernels that could be
used. Choosing or building a specific kernel can be difficult, and just like the true parameters
are unknown, the true kernel is not revealed from the data. To decide which kernel to use, one
could try out different kernels and compare the value of their marginal likelihood when used
on the data [13]. Yet, for this case study it is unlikely that changing the kernel would affect the

28

5.7 Possible Improvements

results significantly. The reason is that the RBF kernel is universal and able to describe many
models, and combined with the white noise kernel we get the desired property of describing
some data variations as noise.

Finally, further work to improve the quality of the results would involve running all of the
schemes with measurement noise multiple times to improve comparability. As previously
stated, all of the "noisy" results displayed are from a single random run using the relevant
settings. Because the noise is random, the results can be viewed as a snapshot of an infinite
number of events. As a result, it is possible that some of the schemes that were observed to
converge to the optimal solution will not be able to do so for every run. From this perspective,
the results could be argued to be unrepresentative of the specific cases. However they show ex-
amples of what can happen for each case, and the changes in behavior trends from one case to
another can be discussed. For example, it is likely that a scheme that converges quickly to the
true optimum would do that for any run, but the iteration trajectories could vary. The issue is
for schemes that are on the verge of convergence. For example somewhere between noise level
C and D in Figure 5.9 the scheme fails to converge the optimum. With the results presented, it
is impossible to say if the "convergence limit" is closer to noise level C or D. To be able study
this further, many repeating runs at every noise level should be executed. By averaging the
data in terms of for example final point and number of iterations before converging, one can
secure that the results represent close to the mean of the current case. Then the results are
better qualified for direct comparison of the values between the cases and not just the change
in trends.

29

6 Conclusion
The results from Williams-Otto reactor simulation of standard MA, proves that MA solves
the RTO challenge of dealing with structural plant-model mismatch. However, the standard
MA struggles in presence of measurement noise. From the results it was observed that the
MA did not converge even with small noise levels. With 0.001% noise on g2, the optimizer
ceases to function. The performance could be improved for noise level 2 ·10−8 by increasing the
filter parameters to 0.8 for both the input and the modifiers. Then the convergence rate was
decreased and results in a slower optimizer. However, heavy filtering would unlikely be effective
for higher noise levels. Therefore, use of standard MA as RTO approach in a chemical plant
would require measurement devices with very high accuracy and possibly frequent calibrations
in order to be useful.

MA with GP implemented to represent the plant-model mismatch in the constraint and cost
functions, also converge to the plant optimum and tackles the structural plant-model mismatch
in the case of no noise. The base case where measurement noise was introduced, the results
indicate that MA with GP handles a noise level at least 4000 times larger than the standard
MA. The optimizer converges for noise level 8 · 10−4 which represents 1% noise on g2. Thus,
the MA with GP implementation clearly outperforms the standard MA in terms of noise
tolerance. The reason is due to the GPs ability to represent a ratio of the variations in the
data as noise. For the second GP version, an extra perturbed point was added at each iteration
using 0.95*current point, resulting in a scheme converging to a point that was not the plant
optimum. An explanation could be that the factor 0.95 was arbitrarily chosen, and in version
three it was observed that providing two iid estimates of the same point would result in better
performance.

The third MA with GP version indicated an ability to tolerate a noise level at least 40 000
times larger than the standard MA. The noise level corresponds to 10% measurement noise.
This allows for very inaccurate measurement and usually one could expect devices to have
higher precision than 10%. From this point of view the implementation of the third version
could be excessive, if the measurements have a higher precision level. In addition, a drawback
of this implementation is that it requires longer time at steady state in each RTO iteration
compared to the base case.

In conclusion, in a perfect world with no noise, standard MA would be sufficient for optimization
purposes in RTO when there is structural plant-model mismatch. However, its high sensitivity
to noise may cause it to break if the noise is too large. The results have proven that for systems
with significant measurement noise, a GP based MA could be beneficial due to the higher noise
level tolerance. If the noise is large, version three of the MA with GP could be implemented,
but that implies a tradeoff between steady state time and noise level tolerance.

30

REFERENCES

References
[1] D. E. Seborg, T. F. Edgar, D. A. Mellichamp, and F. J. D. III, Process Dynamics and

Control, 4th ed. Wiley, 2016, ch. 19.

[2] J. Matias and J. Jäschke, “Lecture Model Predictive control Module - Real time optimiza-
tion and related challenges.”

[3] C. Rasmussen and C. K. I. Williams, “Gaussian processes in machine learning,” 2004.

[4] A. Marchetti, B. Chachaut, and D. Bonvin, “Modifier-adaptation methodology for
real-time optimization,” Industrial amp; Engineering Chemistry Research, vol. 48, no. 13,
pp. 6022–6033, 2009. [Online]. Available: http://infoscience.epfl.ch/record/128111

[5] A. G. Marchetti, G. François, T. Faulwasser, and D. Bonvin, “Modifier adaptation
for real-time optimization—methods and applications,” Processes, vol. 4, no. 4, 2016.
[Online]. Available: https://www.mdpi.com/2227-9717/4/4/55

[6] A. Marchetti, “Modifier-adaptation methodology for real-time optimization,” pp. 25–42,
01 2009.

[7] T. d. A. Ferreira, H. A. Shukla, T. Faulwasser, C. N. Jones, and D. Bonvin, “Real-time
optimization of uncertain process systems via modifier adaptation and gaussian processes,”
in 2018 European Control Conference (ECC), 2018, pp. 465–470.

[8] A. Scannell, “Gaussian Process Regression,” https://www.aidanscannell.com/post/
gaussian-process-regression/, 2019, read 23.10.2021

[9] L. F. Bernardino and S. Skogestad, “Lecture 7: Advanced Process control Module - Real-
time optimization.”

[10] A. Marchetti, “Modifier-adaptation methodology for real-time optimization,” pp. 10–11,
01 2009.

[11] H. Sit, “Quick Start to Gaussian Process Regression,” https://towardsdatascience.com/
quick-start-to-gaussian-process-regression-36d838810319, 2019, accessed 27.09.2021

[12] M. Y. Walpole, Myers, Probability and Statistics for Engineers and Scientists, 9th ed.
Pearson Education, Inc, 2011.

[13] D. Duvenaud, “Automatic model construction with gaussian processes,” pp. 1–7, 2014.

[14] T. J. Williams and R. E. Otto, “A generalized chemical processing model for the investiga-
tion of computer control,” Transactions of the American Institute of Electrical Engineers,
Part I: Communication and Electronics, vol. 79, no. 5, pp. 458–473, 1960.

[15] Y. Zhang and J. Forbes, “Extended design cost: A performance criterion for real-time
optimization systems,” Computers Chemical Engineering, vol. 24, pp. 1829–1841, 09
2000.

[16] S. K. Morten Helbæk, Fysikalsk kjemi. Fagbokforlaget, 2006.

[17] J. F. Forbes, “Model structure and adjustable parameter selection for operations optimiza-
tion,” p. 149, 1994.

[18] D. Pollard, “Variances and covariances,” http://www.stat.yale.edu/~pollard/Courses/241.
fall2014/notes2014/Variance.pdf, 2014, chapter 4, accessed 29.10.2021

[19] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software
framework for nonlinear optimization and optimal control,” Mathematical Programming
Computation, vol. 11, no. 1, pp. 1–36, 2019.

[20] A. Wächter and L. Biegler., “Scikit-learn: Machine learning in Python,” Mathematical
Programming, 2006.

31

http://infoscience.epfl.ch/record/128111
https://www.mdpi.com/2227-9717/4/4/55
https://www.aidanscannell.com/post/gaussian-process-regression/
https://www.aidanscannell.com/post/gaussian-process-regression/
https://towardsdatascience.com/quick-start-to-gaussian-process-regression-36d838810319
https://towardsdatascience.com/quick-start-to-gaussian-process-regression-36d838810319
http://www.stat.yale.edu/~pollard/Courses/241.fall2014/notes2014/Variance.pdf
http://www.stat.yale.edu/~pollard/Courses/241.fall2014/notes2014/Variance.pdf

REFERENCES

[21] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and
T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp.
357–362, Sep. 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[23] “The finite difference method,” https://www.ljll.math.upmc.fr/frey/cours/UdC/ma691/
ma691_ch6.pdf, accessed 10.11.2021

[24] E. W. Weisstein, “Taylor Series.From MathWorld–A Wolfram Web Resource,” https://
mathworld.wolfram.com/TaylorSeries.html, accessed 29.10.2021

32

https://doi.org/10.1038/s41586-020-2649-2
https://www.ljll.math.upmc.fr/frey/cours/UdC/ma691/ma691_ch6.pdf
https://www.ljll.math.upmc.fr/frey/cours/UdC/ma691/ma691_ch6.pdf
https://mathworld.wolfram.com/TaylorSeries.html
https://mathworld.wolfram.com/TaylorSeries.html

A Gradient Approximation - Finite Differences
Finite differences is one of the least complicated and oldest method to estimate gradients and
solve differential equations [23].

The derivative of a function f(x) at a certain point x with a perturbation in x equal to h, can
be defined as the following,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

. (A.1)

It can be proven that when h approaches 0, the quotient becomes a good approximation of the
gradient, hence the limit. Thus an approximation of the gradient can be expressed as

f ′(x) ≈ f(x+ h)− f(x)
h

, (A.2)

where h is constant. For smaller h, the accuracy of the approximation is increased. There
are several possible expressions for finite difference gradient approximation. Equation A.2 is
called forward difference, since the perturbation is in positive x-direction. Other examples are
backwards and central difference.

The finite difference approximation error can be derived from the Taylor series, by neglecting
higher order terms [24]. For a case where we want to estimate the gradient of a function f(x)
with respect to x, the Taylor series can be expressed as:

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + · · · (A.3)

The · · · captures all higher order terms. By altering the equation and isolation the first order
derivative and divide with h, the following expression can be revealed

hf ′(x) = f(x+ h)− f(x)− h2

2!
f ′′(x+ h1) + · · · (A.4)

f ′(x) =
f(x+ h)− f(x)

h
− h

2!
f ′′(x) + · · · (A.5)

Compared to the expression in Equation A.2, it is evident that they are equal if the higher
order terms are neglected. By neglecting this terms, the magnitude of the error is found to be
O(h). The resulting gradient approximation with error term can be written as

f ′(x) =
f(x+ h)− f(x)

h
+O(h). (A.6)

Note that the error is proportional to h and therefore the approximation is referred to as a
first-order approximation [23].

33

B Algorithms

B.1 Standard Modifier Adaptation
A pseudo code is presented to describe the algorithm that is used to simulate the standard
MA for optimizing the Williams-Otto reactor. It consists of 9 main steps. For the case with
no measurement noise, σ is set to 0.

Algorithm 1 Standard Modifier Adaptation
Step 0 - Initialization
Set initial u0
Set filter parameters for the input k1 = k2 and for the modifiers ai = bi = c, i ∈ 1, 2
Set number of iterations nk
Set initial modifiers εi,0 = 0, λgi

0 = λΦ0 = 0
Set the noise level for the measurements σ
Calculate the cost noise σΦ from Equation 5.1

Step 1 - Initial optimization
Calculate u∗0 by optimizing the process model in Equation 4.13 and the initial modifiers
from Equation 3.15

for k = 0 to k = nk do
Step 2 - Plant evaluation
Evaluate plant (Equation 4.12) and process model (Equation 4.13) at uk to obtain:
Measurements and model states, Xp and X
Cost and constraints, Φp, gp,1, gp,2, Φ, g1 and g2 and implement random noise

Step 3 - Gradient calculation
Calculate plant gradients of cost and constraints with finite differences (Appendix A)
Calculate model gradients of cost and constraints by differentiation

Step 4 - Modifier calculation
Calculate the modifiers εi,k,λ

gi
k ,λ

Φ
k from Equation 3.11, 3.13 and 3.14.

Step 5 - Filter modifiers
Filter εi,k,λGi

k ,λΦk using Equation 3.17, 3.18 and 3.19

Step 6 - Optimization
Optimize Equation 3.15 s.t. 4.14 and Equation 4.13 with the calculated modifiers to
obtain u∗k+1

Step 7 - Filter input
Filter u∗k+1 using Equation 3.16

Step 8 - Convergence criteria
if |u∗k+1 − u∗k| < 10−8 then

Break for loop
end if

end for

34

B.2 Modifier Adaptation with Gaussian Processes

B.2 Modifier Adaptation with Gaussian Processes
A pseudo code is presented to describe the algorithm that is used to simulate the base case of
MA with GP for optimizing the Williams-Otto reactor. It consists of 9 main steps. For the case
with no measurement noise, σ is set to 0. Compared with Algorithm 1, gradient calculation
is substituted with update of training data and prediction with GP, and the modifiers are not
filtered. Implementation of version 2 and 3 of the MA with GP(Section 5.6.2 and 5.6.3) require
an additional plant evaluation step.

Algorithm 2 Modifier Adaptation with Gaussian Processes
Step 0 - Initialization
Set initial u0 = u∗0, filter parameters for inputs k1 = k2 and number of iterations nk
Set initial modifiers εi,0 = 0, λgi

0 = λΦ0 = 0
Set the measurement noise level σ and calculate the cost noise σΦ from Equation 5.1
Initialize the training input vector with 4 surrounding points of u0
Initialize the 3 training output vectors, one for each f (Equation 3.20)

Step 1 - Initial training data evaluation
Calculate the outputs, f , for each training input points by evaluation of the plant (Equation
4.12) and process model (Equation 4.13) and add to the training output vectors

for k = 0 to k = nk do
Step 2 - Plant evaluation
Evaluate plant (Equation 4.12) and process model (Equation 4.13) at uk to obtain:
Measurements and model states, Xp and X
Cost and constraints, Φp, gp,1, gp,2, Φ, g1 and g2 and implement random noise

Step 3 - Update of training data
Calculate the outputs, f in Equation 3.20, for the current point from the evaluated cost
and constraints of the plant and process model and add to the training output vectors

Step 4 - Prediction with GP
Use the 3 training output vectors to fit 3 GPs and predict the output value at
u∗k of the three functions: Φp − Φ, gp,1 − g1, gp,2 − g2

Step 5 - Modifier calculation
Calculate the modifiers εi,k,λ

gi
k ,λ

Φ
k from Equation 3.23, 3.24 and 3.22 using finite

differences (Appendix A)

Step 6 - Optimization
Optimize Equation 3.21 s.t. Equation 4.14 and 4.13 with the calculated modifiers to
obtain u∗k+1

Step 7 - Filter input
Filter u∗k+1 using Equation 3.16

Step 8 - Convergence criteria
if |u∗k+1 − u∗k| < 10−8 then

Break for loop
end if

end for

35

	Introduction
	Theory
	Real-Time Optimization
	Building Blocks
	Implementation
	Challenges

	Modifier Adaptation
	Gaussian Processes
	Linear Regression
	Gaussian Process Regression
	Kernel Functions
	Hyperparameters

	Problem Formulation
	Steady State Optimization Problem
	Necessary Conditions of Optimality
	Modifier Adaptation
	Modifier Adaptation with Gaussian Processes

	Case Study: Williams-Otto Reactor
	Plant and Model Equations
	Optimization Problem

	Results and Discussion
	The Case Studies
	Programming Environment
	Standard Modifier Adaptation without Noise
	Standard Modifier Adaptation with Noise
	Modifier Adaptation with Gaussian Processes without Noise
	Modifier Adaptation with Gaussian Processes with Noise
	Base case
	GP Version 2: Additional Training Data at New Point
	GP Version 3: Two iid Estimates of Plant Response at uk

	Possible Improvements

	Conclusion
	Gradient Approximation - Finite Differences
	Algorithms
	Standard Modifier Adaptation
	Modifier Adaptation with Gaussian Processes

