
TKP4580 - Chemical Process Technology, Specialization project

A Comparison of Multiple

Shooting and Collocation

Approaches using Nonlinear

Model Predictive Control

Agnes Camilla Tysland

Submission date: 18.12.2020
Supervisor: Johannes Jäschke, IKP
Co-supervisor: Caroline Satye Nakama, IKP

Norwegian University of Science and Technology

Summary

This specialization project focuses on two different simultaneous approaches used in
nonlinear model predictive controlling (MPC), namely multiple shooting and orthogonal
collocation. The two methods are widely used in industry, and both computational time
and accuracy are important factors to consider when choosing specifications for an MPC.
Therefore, the aim of this project is to compare the methods with focus on their perfor-
mance. A simple continuous stirred tank rector is considered, for comparing the methods
when tracking a state setpoint trajectory. The discretized system has been simulated for a
time period of 60 hours using ulıa, with one-, three- and five point collocation methods
in addition to multiple shooting. The length of the finite elements has also been varied in
order to investigate the impact on the optimization. Two different implementations have
been compared, one where the model for each method is built and optimized at each fi-
nite element, and one where the models are built only prior and then updated before the
optimization at every finite element.

For the system investigated, all of the methods performed well. The method with
the lowest computational time for this case was one point collocation and the highest
computational time was multiple shooting. Thus, for the system investigated, one point
collocation is sufficient. For this system, both three- and five point collocation methods
were as accurate at multiple shooting, but one point collocation proved to be slightly less
accurate for a more coarse discretization.

The length of the finite elements affects both accuracy and computational time for the
four methods investigated. The approximation of the true solution remarkably improves
for increasing number of finite elements, however, so does the NLP size and therefore also
the computational time.

The difference between updating an existing model and building a new model at every
time step showed a small, but not very significant, effect on the computational time. How-
ever, for a larger, more nonlinear system, this difference may have a larger influence. For
further work, it could therefore be interesting to introduce a more nonlinear model to the
system, in order to investigate this difference in addition to the general progression of the
methods when handling more difficult systems.

In conclusion, if accuracy is a key criterion, multiple shooting or a higher order collo-
cation approach is recommended. Nonetheless, for simple systems, one point orthogonal
collocation may be the fastest approach with decent accuracy.

i

Preface

Declaration of Compliance

I, Agnes Camilla Tysland, hereby declare that this is an independent work according to the
exam regulations of the Norwegian University of Science and Technology (NTNU).

Signature:

Place and Date: Trondheim - Gløshaugen, December 2020

ii

Table of Contents

Summary i

Preface ii

Table of Contents iv

List of Figures vi

Nomenclature vii

1 Introduction 1

1.1 Motivation . 1
1.2 Specialization Project Goal . 2
1.3 Scope of Work . 2

2 Background and theory 3

2.1 Model Predictive Control . 3
2.2 Multiple Shooting . 5
2.3 Orthogonal Collocation on Finite Elements 7

3 Methodology 11

3.1 Optimization of a biochemical reactor 11
3.1.1 Dynamic model . 11
3.1.2 NMPC formulation . 12

3.2 Implementation . 14

4 Results & Discussion 17

4.1 Comparing the Methods . 17
4.2 Changing the Length of the Finite Element 21
4.3 Implementation - Making a new model vs. Updating the model 27

5 Final Remarks 29

iii

Bibliography 31

A Julia Codes 33

A.1 Main.jl . 33
A.2 methods.jl . 37
A.3 updatemodel.jl . 41
A.4 Plant.jl . 42
A.5 newMethod.jl . 42

iv

List of Figures

2.1.1 MPC block diagram[1]. 4
2.1.2 Illustration of MPC concept for single-input single-output (SISO) control,

showing past and predicted future outputs, y and ŷ, previous and future
control inputs, u, control horizon, M , prediction horizon, P , and sampling
instants, k(Seborg et. al, 2017: 370). 4

2.2.1 Simple block diagram for multiple shooting[2]. 5
2.3.1 Simple block diagram for orthogonal collocation[2]. 7
2.3.2 A function z(t) parameterized using collocation approach. hi shows the

length of one finite element between ti�1 and ti, and ⌧j denotes the collo-
cation points within the finite element(Biegler, 2010: 289). 8

3.1.1 A simplified flowsheet of the biochemical reactor. 11
3.1.2 Biomass concentration setpoint trajectory for the NMPC. 13

4.1.1 Plot of biomass and substrate for all four methods. State x1 represents the
biomass concentration tracking the setpoint trajectory and state x2 repre-
sents the substrate concentration. Number of finite elements is 60, and
prediction and control horizon is set to five and three hours, respectively. 18

4.1.2 CPU time used for all methods. Top plot and middle plot are the same,
except that the initial value for the multiple shooting approach has been
removed from the bottom plot, in order to better compare the values. The
top and bottom plot is the same as well, except that the y-axis is set to 2
seconds in the bottom one. Number of finite elements is 60, and prediction
and control horizon is set to five and three hours, respectively. 19

4.2.1 Biomass state plotted against time for various values of N and using the
different methods. Results from one-, three- and five point orthogonal col-
location approach is shown in Plot (a), Plot (b) and Plot (c), respectively.
Multiple shooting approach is shown in Plot (d). 21

v

4.2.2 Biomass and substrate plotted against time for all four methods. State x1

represents the biomass concentration tracking the setpoint trajectory and
state x2 represents the substrate concentration. Plot (a) shows all methods
for N = 30 finite elements, Plot (b) for N = 60, Plot (c) for N = 120 and
Plot (d) for N = 180. 23

4.2.3 Computational time for all methods at different levels of discretization.
The top plot in each subfigure is the computational time plotted againts
time. The middle plot in each subfigure is computational time plotted
against time, but the initial value for the multiple shooting approach has
been removed, in order to better investigate the plots. The bottom plot
in each subfigure is the computational time plotted against time, and the
y-axis is fixed to 2 seconds, hence a trend between the plots may be more
easily observed. 25

4.3.1 Plot of states for all methods with 60 finite elements and control and pre-
diction horizon set to five and three hours respectively. 27

4.3.2 CPU time for all methods with 60 finite elements and control and predic-
tion horizon set to five and three hours respectively. 27

vi

Nomenclature

Acronyms

CPU central processing unit
CV controlled variable
CSTR continuous stirred tank reactor
DAE differential algebraic equations
DOF degree of freedom
DV disturbance variable
MPC model predictive control
MV manipulated variable
NLP nonlinear programming
NMPC nonlinear model predictive control
ODE ordinary differential equation
PDE partial differential equation
SISO single-input single-output

Symbol Definition Unit
D Dilution rate hr�1

Dmin Minimum dilution rate hr�1

Dmax Maximum dilution rate hr�1

F Volumetric flowrate m3

hr

Fin Inlet volumetric flowrate m3

hr

Fout Outlet volumetric flowrate m3

hr
km Monod saturation constant g

L
V Volume of bioreactor m3

xi System states concentration massofcells
volume

x1 Biomass concentration massofcells
volume

x1,f Biomass feed concentration massofcells
volume

x2 Substrate concentration massofcells
volume

x2,f Substrate feed concentration massofcells
volume

Y Process yield -
µ Specific growth rate hr�1

µmax Maximum specific growth rate hr�1

vii

viii

Chapter 1
Introduction

1.1 Motivation

Several industrial disciplines may, by obtaining and implementing the optimal solution to
a control problem, achieve a more optimized control of the system overall. Optimal con-
trol may result in lowered total energy demand and reduced cost or increased production,
and is therefore highly desired. A way of obtaining optimal control is by using Model Pre-
dictive Control (MPC). An MPC uses a dynamic model of the process to predict a systems
behaviour and response, for example to a disturbance or setpoint change. An MPC has
one or several decision variables to manipulate in order to obtain the wanted outcome. Its
main goal is to find a vector of optimal control inputs or functions in order to maximize or
minimize a certain objective, subject to constraints[4].

The optimal control problem may be transformed into a nonlinear programming prob-
lem (NLP) using a direct method[2]. The time period of interest is discretized into several
smaller finite elements, and the state trajectory may then be obtained by parameterization.
The dynamic model of the system, e.g. the ordinary differential equations (ODEs), may be
given as equality constraints[5]. The resulting NLP may be solved using either a sequen-
tial or a simultaneous approach. When a simultaneous approach is used, the states and the
chosen manipulated variables are considered to be optimization variables in the NLP. This
gives the simultaneous approach the advantage that the jacobian matrix, i.e. the derivatives
of the constraints with respect to the problem variables, becomes very sparse compared to
those of sequential approaches.

Multiple shooting and orthogonal collocation are two different simultaneous approaches
used for dynamic optimization problem solving. There is currently a controversy as to
which method is the superior one. Some strongly believe that multiple shooting gives the
most accurate and therefore best approximation while others are convinced that the solu-
tion simply is to add more collocation points. The two methods differ when it comes to the
integration of the systems ODEs. Both methods discretize the continuous optimal control
problem into finite elements, but where multiple shooting uses an embedded integrator,
orthogonal collocation uses the optimizer to do the integration by evaluating the ODEs at

1

Chapter 1. Introduction

specific points in time.

1.2 Specialization Project Goal

Depending on the system at hand and the reason the MPC is being used, both accuracy and
computational time may be critical. The specialization project goal is therefore to compare
multiple shooting and orthogonal collocation, with focus on their accuracy when tracking
a setpoint trajectory in addition to the processing time.

1.3 Scope of Work

A simple biochemical continuous stirred tank reactor (CSTR) is considered, and a given
setpoint trajectory is used to compare the two methods. An MPC is built using ulıa,
with functions for the two methods to be compared. The states, manipulated variables,
deviations from setpoint trajectory and the computational time used is evaluated in order
to compare the two methods. In addition, two different implementations will be considered
and compared; one where the model for each method is made and optimized at every time
step, and one where the models are made only in the beginning and then updated before
the optimization at every time step. This is to investigate the difference in computational
time between the two different ways of implementing.

The relevant theory regarding MPC and the methods is provided, followed by a de-
scription of the CSTR dynamic model. The results from the MPC application is presented
and discussed. In the end, some final remarks are given. The ulıa codes are given in
Appendix A.

2

Chapter 2
Background and theory

2.1 Model Predictive Control

Model predictive control (MPC) is an important advanced control strategy for difficult
control problems. The MPC’s ability to handle multivariable dynamic models alongside
the possibility of adding bounding constraints is what raises this controller above several
alternatives. This method allows for imposing constraints both on the input and output
variables, and has been used in industry from the late 1980’s[6]. Qin and Bagwell (2003:
749) nicely formulated the objectives and features of an MPC as[7]

1. prevent violation of input and output constraints;

2. drive the control variables to their steady-state optimal values (dynamic output op-
timization);

3. drive the manipulated variables to their steady-state optimal values using remaining
degrees of freedom (dynamic input optimization);

4. prevent excessive movement of manipulated variables;

5. when signals and actuators fail, control as much of the plant as possible.

A typical block diagram for MPC is shown in Figure 2.1.1. Given a process model,
the current and future value of one or several output variables are predicted. A feedback
containing the residuals is given to a prediction block at every time instant. The predicted
outputs may then be used for both setpoint calculations and control action calculations for
the next time instant.

3

Chapter 2. Background and theory

Figure 2.1.1: MPC block diagram[1].

Based on past control outputs, y, and inputs, u, the process is simulated over a certain
time period, known as the prediction horizon or the output horizon, np. In the beginning
of this horizon the manipulated variables (MVs) are allowed to vary. This period is called
control horizon or input horizon, nm. The control horizon cannot surpass the prediction
horizon (1 nm np) as shown in Figure 2.1.2, and during the output horizon the
process must return to steady state[1].

Figure 2.1.2: Illustration of MPC concept for single-input single-output (SISO) control, showing
past and predicted future outputs, y and ŷ, previous and future control inputs, u, control horizon, M ,
prediction horizon, P , and sampling instants, k(Seborg et. al, 2017: 370).

This method relies on dynamic models of the process, either linear or nonlinear, which
are obtained by system identification within separate time periods. A quadratic objective
function is used to stabilize the profiles of the controlled variables (CVs) and to approxi-
mate them back to a setpoint. At each time step, a vector of optimal control input functions
or values are found, using the control input and measured state from the previous step, and
the first control input is given to the system. This way, the quadratic programming problem

4

2.2 Multiple Shooting

is solved online[3].
Mathematically, an MPC problem can be formulated as follows:

min
uk,yk

npX

k=1

(ŷk � ysp)TQy(ŷ
k � ysp) +

nmX

k=1

(uk � uk�1)TQu(u
k � uk�1) (2.1.1)

s.t. ŷk+1 = F (yk, uk) k = 1, ..., np (2.1.2)

uk = unc k = nc + 1, ..., np (2.1.3)

umin uk umax k = 1, ..., np (2.1.4)

��umax uk � uk�1 �umax k = 1, ..., np (2.1.5)

Here, the predicted future outputs, ŷk, is dependent on the previous given inputs and
measured outputs, uk and yk. Deviations from the setpoint, ysp, and manipulated variable
movement, uk � uk�1, is minimized using penalty matrices in the objective function,
Equation 2.1.1. Qy and Qu are penalty matrices for the output variables and manipulated
variables, respectively. Equation 2.1.3 is present to keep the manipulated variable constant
after the control horizon. �umax is the maximum difference the manipulated variable may
have from one time instant to the next. umin and umax are boundary values for the MV.
The MPC problem solves the entire prediction horizon at each time step, and the optimal
control input from the first time step is implemented in the process.

2.2 Multiple Shooting

Direct multiple shooting is a simultaneous approach used for dynamic optimization prob-
lem solving, as it simultaneously solves the optimization problem and the system ODEs.
A simple block diagram is shown in Figure 2.2.1.

Figure 2.2.1: Simple block diagram for multiple shooting[2].

5

Chapter 2. Background and theory

The numerical method solves boundary value problems by discretizing a finite interval
into several smaller subintervals,

t↵ = t0 < t1 < ... < tn�1 < tn = t�

where t↵ and t� are the times at the beginning and end of the finite interval respectively,
and n is the number of subintervals. At each subinterval, the control function, u(t), is
parameterized

u(t) = ⌫k, t 2 [tk, tk+1] (2.2.1)

for k = 1,...,n-1, as well as the initial conditions of the state vectors,

y(tk) = hk (2.2.2)

The state trajectories are evaluated in each subinterval,

ẏk(t) = f(yk(t), ⌫k, t), t 2 [tk, tk+1] (2.2.3)
yk(tk) = hk (2.2.4)

To ensure continuity in the state trajectory, the continuity equation, also called match-
ing conditions, needs to be satisfied. This controls the next shooting interval to start where
the previous solution left off. Mathematically this may be described as

hk+1 � yk(tk+1;hk, ⌫k) = 0 (2.2.5)

This method integrates over a small shooting interval, starting at hk. An advantage of the
approach thus arises when, regardless of the integration strategy, the integration function
y(hk, ⌫k) becomes asymptotically linear as the number of finite elements increases, in
other words as tk+1 � tk goes to zero[8]. The integrator function is only moderately
nonlinear and both the inputs, u(t), and the states, y(t), are used as decision variables. In
multiple shooting the parameter vector for all subintervals then becomes

w = [h0, ⌫0, h1, ⌫1, ..., hn�1, ⌫n�1, hn] (2.2.6)

Thus, the method considers a continuous optimal control problem

min
Z tf

t0

`(y(t), u(t))dt (2.2.7)

s.t. ẏ(t) = f(y(t), u(t)) (2.2.8)
g(y(t), u(t)) 0 (2.2.9)
y(t0) = y0 (2.2.10)

(2.2.11)

and by discretization, the continuous problem is transformed into an NLP of the form

min ���(w) (2.2.12)
s.t. c(w) = 0 (2.2.13)

g(w) 0 (2.2.14)

6

2.3 Orthogonal Collocation on Finite Elements

where c and g are the matrices

c(w) =

2

666664

y0 � h0

y(h0, ⌫0)� h1

y(h1, ⌫1)� h2
...

y(hn�1, ⌫n�1)� hn

3

777775
= 0 (2.2.15)

g(w) =

2

666664

g(h0, ⌫0)
g(h1, ⌫1)

...
g(hn�1, ⌫n�1)

g(hn, ⌫n)

3

777775
 0 (2.2.16)

A nonlinear optimizer can then be used to solve the resulting NLP problem. The
integrator may be CVODES, using implicit Euler, Runge-Kutta or others.

2.3 Orthogonal Collocation on Finite Elements

Orthogonal collocation is a direct transcription method that, similarly to multiple shooting,
allows for a simultaneous approach of an optimization problem. A simple block diagram
for the method is shown in Figure 2.3.1. Unlike multiple shooting, orthogonal collocation
considers a large nonlinear problem without an embedded differential algebraic equation
(DAE) solver. In stead, the method uses the optimizer to do the integration, like shown in
the block diagram below.

Figure 2.3.1: Simple block diagram for orthogonal collocation[2].

7

Chapter 2. Background and theory

The time period of interest is discretized into several smaller finite elements and, within
these elements, the system ODEs are evaluated at specific points in time, namely collo-
cation points. This is illustrated in Figure 2.3.2, where ⌧j denotes the collocation points
within a finite element and hi indicates the length of one finite element.

Figure 2.3.2: A function z(t) parameterized using collocation approach. hi shows the length of
one finite element between ti�1 and ti, and ⌧j denotes the collocation points within the finite ele-
ment(Biegler, 2010: 289).

The integrator equations are written out in order to be solved as constraints in the NLP.
Therefore, the method only requires smooth profiles within the finite elements. The re-
sult should be a very large NLP with a sparse structure. This way, the nonlinearity of the
problem is traded for the increasing problem size[3]. Different collocation approaches are
distinguished by the number and positioning of the collocation points, and differ in ap-
proximation accuracy. Typical positions are Gauss-Lobatto, Gauss-Legendre and Gauss-
Radau. The latter two are shown in Table 2.1. Derivation of these are shown in Biegler
2010 ([3], p. 288-295).

8

2.3 Orthogonal Collocation on Finite Elements

Table 2.1: Shifted Gauss–Legendre and Radau roots (Biegler, 2010, p. 292).

Degree K Legendre Radau
1 0.500000 1.000000
2 0.211325 0.333333

0.788675 1.000000
3 0.112702 0.155051

0.500000 0.644949
0.887298 1.000000

4 0.069432 0.088588
0.330009 0.409467
0.669991 0.787659
0.930568 1.000000

5 0.046910 0.057104
0.230765 0.276843
0.500000 0.583590
0.769235 0.860240
0.953090 1.000000

Consider the ODE
dz

dt
= f(z(t), t), z(0) = z0 (2.3.1)

A polynomial approximation is considered for the state variable of the form

zK(t) = ↵0 + ↵1t+ ↵2t
2 + ...+ ↵KtK (2.3.2)

of order K over a single finite element. Using Lagrange interpolation polynomials and
K + 1 interpolation points in each finite element i the state in this element may be given
by

zK(t) =
KX

j=0

`j(⌧)zij (2.3.3)

where

`j(t) =
KY

k=0,k 6=j

⌧� ⌧K
⌧j � ⌧K

(2.3.4)

for the time
t = ti�1 + hi⌧, t 2 [ti�1, ti] (2.3.5)

As before, hi is the length of the finite element and the interpolation points are

⌧ 2 [0, 1], ⌧0 = 0, ⌧j < ⌧j+1 (2.3.6)

for j = 0, ...,K � 1.
The collocation equation for each finite element i may then be given as

KX

j=0

zij
d`j(⌧k)

d⌧
= hif(zik, tik), k = 1, ...,K (2.3.7)

9

Chapter 2. Background and theory

which, for K=3 and using Radau roots can be written out as[3]

zi,0(�30⌧2k + 36⌧k � 9) + zi,1(46.7423⌧
2
k � 51.2592⌧k + 10.0488)

+ zi,2(�26.7423⌧2k + 20.5925⌧k � 1.38214) + zi,3(10⌧
2
k � 16

3
⌧k +

1

3
)

= hif(zi,k, ti�1 + ⌧k)

(2.3.8)

where the constants associated with z0, ..., zK can be represented in a square matrix:

adot(k, k) =

2

64

˙̀
0(⌧0) . . . ˙̀

0(⌧k)
...

. . .
...

˙̀
k(⌧0) . . . ˙̀

k(⌧k)

3

75 (2.3.9)

As the system has been discretized, continuity constraints must be enforced to ensure
continuity. Depending on how the collocation approach is implemented, this may be en-
forced by using the collocation endpoint of one subinterval as the beginning of the next.
This may be done by adding the equality constraint

zi+1,0 = zi,K (2.3.10)

constraining the next subinterval to start from the end of the previous one.

10

Chapter 3
Methodology

3.1 Optimization of a biochemical reactor

3.1.1 Dynamic model

In this project a chemical bioreactor is considered. A simple flowsheet is presented in
Figure 3.1.1. The reactor is modelled as a continuous stirred-tank reactor (CSTR), and it
is assumed only two components are present; biomass, state x1, and substrate, state x2.

Figure 3.1.1: A simplified flowsheet of the biochemical reactor.

The biomass and substrate material balances are described as

dV x1

dt
= Finx1,f � Foutx1 + V r1 (3.1.1)

dV x2

dt
= Finx2,f � Foutx2 � V r2 (3.1.2)

where V is the reactor volume, xi is the state concentration for i = {1,2}, t is time, Fin is
the inlet volumetric flowrate, xi,f is the state concentration at the inlet, Fout is the outlet
volumetric flowrate, r1 is the reaction rate of biomass produced and r2 is the reaction rate
of substrate consumption.

11

Chapter 3. Methodology

The growth rate is further given by the equation

r1 = µx1 (3.1.3)

Substrate inhibition is taken into account through µ by the substrate inhibition rela-
tionship

µ =
µmaxx2

km + x2 + k1x2
2

(3.1.4)

where µmax is specific growth rate and km is the Monod saturation constant and k1 is the
inverse of the inhibition constant[9]. For the purpose of this project, approximated values
are considered, given in Table 3.1.

The process yield is given by:

Y =
rate of biomass growth

rate of substrate consumption
=

r1
r2

(3.1.5)

As the expression for r1 is known, r2 may be obtained by rearranging:

r2 =
r1
Y

=
µx1

Y
(3.1.6)

For this purpose, a process yield is assumed to be Y = 40% = 0.4.
For the purpose of simplification, it is assumed that the volume is constant, hence feed

stream in is equal to feed stream out, that there is no biomass in the feed stream and that
yield is constant. In addition, the dilution rate is defined as:

D =
F

V
(3.1.7)

The dynamic model for the process then becomes:

dx1

dt
= �Dx1 + µx1 = x1(µ�D)

dx2

dt
= Dx2,f �Dx2 �

µx1

Y
= D(x2,f � x2)�

µx1

Y

(3.1.8)

3.1.2 NMPC formulation

The goal is to design a nonlinear model predictive controller (NMPC) for the bioreactor,
that tracks a reference trajectory of biomass concentration. The trajectory is shown in
Figure 3.1.2.

12

3.1 Optimization of a biochemical reactor

Figure 3.1.2: Biomass concentration setpoint trajectory for the NMPC.

Dilution rate is considered to be the manipulated variable (MV), u, and biomass con-
centration is the controlled variable (CV), x1. It is assumed that both states, x1 and x2, are
measured.

The discretized control problem is described as follows:

min
x,u

1

2

⇣ npX

i=1

(x1,i � x1,SP)
TQ(x1,i � x1,SP) +

nmX

i=1

�uT
i R�ui)

⌘
(3.1.9)

s.t. x0 = x(0) (3.1.10)
xi+1 = F (xi, ui) i = 0, ..., np � 1 (3.1.11)
umin ui umax i = 0, ..., np (3.1.12)
��umax �u �umax i = 0, ..., nm (3.1.13)
�ui = (ui � ui�1) = 0 i = nm + 1, ..., np (3.1.14)
x1 x1,max (3.1.15)

where x1,i is the predicted biomass concentration output at subinterval i, x1,SP is the
biomass reference value and Q is a matrix that penalizes biomass deviations from setpoint.
Similarly, R is a parameter that penalizes the magnitude of the manipulated variable step,
�u. xi+1 = F (xi, ui) is the discretized system dynamics, here the differential equations
given in Equation 3.1.8. np and nm is the number of hours for the prediction horizon and
the control horizon, respectively. x1,max is an upper bound for the biomass concentration.

13

Chapter 3. Methodology

The values of the control parameters are shown in Table 3.1.

Table 3.1: Control parameters and optimization bounds.

Symbol Value Unit

µmax 0.4
km 0.12
k1 0.4545
Y 0.4
x2,f 4.0
np 5 [-]
nm 3 [-]

Q

1 0
0 0

�
[-]

R 0.5 [-]
umin 0 [h�1]
umax 1 [h�1]
�umin 0.05 [h�1]

The system is simulated for 60 hours, with a control sampling time of 1 hour. The
initial condition are x0 = [1,1]T [g/L] and u0 = 0.3 [h�1].

3.2 Implementation

The implementation of the MPC has been done in ulıa using the packages JuMP, Ipopt,
DifferentialEquations, Polynomials, PyPlot and LaTeXStrings. Four scripts were made,
namely Main.jl, Plant.jl, methods.jl and updatemodel.jl, which are given in Appendix A.

In the script methods.jl found in A.2 there are three functions. The first function,
adot_matrix(), is for making the collocation matrix shown in Equation 2.3.9. This func-
tion takes a number c as input, either 1, 3 or 5, uses collocation points to find Lagrange
polynomials and its derivatives, and in the end returns the square collocation matrix needed
for the collocation approaches.

The second function, ColMod(), takes as input the prediction and control horizon as an
array, the length of the finite element and the number of collocation points, and uses this
to generate the dynamic collocation model for optimization. All variables and constraints
are here attached to the model.

Similarly, the third function, MultMod(), makes the multiple shooting model ready
for optimization. It also takes horizons and finite element length as inputs, and returns
the multiple shooting model containing all variables and constraints. This method, as
mentioned in the previous chapter, uses an integrator to evaluate the ODEs at the end of
each finite element. Therefore, this function includes another function that takes the state
values in the beginning of the single finite element as input, and after evaluating the ODEs
using the classic Runge-Kutta approach, returns the value of the states at the end of the
single finite element.

14

3.2 Implementation

The script updatemodel.jl in A.3 includes one function, update_model(). As input,
this function takes the model to be updated, the previous states values, the previous input
variable and the setpoint for state x1. The function then updates the values and optimizes
the model using IPOPT. The function then returns the optimal input variable found and the
Central Processing Unit (CPU) time used to find optimal solution.

The third script Plant.jl in A.4 is a script for simulating the system behaviour. The
script contains two functions. The function Plant() takes as arguments the previous states,
previous manipulated variable and finite element length, calls the integrator and returns
the resulting states. The function F() is the integrator integrating the system ODEs and
returning the integrated state values.

The last script Main.jl in A.1 is the script that simulates the entire optimization prob-
lem. It includes the three other scripts, makes the models and then, in a for-loop, updates
the models, simulates the plant and in the end plots the results.

In addition, a script was made, which includes all of the characteristics of the above
scripts in one, but differs as instead of updating the model, a new model is made at every
time step. This script is named newMethod.jl.

15

Chapter 3. Methodology

16

Chapter 4
Results & Discussion

4.1 Comparing the Methods

The biochemical reactor control problem have been solved using NMPC with one-, three-
and five point collocation and multiple shooting for optimizing the control input. A time
frame of 60 hours was considered, using N = 60 finite elements. Prediction horizon was
set to np = 5 hours and control horizon was set to nm = 3 hours.

A comparison of all the methods have been made, and is shown in Figure 4.1.1. As
indicated by the legend, one point orthogonal collocation (OC1) is shown in blue, three
point (OC3) in red, five point (OC5) in orange and multiple shooting (MS) in bright blue.
This color scheme will be consistent through all the following plots in this section. Sim-
ilarly, where the states are represented by a line, biomass state x1 will be represented by
the dashed line and substrate state x2 by the solid line. Each method has, as indicated by
the legend, markers shaped as triangles facing different directions in all of the state plots.
The setpoint trajectory is plotted as a purple, dotted line.

17

Chapter 4. Results & Discussion

Figure 4.1.1: Plot of biomass and substrate for all four methods. State x1 represents the biomass
concentration tracking the setpoint trajectory and state x2 represents the substrate concentration.
Number of finite elements is 60, and prediction and control horizon is set to five and three hours,
respectively.

Figure 4.1.1 shows biomass, state x1, and substrate, state x2, plotted against time
for each method. All methods perform equally well for this case, and track the biomass
trajectory presented in Figure 3.1.2 well.

18

4.1 Comparing the Methods

The CPU time for all methods is shown in Figure 4.1.2. The number of finite elements
is 60, and prediction and control horizon is set to five and three hours, respectively. The
three plots all show computational time against time for all of the four methods, but with
minor adjustments for the two bottom ones. The top and middle plot are the same, except
that the initial value for the multiple shooting approach has been removed from the middle
plot, in order to better view the values. The bottom plot is the same as the top plot as well,
except that the y-axis has been set to 2 seconds. This is in order for the plots to be easier
to compare in the next section.

Figure 4.1.2: CPU time used for all methods. Top plot and middle plot are the same, except that the
initial value for the multiple shooting approach has been removed from the bottom plot, in order to
better compare the values. The top and bottom plot is the same as well, except that the y-axis is set
to 2 seconds in the bottom one. Number of finite elements is 60, and prediction and control horizon
is set to five and three hours, respectively.

From the middle plot in Figure 4.1.2 it is clear that the approach with the lowest com-
putational time is one point collocation, followed by three point and then five. This is
expected, as the number of collocation points indicates the order of the polynomial ap-
proximation in each finite element. The higher the order, the more variables are being
used, thus increasing the size of the problem. A higher order is expected to give a more
accurate solution, but also to use more computational time than a possibly more inaccu-
rate, simpler approximation. The approach with the highest computational time is multiple
shooting, which is also as expected as this method uses an embedded integrator.

In the top plot of Figure 4.1.2 the CPU time for the initial multiple shooting optimiza-

19

Chapter 4. Results & Discussion

tion clearly stands out. The CPU time for this point is close to 6 seconds while the majority
of the other subintervals are optimized at under 0.2 seconds. This is likely due to the time
it takes to allocate the memory when solving the ODEs in the multiple shooting approach.
This approach uses an integrator from the DifferentialEquations package, which the first
time it is called needs to allocate the memory needed for the integration, while for the rest
of the subintervals this memory space may be overwritten as the values do not need to be
saved.

The computational time for the last five hours also stands out for all methods when
considering the bottom plot in Figure 4.1.2. Looking closer at the plotted biomass states in
Figure 4.1.1 this corresponds to the time when biomass concentration reaches its setpoint
of zero. This is also a boundary constraint for the system, and the optimizer needs more
iterations. Hence, the computational time is increased.

20

4.2 Changing the Length of the Finite Element

4.2 Changing the Length of the Finite Element

To examine the impact of the length of the finite elements, the biochemical reactor control
problem was also solved using various number of finite elements. The prediction and con-
trol horizons have been changed accordingly, in order to keep the prediction time window
approximately constant. The cases where N = 30, N = 120 and N = 180 finite elements
will be closer investigated later in this section, but first each method is presented in its
own plot, for different values of N . This is presented in Figure 4.2.1, with the purpose of
looking solely at the difference in performance.

(a) One point orthogonal collocation (b) Three point orthogonal collocation

(c) Five point orthogonal collocation (d) Multiple shooting

Figure 4.2.1: Biomass state plotted against time for various values of N and using the different
methods. Results from one-, three- and five point orthogonal collocation approach is shown in Plot
(a), Plot (b) and Plot (c), respectively. Multiple shooting approach is shown in Plot (d).

21

Chapter 4. Results & Discussion

Figure 4.2.1 shows the biomass state plotted against time for all the methods. Here,
it can be seen that the amount of finite elements clearly affect time it takes the biomass
state to reach the new setpoint after a change. It is also a pattern for all the methods
that the difference in solution for e.g. N = 30 to N = 60 is greater than the difference
between N = 450 and N = 510. This is because as the length of the finite element
decreases, the solution is approximating the true solution. Therefore, when the difference
in solution becomes insignificant when increasing the number of finite elements, this may
be considered as the "true solution".

Five point collocation for larger values of N , resulted in too many variables. As a
consequence the model got too big for the RAM memory available when running. Thus,
only values up to N = 300 is shown for this method.

22

4.2 Changing the Length of the Finite Element

Figure 4.2.2 contains four plots, each representing the solution for all four methods for
a specific finite element size.

(a) Number of finite elements is 30, and prediction and control
horizon is set to three and two hours, respectively.

(b) Number of finite elements is 60, and prediction and control
horizon is set to five and three hours, respectively.

(c) Number of finite elements is 120, and prediction and
control horizon is set to ten and six hours, respectively.

(d) Number of finite elements is 180, and prediction and
control horizon is set to fifteen and nine hours, respectively.

Figure 4.2.2: Biomass and substrate plotted against time for all four methods. State x1 represents
the biomass concentration tracking the setpoint trajectory and state x2 represents the substrate con-
centration. Plot (a) shows all methods for N = 30 finite elements, Plot (b) for N = 60, Plot (c) for
N = 120 and Plot (d) for N = 180.

Comparing Subfigure 4.2.2a and Subfigure 4.2.2b it shows that for both values of N
all of the methods perform quite well. When investigating 4.2.2a, it is revealed that one
point orthogonal collocation is slightly slower reaching the setpoint after the change at 20
hours, compared to the other three methods. This is expected as one point collocation is

23

Chapter 4. Results & Discussion

less accurate and coarser than the other methods. Judging by the same plot, three and five
point collocation approaches overlap completely with multiple shooting.

For the remaining plots the methods overlap as well, and, as previously discussed, there
is a trend towards the true solution as N is increased, which is visible when comparing all
the plots in Figure 4.2.2.

24

4.2 Changing the Length of the Finite Element

Figure 4.2.3 shows all four methods computational time, divided into four subfigures
depending on the value of N . The subfigures have the same base as Figure 4.1.2, where
all three plots are computational time against time, middle plot has discarded the first
computational time value for multiple shooting, and the bottom plot has a fixed y-axis of
2 seconds.

(a) Number of finite elements is 30, and prediction and control
horizon is set to three and two hours, respectively.

(b) Number of finite elements is 60, and prediction and control
horizon is set to five and three hours, respectively.

(c) Number of finite elements is 120, and prediction and
control horizon is set to ten and six hours, respectively.

(d) Number of finite elements is 180, and prediction and
control horizon is set to fifteen and nine hours, respectively.

Figure 4.2.3: Computational time for all methods at different levels of discretization. The top plot
in each subfigure is the computational time plotted againts time. The middle plot in each subfigure
is computational time plotted against time, but the initial value for the multiple shooting approach
has been removed, in order to better investigate the plots. The bottom plot in each subfigure is the
computational time plotted against time, and the y-axis is fixed to 2 seconds, hence a trend between
the plots may be more easily observed.

25

Chapter 4. Results & Discussion

Considering the computational time for 30 finite elements shown in Figure 4.2.3a, the
trend is more or less the same as the computational time for 60 finite elements. The plot
shows multiple shooting being the slowest, and one point collocation being the fastest.
Naturally, three point collocation comes second with regards to computational time, and
five point collocation third.

Examining the middle and bottom plot of Subfigure 4.2.3c and Subfigure 4.2.3d, the
previously discussed "jump" in computational time as time approaches 60 hours, is present
earlier for these values with more finite elements. This is reasonable as the setpoint value
of zero is reached earlier for larger values of N , as seen in Figure 4.2.1 and Figure 4.2.2.
This is not seen in Subfigure 4.2.3a, indicating that the setpoint value is not reached before
the last finite element, if at all. This corresponds with Figure 4.2.2a.

Comparing all of the bottoms plots in each Subfigure in Figure 4.2.3, the trend is quite
clear. Computational time is increasing for increasing values of N . This is expected as
the more finite elements the system is divided into, the more variables are available for the
optimizer, i.e. the size of the NLP increase. A larger problem will take more time to solve.

26

4.3 Implementation - Making a new model vs. Updating the model

4.3 Implementation - Making a new model vs. Updating

the model

(a) Updating the model every optimization (b) Making a new model every optimization

Figure 4.3.1: Plot of states for all methods with 60 finite elements and control and prediction horizon
set to five and three hours respectively.

Regardless of whether the model is made at every finite element or updated at every finite
element, the results with respect to the states are the same, as shown in Figure 4.3.1.

(a) Updating the model every optimization (b) Making a new model every optimization

Figure 4.3.2: CPU time for all methods with 60 finite elements and control and prediction horizon
set to five and three hours respectively.

27

Chapter 4. Results & Discussion

Comparing the computational time of updating the same model versus making a new
one at each finite element, it shows in Figure 4.3.2 that the computational time for multiple
shooting is slightly lower when updating the model. Regarding the collocation approaches,
they seem to not be affected significantly by this difference, however, an increase in com-
putational time is noticeable from approximately 10-20 hours. Hence, the computational
time is slightly affected by whether or not the model is made prior or at every finite ele-
ment, nonetheless this difference in computational time is quite insignificant in this case. It
might be reasonable to expect this difference to weigh heavier when dealing with a larger,
more nonlinear system.

28

Chapter 5
Final Remarks

For the scenario investigated in this specialization project, both multiple shooting and
orthogonal collocation approach gives an acceptable result. Multiple shooting method
is in most cases investigated the slower approach, nonetheless more accurate that one
point orthogonal collocation, and as accurate as three and five point collocation. The
fastest approach is one point orthogonal collocation, followed by three- and five point
orthogonal collocation. This is expected, as a higher number of collocation point leads to
more variables in the NLP, thus increasing the computational time.

The length of the finite elements was shown to affect both the accuracy of all the meth-
ods, in addition to the computational time, as expected. More finite elements leads to a
better approximation, but the NLP size increases and as follows, also the CPU time. There
is a trade off between computational time and accuracy, and depending on the system at
hand, either the more accurate or the fastest approach can be chosen.

The difference between making a new model at every time step versus updating an
existing, previously built model, did not influence the computational time significantly for
the system investigated. However, for a larger, more nonlinear system, it is not unreason-
able to expect this difference to have a larger influence on the computational time.

For further work, introducing a more nonlinear model to the system could be interest-
ing. This way, it will be possible to examine the progression of each method, to investigate
how they respond to more difficult problems.

In conclusion, for the system considered in this project, one point orthogonal collo-
cation method present good accuracy and is the fastest approach. If accuracy is the most
important criterion multiple shooting or a higher order collocation method is preferred, but
if computational time is a critical measure, orthogonal collocation may be advantageous.

29

Chapter 5. Final Remarks

30

Bibliography

[1] Seborg et. al. Process Dynamics and Control. Wiley, fourth ed. edition, 2017.

[2] F. S. Rohman and N. Aziz. Comparison of orthogonal collocation, control vector
parameterization and multiple shooting for optimization of acid recovery in batch
electrodialysis. AIP Conference Proceedings, 2124(1):020013, 2019. doi: 10.1063/
1.5117073. URL https://aip.scitation.org/doi/abs/10.1063/1.

5117073.

[3] Lorenz T. Biegler. Nonlinear Programming: Concepts, Algorithms, and Applications

to Chemical Processes. SIAM, 2010.

[4] Jasem Tamimi and Pu Li. Nonlinear model predictive control using multi-
ple shooting combined with collocation on finite elements. IFAC Proceedings

Volumes, 42(11):703 – 708, 2009. ISSN 1474-6670. doi: https://doi.org/10.
3182/20090712-4-TR-2008.00114. URL http://www.sciencedirect.com/

science/article/pii/S1474667015303578. 7th IFAC Symposium on
Advanced Control of Chemical Processes.

[5] Tor A Johansen. Introduction to nonlinear model predictive control and moving hori-

zon estimation, pages 187–239. Bratislava, 2011.

[6] Mark L. Darby. Industrial mpc of continuous processes. In Encyclopedia

of Systems and Control, pages 1–10. Springer London, 2013. doi: 10.1007/
978-1-4471-5102-9{_}242-1.

[7] S. Joe Qin and Thomas A. Badgwell. A survey of industrial model predictive control
technology. Control Engineering Practice, 11:733–764, 2003. doi: https://doi.org/10.
1016/S0967-0661(02)00186-7.

[8] Sasa V Raković and William S Levine. Handbook of Model Predictive Control. Con-
trol engineering. Springer Basel AG, Cham, 2018. ISBN 9783319774886.

[9] Feng Chenl and Michael R Johns. Relationship between substrate inhibition and main-
tenance energy of Chlamydomonas reinhardtii in heterotrophic culture. Technical re-
port, 1996.

31

https://aip.scitation.org/doi/abs/10.1063/1.5117073
https://aip.scitation.org/doi/abs/10.1063/1.5117073
http://www.sciencedirect.com/science/article/pii/S1474667015303578
http://www.sciencedirect.com/science/article/pii/S1474667015303578

BIBLIOGRAPHY

32

Appendix A
Julia Codes

A.1 Main.jl

⌥ ⌅
import DifferentialEquations

using JuMP, Ipopt, Polynomials

using PyPlot, LaTeXStrings

include("Plant.jl")

include("methods.jl")

include("updatemodel.jl")

default = Dict(

:t0 => 0,

:tend => 60,

:x0 => [1,1],

:u0 => 0.3,

:N => 60,

#:dt => tend/N,

:np => 5,

:nm => 3,

#:hor => [np,nm],

:k1 => 0.4545,

:Dmin => 0,

:s => 2, # x1, x2

:Dmax => 1,

:dumax => 0.05,

:mumax => 0.4,

:x1max => 4.5,

:km => 0.12,

:k1 => 0.4545,

:x2f => 4,

:Y => 0.4,

:R => 0.5,

:Q => 1

)

default

s = default[:s] # no of states

t0 = default[:t0]

tend = default[:tend]

N = default[:N]

33

Chapter A. Julia Codes

#dt = default[:dt]

dt = tend/N

np = default[:np]

nm = default[:nm]

#hor = default[:hor]

hor = [np, nm]

x0 = default[:x0]

u0 = default[:u0]

dumax = default[:dumax]

Arrays for 1 pt collocation

uSim1 = Array{Float64,1}(undef, N+1)

xSim1 = Array{Float64,2}(undef, N+1, 2)

x1_dev1 = Array{Float64,1}(undef, N+1)

CPU1Sim = Array{Float64,1}(undef, N)

Arrays for 3 pt collocation

uSim3 = Array{Float64,1}(undef, N+1)

xSim3 = Array{Float64,2}(undef, N+1, 2)

x1_dev3 = Array{Float64,1}(undef, N+1)

CPU3Sim = Array{Float64,1}(undef, N)

Arrays for 5 pt collocation

uSim5 = Array{Float64,1}(undef, N+1)

xSim5 = Array{Float64,2}(undef, N+1, 2)

x1_dev5 = Array{Float64,1}(undef, N+1)

CPU5Sim = Array{Float64,1}(undef, N)

Arrays for multiple shooting

uSimM = Array{Float64,1}(undef, N+1)

xSimM = Array{Float64,2}(undef, N+1, 2)

x1_devM = Array{Float64,1}(undef, N+1)

CPUMSim = Array{Float64,1}(undef, N)

General arrays

timeSim = Array{Float64,1}(undef, N+1)

x_sp = [1.5302*ones(1,N÷3+1) 0.9951*ones(1,N÷3) 0.0*ones(1,N÷3)]
spSim = Array{Float64,1}(undef, N+1)

#ColMod(hor, dt, c)

colmod1 = ColMod(hor, dt, 1)

colmod3 = ColMod(hor, dt, 3)

colmod5 = ColMod(hor, dt, 5)

multmod = MultMod(hor, dt)

for i = 1:N

x1_sp = x_sp[i]

spSim[i+1] = x1_sp

Disturbance

if i==1

test = Plant(x0,dt,u0)

timeSim[1] = t0

spSim[1] = x_sp[1]

xSim1[1,1:2] .= x0

xSim3[1,1:2] .= x0

xSim5[1,1:2] .= x0

xSimM[1,1:2] .= x0

x1_dev1[1] = xSim1[1,1] - x1_sp

x1_dev3[1] = xSim3[1,1] - x1_sp

x1_dev5[1] = xSim5[1,1] - x1_sp

x1_devM[1] = xSimM[1,1] - x1_sp

uSim1[1] = u0

uSim3[1] = u0

uSim5[1] = u0

uSimM[1] = u0

end

Optimal input using NMPC function

#update_model(m,x_prev,u_prev,x_sp_new)

uSim1[i+1], CPU1Sim[i] = update_model(colmod1, xSim1[i,1:s],

uSim1[i], x1_sp)

uSim3[i+1], CPU3Sim[i] = update_model(colmod3, xSim3[i,1:s],

34

A.1 Main.jl

uSim3[i], x1_sp)

uSim5[i+1], CPU5Sim[i] = update_model(colmod5, xSim5[i,1:s],

uSim5[i], x1_sp)

uSimM[i+1], CPUMSim[i] = update_model(multmod, xSimM[i,1:s],

uSimM[i], x1_sp)

#Simulating the plant behavior during dt

xSim1[i+1,:] = Plant(xSim1[i,:], dt, uSim1[i+1])

xSim3[i+1,:] = Plant(xSim3[i,:], dt, uSim3[i+1])

xSim5[i+1,:] = Plant(xSim5[i,:], dt, uSim5[i+1])

xSimM[i+1,:] = Plant(xSimM[i,:], dt, uSimM[i+1])

for plotting

#timeSim[i] = (i-1)*dt

timeSim[i+1] = timeSim[i] + dt

x1_dev1[i+1] = xSim1[i+1,1] - x_sp[i]

x1_dev3[i+1] = xSim3[i+1,1] - x_sp[i]

x1_dev5[i+1] = xSim5[i+1,1] - x_sp[i]

x1_devM[i+1] = xSimM[i+1,1] - x_sp[i]

end
#timeSim[end] = tend # GJ RE DETTE BEDRE

u_grid_b1 = Array{Float64,1}(undef, N+1)

u_grid_t1 = Array{Float64,1}(undef, N+1)

u_grid_b3 = Array{Float64,1}(undef, N+1)

u_grid_t3 = Array{Float64,1}(undef, N+1)

u_grid_b1[1] = uSim1[1] - dumax

u_grid_t1[1] = uSim1[1] + dumax

u_grid_b3[1] = uSim3[1] - dumax

u_grid_t3[1] = uSim3[1] + dumax

for i = 1:N

u_grid_b1[i+1] = uSim1[i] - dumax

u_grid_t1[i+1] = uSim1[i] + dumax

u_grid_b3[i+1] = uSim3[i] - dumax

u_grid_t3[i+1] = uSim3[i] + dumax

end

###############

PLOTTING

###############

yline(timeSim) = 0*timeSim

uPlot1 = [uSim1 u_grid_t1 u_grid_b1]

uPlot3 = [uSim3 u_grid_t3 u_grid_b3]

x1Plot = [xSim1[:,1], xSim3[:,1], xSimM[:,1], spSim]

xPlot = [xSim1, xSim3, xSimM, spSim]

devPlot = [x1_dev1,x1_dev3,x1_devM,yline]

#plot(timeSim, xPlot)

####### PYPLOT

compPlot = figure(figsize=(9,7))

PyPlot.plot(timeSim,spSim, color="purple",label="setpoint",linestyle=":",lw=0.9)

PyPlot.plot(timeSim,xSim1[:,1], color="royalblue",label=L"OC1 x_1",

linestyle="--",marker="1",lw=0.9)

PyPlot.plot(timeSim,xSim1[:,2], color="royalblue",label=L"OC1 x_2",

linestyle="-",marker="1",lw=0.9)

PyPlot.plot(timeSim,xSim3[:,1], color="crimson",label=L"OC3 x_1",

linestyle="--",marker="2",lw=0.9)

PyPlot.plot(timeSim,xSim3[:,2], color="crimson",label=L"OC3 x_2",

linestyle="-",marker="2",lw=0.9)

PyPlot.plot(timeSim,xSim5[:,1], color="lightcoral",label=L"OC5 x_1",

linestyle="--",marker="3",lw=0.9)

PyPlot.plot(timeSim,xSim5[:,2], color="lightcoral",label=L"OC5 x_2",

linestyle="-",marker="3",lw=0.9)

PyPlot.plot(timeSim,xSimM[:,1], color="skyblue",label=L"MS x_1",

linestyle="--",marker="4",lw=0.9)

PyPlot.plot(timeSim,xSimM[:,2], color="skyblue",label=L"MS x_2",

linestyle="-",marker="4",lw=0.9)

PyPlot.xlabel("Time [hr]",fontsize=14)

PyPlot.ylabel("States [g/L]",fontsize=14)

35

Chapter A. Julia Codes

PyPlot.legend()

#PyPlot.title("NMPC bioreactor trajectory")

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "

*string(nm),fontsize=14)

PyPlot.savefig("/Users/agnescamilla/Documents/NTNU/PROSJEKT/Figurer/PlotsFINAL/

comp_FE="*string(dt)*"_N="*string(N)*"_np="

string(np)"_nm="*string(nm)*".eps")

MVfig = figure(figsize=(9,7))

PyPlot.step(timeSim,uSim1[:,1], color="royalblue",label=L"OC1 ",linestyle="--",

lw=0.9)

PyPlot.step(timeSim,uSim3[:,1], color="crimson",label=L"OC3",linestyle="--",

lw=0.9)

PyPlot.step(timeSim,uSim5[:,1], color="lightcoral",label=L"OC5",linestyle="--",

lw=0.9)

PyPlot.step(timeSim,uSimM[:,1], color="skyblue",label=L"MS",linestyle="--",

lw=0.9)

PyPlot.xlabel("Time [hr]",fontsize=14)

PyPlot.ylabel("Manipulated variable ",fontsize=14)

PyPlot.legend()

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "

*string(nm),fontsize=14)

PyPlot.savefig("/Users/agnescamilla/Documents/NTNU/PROSJEKT/Figurer/PlotsFINAL/

MVfig_FE="*string(dt)*"_N="*string(N)

*"_np="*string(np)*"_nm="*string(nm)*".eps")

devfig = figure(figsize=(9,7))

PyPlot.scatter(timeSim,x1_dev1,color="royalblue",label="OC1",marker="o",lw=0.7)

PyPlot.scatter(timeSim,x1_dev3,color="crimson",label="OC3",marker="v",lw=0.7)

PyPlot.scatter(timeSim,x1_dev5,color="lightcoral",label="OC5",marker="s",lw=0.7)

PyPlot.scatter(timeSim,x1_devM,color="skyblue",label="MS",marker="d",lw=0.7)

PyPlot.axhline(y=0,xmin=0,xmax=1,label="zero deviation",lw=0.7,color="purple")

PyPlot.xlabel("Time [hr]",fontsize=14)

PyPlot.ylabel(L"x_1 - x_{sp}"*" [g/L]",fontsize=14)

#PyPlot.title("Deviation from setpoint")

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "

*string(nm),fontsize=14)

PyPlot.legend()

PyPlot.savefig("/Users/agnescamilla/Documents/NTNU/PROSJEKT/Figurer/PlotsFINAL/

dev_FE="*string(dt)*"_N="*string(N)

*"_np="*string(np)*"_nm="*string(nm)*".eps")

CPUfig = figure(figsize=(9,7))

PyPlot.subplot(311)

PyPlot.scatter(timeSim[1:end-1],CPU1Sim, color="royalblue",label="OC1",marker="o")

PyPlot.scatter(timeSim[1:end-1],CPU3Sim, color="crimson",label="OC3",marker="v")

PyPlot.scatter(timeSim[1:end-1],CPU5Sim, color="lightcoral",label="OC5",marker="s")

PyPlot.scatter(timeSim[1:end-1],CPUMSim, color="skyblue",label="MS",marker="d")

#PyPlot.xlabel("Time [hr]",fontsize=14)

PyPlot.ylabel("CPU time [s]",fontsize=14)

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "*string(nm),

fontsize=14)

PyPlot.legend()

PyPlot.subplot(312)

PyPlot.scatter(timeSim[1:end-1],CPU1Sim[1:end], color="royalblue",label="OC1",

marker="o")

PyPlot.scatter(timeSim[1:end-1],CPU3Sim[1:end], color="crimson",label="OC3",

marker="v")

PyPlot.scatter(timeSim[1:end-1],CPU5Sim[1:end], color="lightcoral",label="OC5",

marker="s")

PyPlot.scatter(timeSim[2:end-1],CPUMSim[2:end], color="skyblue",label="MS",

marker="d")

#PyPlot.ylim(0,30)

36

A.2 methods.jl

PyPlot.ylabel("CPU time [s]",fontsize=14)

PyPlot.xlabel("Time [hr]",fontsize=14)

PyPlot.subplot(313)

PyPlot.scatter(timeSim[1:end-1],CPU1Sim[1:end], color="royalblue",label="OC1",

marker="o")

PyPlot.scatter(timeSim[1:end-1],CPU3Sim[1:end], color="crimson",label="OC3",

marker="v")

PyPlot.scatter(timeSim[1:end-1],CPU5Sim[1:end], color="lightcoral",label="OC5",

marker="s")

PyPlot.scatter(timeSim[2:end-1],CPUMSim[2:end], color="skyblue",label="MS",

marker="d")

PyPlot.ylim(0,2)

PyPlot.xlabel("Time [hr]",fontsize=14)

PyPlot.ylabel("CPU time [s]",fontsize=14)

#PyPlot.legend()

PyPlot.savefig("/Users/agnescamilla/Documents/NTNU/PROSJEKT/Figurer/PlotsFINAL/

CPU3_FE="*string(dt)*"_N="*string(N)*

"_np="*string(np)*"_nm="*string(nm)*".eps")

CPUfig2 = figure(figsize=(9,7))

PyPlot.subplot(211)

PyPlot.scatter(timeSim[1:end-1],CPU1Sim, color="royalblue",label="OC1",marker="o")

PyPlot.scatter(timeSim[1:end-1],CPU3Sim, color="crimson",label="OC3",marker="v")

PyPlot.scatter(timeSim[1:end-1],CPU5Sim, color="lightcoral",label="OC5",marker="s")

PyPlot.scatter(timeSim[1:end-1],CPUMSim, color="skyblue",label="MS",marker="d")

PyPlot.xlabel("Time [hr]",fontsize=14)

PyPlot.ylabel("CPU time [s]",fontsize=14)

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "

*string(nm),fontsize=14)

PyPlot.legend()

PyPlot.subplot(212)

PyPlot.scatter(timeSim[1:end-1],CPU1Sim[1:end], color="royalblue",label="OC1",

marker="o")

PyPlot.scatter(timeSim[1:end-1],CPU3Sim[1:end], color="crimson",label="OC3",

marker="v")

PyPlot.scatter(timeSim[1:end-1],CPU5Sim[1:end], color="lightcoral",label="OC5",

marker="s")

PyPlot.scatter(timeSim[2:end-1],CPUMSim[2:end], color="skyblue",label="MS",

marker="d")

PyPlot.ylim(0,2)

PyPlot.xlabel("Time [hr]",fontsize=14)

PyPlot.ylabel("CPU time [s]",fontsize=14)

PyPlot.legend()

PyPlot.savefig("/Users/agnescamilla/Documents/NTNU/PROSJEKT/Figurer/PlotsFINAL/

CPU2_FE="*string(dt)*"_N="*string(N)

*"_np="*string(np)*"_nm="*string(nm)*".eps")⌃ ⇧
A.2 methods.jl

⌥ ⌅
import DifferentialEquations

using JuMP, Ipopt, Polynomials

function adot_matrix(c)

if c == 1

#Collocation Points Using Radau Roots 3rd degree polynomial

t0 = 0

t1 = 1.0

Lagrange polynomials

l0 = fromroots([t1])/(t0-t1)

l1 = fromroots([t0])/(t1-t0)

1st derivatives

37

Chapter A. Julia Codes

dl0 = derivative(l0)

dl1 = derivative(l1)

Collocation matrix: 1st derivatives evaluated at the collocation points

adot = zeros(2,2)

tau = [t0,t1]

for i = 1:c+1

adot[1,i] = dl0(tau[i])

adot[2,i] = dl1(tau[i])

end
return adot

end
if c == 3

#Collocation Points Using Radau Roots 3rd degree polynomial

t0 = 0

t1 = 0.155051

t2 = 0.644949

t3 = 1.000000

Lagrange polynomials

l0 = fromroots([t1,t2,t3])/((t0-t1)*(t0-t2)*(t0-t3))

l1 = fromroots([t0,t2,t3])/((t1-t0)*(t1-t2)*(t1-t3))

l2 = fromroots([t0,t1,t3])/((t2-t0)*(t2-t1)*(t2-t3))

l3 = fromroots([t0,t1,t2])/((t3-t0)*(t3-t1)*(t3-t2))

1st derivatives

dl0 = derivative(l0)

dl1 = derivative(l1)

dl2 = derivative(l2)

dl3 = derivative(l3)

Collocation matrix: 1st derivatives evaluated at the

collocation points

adot = zeros(4,4)

tau = [t0,t1,t2,t3]

for i = 1:c+1

adot[1,i] = dl0(tau[i])

adot[2,i] = dl1(tau[i])

adot[3,i] = dl2(tau[i])

adot[4,i] = dl3(tau[i])

end
return adot

end
if c == 5

#Collocation Points Using Radau Roots 3rd degree polynomial

t0 = 0

t1 = 0.057104

t2 = 0.276843

t3 = 0.583590

t4 = 0.860240

t5 = 1.000000

Lagrange polynomials

l0 = fromroots([t1,t2,t3,t4,t5])/((t0-t1)*(t0-t2)*(t0-t3)*(t0-t4)*(t0-t5))

l1 = fromroots([t0,t2,t3,t4,t5])/((t1-t0)*(t1-t2)*(t1-t3)*(t1-t4)*(t1-t5))

l2 = fromroots([t0,t1,t3,t4,t5])/((t2-t0)*(t2-t1)*(t2-t3)*(t2-t4)*(t2-t5))

l3 = fromroots([t0,t1,t2,t4,t5])/((t3-t0)*(t3-t1)*(t3-t2)*(t3-t4)*(t3-t5))

l4 = fromroots([t0,t1,t2,t3,t5])/((t4-t0)*(t4-t1)*(t4-t2)*(t4-t3)*(t4-t5))

l5 = fromroots([t0,t1,t2,t3,t4])/((t5-t0)*(t5-t1)*(t5-t2)*(t5-t3)*(t5-t4))

1st derivatives

dl0 = derivative(l0)

dl1 = derivative(l1)

dl2 = derivative(l2)

dl3 = derivative(l3)

dl4 = derivative(l4)

dl5 = derivative(l5)

Collocation matrix: 1st derivatives evaluated at the

collocation points

adot = zeros(c+1,c+1)

tau = [t0,t1,t2,t3,t4,t5]

for i = 1:c+1

adot[1,i] = dl0(tau[i])

adot[2,i] = dl1(tau[i])

38

A.2 methods.jl

adot[3,i] = dl2(tau[i])

adot[4,i] = dl3(tau[i])

adot[5,i] = dl4(tau[i])

adot[6,i] = dl5(tau[i])

end
return adot

end
error("Wrong number of collocation points")

end

function ColMod(hor, dt, c ;kwargs...)

Dmin = get(kwargs, :Dmin, default[:Dmin])

Dmax = get(kwargs, :Dmax, default[:Dmax])

s = get(kwargs, :s, default[:s]) # x1, x2

dumax = get(kwargs, :dumax, default[:dumax])

mumax = get(kwargs, :mumax, default[:mumax])

x1max = get(kwargs, :x1max, default[:x1max])

km = get(kwargs, :km, default[:km])

k1 = get(kwargs, :k1, default[:k1])

x2f = get(kwargs, :x2f, default[:x2f])

Y = get(kwargs, :Y, default[:Y])

#np = get(kwargs, :np, default[:np])

#nm = get(kwargs, :nm, default[:nm])

#hor = get(kwargs, :hor, default[:hor])

R = get(kwargs, :R, default[:R])

Q = get(kwargs, :Q, default[:Q])

np, nm = hor

m = Model(Ipopt.Optimizer)

set_optimizer_attribute(m,"print_level",4)

@variable(m, Dmin <= u[1:np] <= Dmax)

@variable(m, du[1:np], start = 0)

@variable(m, 0 <= x[1:s,1:np,1:c+1], start = 1)

@variable(m, 0 <= mu[1:np,2:c+1] <= mumax, start = 0.23)

@variable(m, rk[1:s, 1:np, 1:c+1])

@variable(m, L[1:np, 1:c+1], start = 0)

@variable(m, rkL[1:np, 1:c+1])

@variable(m, uin)

@variable(m, x_sp)

adot = adot_matrix(c)

#=

@NLobjective(m, Min,

0.5*(L[np,c+1]+sum(R*du[i]^2

for i=1:np)))

=#

@NLobjective(m, Min, sum(dt*

(

0.5*(Q*(x[1,i,end]-x_sp)ˆ2 + R*du[i]ˆ2)

)

for i=1:np

))

##################

CONSTRAINTS

##################

Initial conds

@constraint(m, init, L[1,1] == 0)

#@constraint(m, gapConstr0[i=1:s], x[i,1,1] == xk[i])

@constraint(m, dudiff0, du[1]-(u[1]-uin) == 0)

#@constraint(m, dudiff0, u[1]-uin == 0)

@constraint(m, x1constr[i=1:np,j=1:c+1], x[1,i,j] <= x1max)

@constraint(m, duconstr0[i=nm+1:np], du[i] == 0)

@constraint(m, duconstr[i=1:nm], -dumax <= du[i] <= dumax)

@constraint(m, dudiff[i=2:np], du[i]-(u[i]-u[i-1]) == 0)

@constraint(m, rkConstr[i=1:s,j=1:np,k=1:c+1], rk[i,j,k] == sum(x[i,j,l]

39

Chapter A. Julia Codes

*adot[l,k] for l = 1:c+1))

@NLconstraint(m, muConstr[i=1:np, j=2:c+1], mu[i,j] - mumax*x[2,i,j] /

(km + x[2,i,j] + k1*x[2,i,j]ˆ2) == 0)

@NLconstraint(m, x1dot[i=1:np,j=2:c+1],rk[1,i,j] - dt*((mu[i,j]-u[i])

*x[1,i,j]) == 0)

@NLconstraint(m, x2dot[i=1:np,j=2:c+1],rk[2,i,j] - dt*(u[i]*(x2f-x[2,i,j])

-mu[i,j]*x[1,i,j]/Y) == 0)

Closing shooting gap

@constraint(m, gapConstrs[i=1:s, j=1:np-1], x[i,j,end] - x[i,j+1,1] == 0)

Objective constraints

@NLconstraint(m, rkLConstr[i=1:np,j=1:c+1],rkL[i,j]==sum(L[i,k]*adot[k,j]

for k = 1:c+1))

@NLconstraint(m, objConstr[i=1:np,j=2:c+1],rkL[i,j] - dt*((x[1,i,j]-x_sp)ˆ2

*Q) == 0)

@NLconstraint(m, LgapConstr[i=1:np-1], L[i,end] - L[i+1,1] == 0)

return m

end

function MultMod(hor, dt ;kwargs...)

Dmin = get(kwargs, :Dmin, default[:Dmin])

Dmax = get(kwargs, :Dmax, default[:Dmax])

s = get(kwargs, :s, default[:s]) # x1, x2

dumax = get(kwargs, :dumax, default[:dumax])

mumax = get(kwargs, :mumax, default[:mumax])

x1max = get(kwargs, :x1max, default[:x1max])

km = get(kwargs, :km, default[:km])

k1 = get(kwargs, :k1, default[:k1])

x2f = get(kwargs, :x2f, default[:x2f])

Y = get(kwargs, :Y, default[:Y])

#np = get(kwargs, :np, default[:np])

#nm = get(kwargs, :nm, default[:nm])

#hor = get(kwargs, :hor, default[:hor])

R = get(kwargs, :R, default[:R])

Q = get(kwargs, :Q, default[:Q])

np, nm = hor

function Ftrunc(x0_1,x0_2,u,j)

x0 = [x0_1,x0_2]

function f(xdot,x,pars,t)

xdot[1] = ((mumax*x[2]/(km+x[2]+k1*x[2]ˆ2)) - pars)*x[1]

xdot[2] = pars*(x2f-x[2])-(mumax*x[2] / (km + x[2] + k1*x[2]ˆ2))

*x[1]/Y

end
tspan = (0.,dt)

#pars = [mu,u]

prob = DifferentialEquations.ODEProblem(f,x0,tspan,u)

sol = DifferentialEquations.solve(prob,DifferentialEquations.RK4(),

abstol=1e-9,reltol=1e-6)

xk = sol.u[end]
return xk[trunc(Int,j)] # return xk[1] or xk[2]

end
##################

VARIABLES

##################

multmod = Model(Ipopt.Optimizer)

set_optimizer_attribute(multmod,"print_level",0)

JuMP.register(multmod, :Ftrunc, 4, Ftrunc, autodiff=true)

@variable(multmod, Dmin <= u[1:np] <= Dmax)

@variable(multmod, 0 <= x[1:s,1:np], start = 1)

@variable(multmod, -dumax <= du[1:np] <= dumax)

@variable(multmod, xk[1:s])

@variable(multmod, x_sp)

@variable(multmod, uin)

##################

OBJECTIVE

##################

40

A.3 updatemodel.jl

@NLobjective(multmod, Min, sum(dt*

(

0.5*(Q*(x[1,i]-x_sp)ˆ2 + R*du[i]ˆ2)

)

for i=1:np

))

##################

CONSTRAINTS

##################

Initial conds

@NLconstraint(multmod, eqInit[i=1:s], x[i,1]-Ftrunc(xk[1],xk[2],u[1],i) == 0)

@constraint(multmod, dudiff0, du[1]-(u[1]-uin) == 0)

#@constraint(multmod, init[i=1:s], x[i,1] == xk[i])

#@constraint(multmod, u[1] - uin == 0)

@NLconstraint(multmod, eq[i=1:s,j=2:np], x[i,j]-Ftrunc(x[1,j-1],x[2,j-1],

u[j],i) == 0)

@constraint(multmod, x1constr[i=1:np], x[1,i] <= x1max)

@constraint(multmod, duconstr0[i=nm+1:np], du[i] == 0)

@constraint(multmod, dudiff[i=2:np], du[i]-(u[i]-u[i-1]) == 0)

return multmod

end⌃ ⇧

A.3 updatemodel.jl

⌥ ⌅
import JuMP

function update_model(m,x_prev,u_prev,x_sp_new)

x = m[:x]

uin = m[:uin]

u1 = m[:u][1]

x_sp = m[:x_sp]

if length(size(x)) == 3

for i=1:2

fix(x[i,1,1],x_prev[i], force=true) # only for collocation?

end
elseif length(size(x)) == 2

xk = m[:xk]

for i=1:2

fix(xk[i],x_prev[i], force=true) # only for collocation?

end
end
fix(uin,u_prev, force=true)

fix(x_sp,x_sp_new, force=true)

set_start_value.(x[1,:,:],x_sp_new)

set_start_value.(x[2,:,:],1)

#set_start_value.(rk[1,:,:],x_sp_new)

sol = JuMP.optimize!(m)

u_opt = JuMP.value.(u1)

CPUtime = solve_time(m)

return u_opt, CPUtime

end⌃ ⇧
41

Chapter A. Julia Codes

A.4 Plant.jl

⌥ ⌅
import DifferentialEquations

using JuMP, Ipopt

#################

INTEGRATOR

#################

function F(x0_1,x0_2,u,dt ;kwargs...)

x0 = [x0_1,x0_2]

mumax = get(kwargs, :mumax, default[:mumax])

km = get(kwargs, :km, default[:km])

k1 = get(kwargs, :k1, default[:k1])

x2f = get(kwargs, :x2f, default[:x2f])

Y = get(kwargs, :Y, default[:Y])

function f(xdot,x,pars,t)

Model equations

xdot[1] = ((mumax*x[2]/(km+x[2]+k1*x[2]ˆ2)) - pars)*x[1]

xdot[2] = pars*(x2f-x[2])-(mumax*x[2] / (km + x[2] + k1*x[2]ˆ2))*x[1]/Y

end
tspan = (0.,dt)

prob = DifferentialEquations.ODEProblem(f,x0,tspan,u)

sol = DifferentialEquations.solve(prob,DifferentialEquations.RK4())

xk = sol.u

#println("xk12 = ",xk)

#println("xk2 = ",xk[end])

return xk[end] # xk needs to be both x1 and x2!!!

end

#################

PLANT

#################

function Plant(x0,dt,uk)

x_new = F(x0[1],x0[2],uk,dt)

return x_new

end⌃ ⇧
A.5 newMethod.jl

⌥ ⌅
import DifferentialEquations

using JuMP, Ipopt, Polynomials

#using Plots

using PyPlot, LaTeXStrings

parameter values

Y = 0.4

x2f = 4

mumax = 0.4

k1 = 0.4545

km = 0.12

#################

INTEGRATOR

#################

function F(x0_1,x0_2,u,dt)

x0 = [x0_1,x0_2]

function f(xdot,x,pars,t)

Model equations

xdot[1] = ((mumax*x[2]/(km+x[2]+k1*x[2]ˆ2)) - pars)*x[1]

42

A.5 newMethod.jl

xdot[2] = pars*(x2f-x[2])-(mumax*x[2] / (km + x[2] + k1*x[2]ˆ2))*x[1]/Y

end
tspan = (0.,dt)

prob = DifferentialEquations.ODEProblem(f,x0,tspan,u)

sol = DifferentialEquations.solve(prob,DifferentialEquations.RK4())

xk = sol.u

#println("xk12 = ",xk)

#println("xk2 = ",xk[end])

return xk[end] # xk needs to be both x1 and x2!!!

end

#################

PLANT

#################

function Plant(x0,dt,uk)

x_new = F(x0[1],x0[2],uk,dt)

return x_new

end

#################

Collocation 1 points

#################

function NMPCCol1(xk, uin, x_sp, hor, dt)

c = 1 # No of col points

Dmin = 0

Dmax = 1

mumax = 0.4

x1max = 4.5

np = hor[1]

nm = hor[2]

R = 0.5

Q = 1

h = dt

#Collocation Points Using Radau Roots 3rd degree polynomial

t0 = 0

t1 = 1.0

Lagrange polynomials

l0 = fromroots([t1])/(t0-t1)

l1 = fromroots([t0])/(t1-t0)

1st derivatives

dl0 = derivative(l0)

dl1 = derivative(l1)

Collocation matrix: 1st derivatives evaluated at the collocation points

adot = zeros(2,2)

tau = [t0,t1]

for i = 1:c+1

adot[1,i] = dl0(tau[i])

adot[2,i] = dl1(tau[i])

end
##################

VARIABLES

##################

NMPCColmod1 = Model(Ipopt.Optimizer)

set_optimizer_attribute(NMPCColmod1,"print_level",0)

@variable(NMPCColmod1, Dmin <= u[1:np] <= Dmax, start = uin)

@variable(NMPCColmod1, du[1:np], start = 0)

@variable(NMPCColmod1, 0 <= x[1:s,1:np,1:c+1], start = 1)

@variable(NMPCColmod1, 0 <= mu[1:np,2:c+1] <= mumax, start = 0.23)

@variable(NMPCColmod1, rk[1:s, 1:np, 1:c+1])

@variable(NMPCColmod1, L[1:np, 1:c+1], start = 0)

@variable(NMPCColmod1, rkL[1:np, 1:c+1])

set_start_value.(x[1,:,:],x_sp)

set_start_value.(rk[1:s,:,:],x_sp)

##################

OBJECTIVE

##################

#=

43

Chapter A. Julia Codes

@NLobjective(NMPCColmod1, Min, sum(h*

(

0.5*(Q*(x[1,i,end]-x_sp)^2 + R*du[i]^2)

)

for i=1:np

))

=#

#=

@NLobjective(NMPCColmod1, Min, sum(h*

(sum(

(0.5*(Q*(x[1,i,l]-x_sp)^2 + R*du[i]^2))

*inv(adot[l,k])#^(-1)

for k = 1:c+1

for l = 2:c+1

)

)

for i=1:np

))

@NLobjective(NMPCColmod1, Min,

0.5*(L[np,c+1]+sum(R*du[i]^2

for i=1:np)))

=#

@NLobjective(NMPCColmod1, Min, sum(dt*

(

0.5*(Q*(x[1,i,end]-x_sp)ˆ2 + R*du[i]ˆ2)

)

for i=1:np

))

##################

CONSTRAINTS

##################

Initial conds

@constraint(NMPCColmod1, init, L[1,1] == 0)

@constraint(NMPCColmod1, gapConstr0[i=1:s], x[i,1,1] == xk[i])

@constraint(NMPCColmod1, dudiff0, du[1]-(u[1]-uin) == 0)

@constraint(NMPCColmod1, x1constr[i=1:np,j=1:c+1], x[1,i,j] <= x1max)

@constraint(NMPCColmod1, duconstr0[i=nm+1:np], du[i] == 0)

@constraint(NMPCColmod1, duconstr[i=1:nm], -dumax <= du[i] <= dumax)

@constraint(NMPCColmod1, dudiff[i=2:np], du[i]-(u[i]-u[i-1]) == 0)

@constraint(NMPCColmod1, rkConstr[i=1:s,j=1:np,k=1:c+1], rk[i,j,k] ==

sum(x[i,j,l]*adot[l,k] for l = 1:c+1))

@NLconstraint(NMPCColmod1, muConstr[i=1:np, j=2:c+1], mu[i,j] - mumax*x[2,i,j]

/ (km + x[2,i,j] + k1*x[2,i,j]ˆ2) == 0)

@NLconstraint(NMPCColmod1, x1dot[i=1:np, j=2:c+1], rk[1,i,j]

- h*((mu[i,j]-u[i])*x[1,i,j]) == 0)

@NLconstraint(NMPCColmod1, x2dot[i=1:np, j=2:c+1], rk[2,i,j]

- h*(u[i]*(x2f-x[2,i,j])-mu[i,j]

*x[1,i,j]/Y) == 0)

Closing shooting gap

@constraint(NMPCColmod1, gapConstrs[i=1:s, j=1:np-1], x[i,j,end]
- x[i,j+1,1] == 0)

Objective constraints

@NLconstraint(NMPCColmod1, rkLConstr[i=1:np,j=1:c+1], rkL[i,j]

==sum(L[i,k]*adot[k,j] for k = 1:c+1))

@NLconstraint(NMPCColmod1, objConstr[i=1:np,j=2:c+1], rkL[i,j]

- h*((x[1,i,j]-x_sp)ˆ2*Q) == 0)

@NLconstraint(NMPCColmod1, LgapConstr[i=1:np-1], L[i,end] - L[i+1,1] == 0)

##################

SOLVE

##################

sol = JuMP.optimize!(NMPCColmod1)

u_opt = JuMP.value.(u[1])

CPUtime = solve_time(NMPCColmod1)

44

A.5 newMethod.jl

return u_opt, CPUtime

end

#################

Collocation 3 points

#################

function NMPCCol3(xk, uin, x_sp, hor, dt)

c = 3 # No of col points

Dmin = 0

Dmax = 1

mumax = 0.4

x1max = 4.5

np = hor[1]

nm = hor[2]

R = 0.5

Q = 1

h = dt

#Collocation Points Using Radau Roots 3rd degree polynomial

t0 = 0

t1 = 0.155051

t2 = 0.644949

t3 = 1.000000

Lagrange polynomials

l0 = fromroots([t1,t2,t3])/((t0-t1)*(t0-t2)*(t0-t3))

l1 = fromroots([t0,t2,t3])/((t1-t0)*(t1-t2)*(t1-t3))

l2 = fromroots([t0,t1,t3])/((t2-t0)*(t2-t1)*(t2-t3))

l3 = fromroots([t0,t1,t2])/((t3-t0)*(t3-t1)*(t3-t2))

1st derivatives

dl0 = derivative(l0)

dl1 = derivative(l1)

dl2 = derivative(l2)

dl3 = derivative(l3)

Collocation matrix: 1st derivatives evaluated at the

collocation points

adot = zeros(4,4)

tau = [t0,t1,t2,t3]

for i = 1:c+1

adot[1,i] = dl0(tau[i])

adot[2,i] = dl1(tau[i])

adot[3,i] = dl2(tau[i])

adot[4,i] = dl3(tau[i])

end
##################

MODEL

##################

NMPCColmod3 = Model(Ipopt.Optimizer)

set_optimizer_attribute(NMPCColmod3,"print_level",0)

##################

VARIABLES

##################

@variable(NMPCColmod3, Dmin <= u[1:np] <= Dmax, start = uin)

@variable(NMPCColmod3, du[1:np], start = 0)

@variable(NMPCColmod3, 0 <= x[1:s,1:np,1:c+1], start = 1)

@variable(NMPCColmod3, 0 <= mu[1:np,2:c+1] <= mumax, start = 0.23)

@variable(NMPCColmod3, rk[1:s, 1:np, 1:c+1])

@variable(NMPCColmod3, L[1:np, 1:c+1], start = 0)

@variable(NMPCColmod3, rkL[1:np, 1:c+1])

set_start_value.(x[1,:,:],x_sp)

set_start_value.(rk[1:s,:,:],x_sp)

##################

OBJECTIVE

##################

#=

@NLobjective(NMPCColmod3, Min, sum(h*

(

0.5*(Q*(x[1,i,end]-x_sp)^2 + R*du[i]^2)

)

45

Chapter A. Julia Codes

for i=1:np

))

=#

#=

@NLobjective(NMPCColmod3, Min, sum(h*

(sum(

(0.5*(Q*(x[1,i,l]-x_sp)^2 + R*du[i]^2))

*inv(adot[l,k])#^(-1)

for k = 1:c+1

for l = 2:c+1

)

)

for i=1:np

))

@NLobjective(NMPCColmod3, Min,

0.5*(L[np,c+1]+sum(R*du[i]^2

for i=1:np)))

=#

@NLobjective(NMPCColmod3, Min, sum(dt*

(

0.5*(Q*(x[1,i,end]-x_sp)ˆ2 + R*du[i]ˆ2)

)

for i=1:np

))

##################

CONSTRAINTS

##################

Initial conds

@constraint(NMPCColmod3, init, L[1,1] == 0)

@constraint(NMPCColmod3, gapConstr0[i=1:s], x[i,1,1] == xk[i])

@constraint(NMPCColmod3, dudiff0, du[1]-(u[1]-uin) == 0)

@constraint(NMPCColmod3, x1constr[i=1:np,j=1:c+1], x[1,i,j] <= x1max)

@constraint(NMPCColmod3, duconstr0[i=nm+1:np], du[i] == 0)

@constraint(NMPCColmod3, duconstr[i=1:nm], -dumax <= du[i] <= dumax)

@constraint(NMPCColmod3, dudiff[i=2:np], du[i]-(u[i]-u[i-1]) == 0)

@constraint(NMPCColmod3, rkConstr[i=1:s,j=1:np,k=1:c+1], rk[i,j,k]

== sum(x[i,j,l]*adot[l,k] for l = 1:c+1))

@NLconstraint(NMPCColmod3, muConstr[i=1:np, j=2:c+1], mu[i,j]

- mumax*x[2,i,j] / (km + x[2,i,j]

+ k1*x[2,i,j]ˆ2) == 0)

@NLconstraint(NMPCColmod3, x1dot[i=1:np, j=2:c+1], rk[1,i,j]

- h*((mu[i,j]-u[i])*x[1,i,j]) == 0)

@NLconstraint(NMPCColmod3, x2dot[i=1:np, j=2:c+1], rk[2,i,j] - h

(u[i](x2f-x[2,i,j])-mu[i,j]*x[1,i,j]/Y)

== 0)

Closing shooting gap

@constraint(NMPCColmod3, gapConstrs[i=1:s, j=1:np-1], x[i,j,end]
- x[i,j+1,1] == 0)

Objective constraints

@NLconstraint(NMPCColmod3, rkLConstr[i=1:np,j=1:c+1], rkL[i,j]

==sum(L[i,k]*adot[k,j] for k = 1:c+1))

@NLconstraint(NMPCColmod3, objConstr[i=1:np,j=2:c+1], rkL[i,j]

- h*((x[1,i,j]-x_sp)ˆ2*Q) == 0)

@NLconstraint(NMPCColmod3, LgapConstr[i=1:np-1], L[i,end] - L[i+1,1] == 0)

##################

SOLVE

##################

sol = JuMP.optimize!(NMPCColmod3)

u_opt = JuMP.value.(u[1])

CPUtime = solve_time(NMPCColmod3)

return u_opt, CPUtime

end

46

A.5 newMethod.jl

#################

Collocation 5 points

#################

function NMPCCol5(xk, uin, x_sp, hor, dt, x_pre)

c = 5 # No of col points

Dmin = 0

Dmax = 1

mumax = 0.4

x1max = 4.5

np = hor[1]

nm = hor[2]

R = 0.5

Q = 1

h = dt

#Collocation Points Using Radau Roots 3rd degree polynomial

t0 = 0

t1 = 0.057104

t2 = 0.276843

t3 = 0.583590

t4 = 0.860240

t5 = 1.000000

Lagrange polynomials

l0 = fromroots([t1,t2,t3,t4,t5])/((t0-t1)*(t0-t2)*(t0-t3)*(t0-t4)*(t0-t5))

l1 = fromroots([t0,t2,t3,t4,t5])/((t1-t0)*(t1-t2)*(t1-t3)*(t1-t4)*(t1-t5))

l2 = fromroots([t0,t1,t3,t4,t5])/((t2-t0)*(t2-t1)*(t2-t3)*(t2-t4)*(t2-t5))

l3 = fromroots([t0,t1,t2,t4,t5])/((t3-t0)*(t3-t1)*(t3-t2)*(t3-t4)*(t3-t5))

l4 = fromroots([t0,t1,t2,t3,t5])/((t4-t0)*(t4-t1)*(t4-t2)*(t4-t3)*(t4-t5))

l5 = fromroots([t0,t1,t2,t3,t4])/((t5-t0)*(t5-t1)*(t5-t2)*(t5-t3)*(t5-t4))

1st derivatives

dl0 = derivative(l0)

dl1 = derivative(l1)

dl2 = derivative(l2)

dl3 = derivative(l3)

dl4 = derivative(l4)

dl5 = derivative(l5)

Collocation matrix: 1st derivatives evaluated at the

collocation points

adot = zeros(c+1,c+1)

tau = [t0,t1,t2,t3,t4,t5]

for i = 1:c+1

adot[1,i] = dl0(tau[i])

adot[2,i] = dl1(tau[i])

adot[3,i] = dl2(tau[i])

adot[4,i] = dl3(tau[i])

adot[5,i] = dl4(tau[i])

adot[6,i] = dl5(tau[i])

end
##################

MODEL

##################

NMPCColmod5 = Model(Ipopt.Optimizer)

set_optimizer_attribute(NMPCColmod5,"print_level",4)

##################

VARIABLES

##################

@variable(NMPCColmod5, Dmin <= u[1:np] <= Dmax, start = uin)

@variable(NMPCColmod5, du[1:np], start = 0)

@variable(NMPCColmod5, 0 <= x[1:s,1:np,1:c+1], start = 1)

@variable(NMPCColmod5, 0 <= mu[1:np,2:c+1] <= mumax, start = 0.23)

@variable(NMPCColmod5, rk[1:s, 1:np, 1:c+1])

@variable(NMPCColmod5, L[1:np, 1:c+1], start = 0)

@variable(NMPCColmod5, rkL[1:np, 1:c+1])

#set_start_value.(x[1,:,:],x_sp)

#set_start_value.(rk[1,:,:],x_sp)

set_start_value.(x[i=1:s,:,:],x_pre[i])

#set_start_value.(rk[i=1:s,:,:],x_pre[i])

##################

47

Chapter A. Julia Codes

OBJECTIVE

##################

#=

@NLobjective(NMPCColmod5, Min, sum(h*

(

0.5*(Q*(x[1,i,end]-x_sp)^2 + R*du[i]^2)

)

for i=1:np

))

=#

#=

@NLobjective(NMPCColmod5, Min, sum(h*

(sum(

(0.5*(Q*(x[1,i,l]-x_sp)^2 + R*du[i]^2))

*inv(adot[l,k])#^(-1)

for k = 1:c+1

for l = 2:c+1

)

)

for i=1:np

))

@NLobjective(NMPCColmod5, Min,

0.5*(L[np,c+1]+sum(R*du[i]^2

for i=1:np)))

=#

@NLobjective(NMPCColmod5, Min, sum(dt*

(

0.5*(Q*(x[1,i,end]-x_sp)ˆ2 + R*du[i]ˆ2)

)

for i=1:np

))

##################

CONSTRAINTS

##################

Initial conds

@constraint(NMPCColmod5, init, L[1,1] == 0)

@constraint(NMPCColmod5, gapConstr0[i=1:s], x[i,1,1] == xk[i])

@constraint(NMPCColmod5, dudiff0, du[1]-(u[1]-uin) == 0)

@constraint(NMPCColmod5, x1constr[i=1:np,j=1:c+1], x[1,i,j] <= x1max)

@constraint(NMPCColmod5, duconstr0[i=nm+1:np], du[i] == 0)

@constraint(NMPCColmod5, duconstr[i=1:nm], -dumax <= du[i] <= dumax)

@constraint(NMPCColmod5, dudiff[i=2:np], du[i]-(u[i]-u[i-1]) == 0)

@constraint(NMPCColmod5, rkConstr[i=1:s,j=1:np,k=1:c+1], rk[i,j,k]

== sum(x[i,j,l]*adot[l,k] for l = 1:c+1))

@NLconstraint(NMPCColmod5, muConstr[i=1:np, j=2:c+1], mu[i,j] - mumax*x[2,i,j]

/ (km + x[2,i,j] + k1*x[2,i,j]ˆ2) == 0)

@NLconstraint(NMPCColmod5, x1dot[i=1:np, j=2:c+1], rk[1,i,j]

- h*((mu[i,j]-u[i])*x[1,i,j]) == 0)

@NLconstraint(NMPCColmod5, x2dot[i=1:np, j=2:c+1], rk[2,i,j]

- h*(u[i]*(x2f-x[2,i,j])-mu[i,j]

*x[1,i,j]/Y) == 0)

Closing shooting gap

@constraint(NMPCColmod5, gapConstrs[i=1:s, j=1:np-1], x[i,j,end]
- x[i,j+1,1] == 0)

Objective constraints

@NLconstraint(NMPCColmod5, rkLConstr[i=1:np,j=1:c+1], rkL[i,j]

==sum(L[i,k]*adot[k,j] for k = 1:c+1))

@NLconstraint(NMPCColmod5, objConstr[i=1:np,j=2:c+1], rkL[i,j]

- h*((x[1,i,j]-x_sp)ˆ2*Q) == 0)

@NLconstraint(NMPCColmod5,LgapConstr[i=1:np-1], L[i,end] - L[i+1,1] == 0)

##################

48

A.5 newMethod.jl

SOLVE

##################

sol = JuMP.optimize!(NMPCColmod5)

u_opt = JuMP.value.(u[1])

CPUtime = solve_time(NMPCColmod5)

return u_opt, CPUtime

end

#################

Multiple shooting

#################

function NMPCMult(xk, uin, x_sp, hor, dt)

s = 2 # x1, x2

Dmin = 0

Dmax = 1

dumax = 0.05

mumax = 0.4

x1max = 4.5

km = 0.12

k1 = 0.4545

x2f = 4

Y = 0.4

np = hor[1]

nm = hor[2]

R = 0.5

Q = 1

h = dt

function Ftrunc(x0_1,x0_2,u,j)

x0 = [x0_1,x0_2]

function f(xdot,x,pars,t)

xdot[1] = ((mumax*x[2]/(km+x[2]+k1*x[2]ˆ2)) - pars)*x[1]

xdot[2] = pars*(x2f-x[2])-(mumax*x[2] / (km + x[2]

+ k1*x[2]ˆ2))*x[1]/Y

end
tspan = (0.,h)

#pars = [mu,u]

prob = DifferentialEquations.ODEProblem(f,x0,tspan,u)

sol = DifferentialEquations.solve(prob,DifferentialEquations.RK4())

xk = sol.u[end]
return xk[trunc(Int,j)] # return xk[1] or xk[2]

end
##################

VARIABLES

##################

NMPCMultmod = Model(Ipopt.Optimizer)

set_optimizer_attribute(NMPCMultmod,"print_level",0)

JuMP.register(NMPCMultmod, :Ftrunc, 4, Ftrunc, autodiff=true)

@variable(NMPCMultmod, Dmin <= u[1:np] <= Dmax)

@variable(NMPCMultmod, 0 <= x[1:s,1:np], start = 1)

@variable(NMPCMultmod, -dumax <= du[1:np] <= dumax)

set_start_value.(x[1,:,:],x_sp)

##################

OBJECTIVE

##################

@NLobjective(NMPCMultmod, Min, sum(h*

(

0.5*(Q*(x[1,i]-x_sp)ˆ2 + R*du[i]ˆ2)

)

for i=1:np

))

##################

CONSTRAINTS

##################

Initial conds

@NLconstraint(NMPCMultmod, eqInit[i=1:s], x[i,1]-Ftrunc(xk[1],xk[2],u[1],i)

49

Chapter A. Julia Codes

== 0)

@constraint(NMPCMultmod, dudiff0, du[1]-(u[1]-uin) == 0)

#@constraint(NMPCMultmod, init[i=1:s], x[i,1] == xk[i])

#@constraint(NMPCMultmod, u[1] - uin == 0)

@NLconstraint(NMPCMultmod, eq[i=1:s,j=2:np], x[i,j]-

Ftrunc(x[1,j-1],x[2,j-1],u[j],i) == 0)

@constraint(NMPCMultmod, x1constr[i=1:np], x[1,i] <= x1max)

@constraint(NMPCMultmod, duconstr0[i=nm+1:np], du[i] == 0)

@constraint(NMPCMultmod, dudiff[i=2:np], du[i]-(u[i]-u[i-1]) == 0)

##################

SOLVE

##################

sol = JuMP.optimize!(NMPCMultmod)

u_opt = JuMP.value.(u[1])

CPUtime = solve_time(NMPCMultmod)

return u_opt, CPUtime

end

s = 2 # no of states

t0 = 0

tend = 60

N = 60

dt = tend/N

np = 5

nm = 3

hor = [np,nm]

x0 = [1,1]

u0 = 0.3

dumax = 0.05

Arrays for 1 pt collocation

uSim1 = Array{Float64,1}(undef, N+1)

xSim1 = Array{Float64,2}(undef, N+1, 2)

x1_dev1 = Array{Float64,1}(undef, N+1)

CPU1Sim = Array{Float64,1}(undef, N)

Arrays for 3 pt collocation

uSim3 = Array{Float64,1}(undef, N+1)

xSim3 = Array{Float64,2}(undef, N+1, 2)

x1_dev3 = Array{Float64,1}(undef, N+1)

CPU3Sim = Array{Float64,1}(undef, N)

Arrays for 5 pt collocation

uSim5 = Array{Float64,1}(undef, N+1)

xSim5 = Array{Float64,2}(undef, N+1, 2)

x1_dev5 = Array{Float64,1}(undef, N+1)

CPU5Sim = Array{Float64,1}(undef, N)

Arrays for multiple shooting

uSimM = Array{Float64,1}(undef, N+1)

xSimM = Array{Float64,2}(undef, N+1, 2)

x1_devM = Array{Float64,1}(undef, N+1)

CPUMSim = Array{Float64,1}(undef, N)

General arrays

timeSim = Array{Float64,1}(undef, N+1)

x_sp = [1.5302*ones(1,N÷3+1) 0.9951*ones(1,N÷3) 0.0*ones(1,N÷3)]
spSim = Array{Float64,1}(undef, N+1)

for i = 1:N

x1_sp = x_sp[Int(i)]

spSim[Int(i)] = x1_sp

Disturbance

if Int(i)==1

test = Plant(x0,dt,u0)

timeSim[1] = t0

xSim1[1,1:2] .= x0

50

A.5 newMethod.jl

xSim3[1,1:2] .= x0

xSim5[1,1:2] .= x0

xSimM[1,1:2] .= x0

x1_dev1[1] = xSim1[1,1] - x1_sp

x1_dev3[1] = xSim3[1,1] - x1_sp

x1_dev5[1] = xSim5[1,1] - x1_sp

x1_devM[1] = xSimM[1,1] - x1_sp

uSim1[1] = u0

uSim3[1] = u0

uSim5[1] = u0

uSimM[1] = u0

end
Optimal input using NMPC function

uSim1[Int(i)+1], CPU1Sim[i] = NMPCCol1(xSim1[Int(i),1:s], uSim1[Int(i)],

x1_sp, hor, dt)

uSim3[Int(i)+1], CPU3Sim[i] = NMPCCol3(xSim3[Int(i),1:s], uSim3[Int(i)],

x1_sp, hor, dt)

uSim5[Int(i)+1], CPU5Sim[i] = NMPCCol5(xSim5[Int(i),1:s], uSim5[Int(i)],

x1_sp, hor, dt)

uSimM[Int(i)+1], CPUMSim[i] = NMPCMult(xSimM[Int(i),1:s], uSimM[Int(i)],

x1_sp, hor, dt)

#Simulating the plant behavior during dt

xSim1[Int(i+1),:] = Plant(xSim1[Int(i),:], dt, uSim1[Int(i)+1])

xSim3[Int(i+1),:] = Plant(xSim3[Int(i),:], dt, uSim3[Int(i)+1])

xSim5[Int(i+1),:] = Plant(xSim5[Int(i),:], dt, uSim5[Int(i)+1])

xSimM[Int(i+1),:] = Plant(xSimM[Int(i),:], dt, uSimM[Int(i)+1])

for plotting

#timeSim[Int(i)] = (Int(i)-1)*dt

timeSim[i+1] = timeSim[i] + dt

x1_dev1[Int(i)+1] = xSim1[Int(i+1),1] - x_sp[Int(i)]

x1_dev3[Int(i)+1] = xSim3[Int(i+1),1] - x_sp[Int(i)]

x1_dev5[Int(i)+1] = xSim5[Int(i+1),1] - x_sp[Int(i)]

x1_devM[Int(i)+1] = xSimM[Int(i+1),1] - x_sp[Int(i)]

end
#timeSim[end] = tend # GJ RE DETTE BEDRE

u_grid_b1 = Array{Float64,1}(undef, N+1)

u_grid_t1 = Array{Float64,1}(undef, N+1)

u_grid_b3 = Array{Float64,1}(undef, N+1)

u_grid_t3 = Array{Float64,1}(undef, N+1)

u_grid_b1[1] = uSim1[1] - dumax

u_grid_t1[1] = uSim1[1] + dumax

u_grid_b3[1] = uSim3[1] - dumax

u_grid_t3[1] = uSim3[1] + dumax

for i = 1:N

u_grid_b1[i+1] = uSim1[i] - dumax

u_grid_t1[i+1] = uSim1[i] + dumax

u_grid_b3[i+1] = uSim3[i] - dumax

u_grid_t3[i+1] = uSim3[i] + dumax

end

###############

PLOTTING

###############

yline(timeSim) = 0*timeSim

uPlot1 = [uSim1 u_grid_t1 u_grid_b1]

uPlot3 = [uSim3 u_grid_t3 u_grid_b3]

x1Plot = [xSim1[:,1], xSim3[:,1], xSimM[:,1], spSim]

xPlot = [xSim1, xSim3, xSimM, spSim]

devPlot = [x1_dev1,x1_dev3,x1_devM,yline]

#plot(timeSim, xPlot)

####### PYPLOT

compPlot = figure(figsize=(9,7))

PyPlot.plot(timeSim,spSim, color="purple",label="setpoint",linestyle=":",lw=0.7)

PyPlot.plot(timeSim,xSim1[:,1], color="royalblue",label=L"OC1 x_1",

linestyle="--",marker="1",lw=0.7)

51

Chapter A. Julia Codes

PyPlot.plot(timeSim,xSim1[:,2], color="royalblue",label=L"OC1 x_2",

linestyle="-",marker="1",lw=0.7)

PyPlot.plot(timeSim,xSim3[:,1], color="crimson",label=L"OC3 x_1",

linestyle="--",marker="2",lw=0.7)

PyPlot.plot(timeSim,xSim3[:,2], color="crimson",label=L"OC3 x_2",

linestyle="-",marker="2",lw=0.7)

PyPlot.plot(timeSim,xSim5[:,1], color="lightcoral",label=L"OC5 x_1",

linestyle="--",marker="3",lw=0.7)

PyPlot.plot(timeSim,xSim5[:,2], color="lightcoral",label=L"OC5 x_2",

linestyle="-",marker="3",lw=0.7)

PyPlot.plot(timeSim,xSimM[:,1], color="skyblue",label=L"MS x_1",

linestyle="--",marker="4",lw=0.7)

PyPlot.plot(timeSim,xSimM[:,2], color="skyblue",label=L"MS x_2",

linestyle="-",marker="4",lw=0.7)

PyPlot.xlabel("Time [hr]")

PyPlot.ylabel("States [g/L]")

PyPlot.legend()

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "*string(nm))

#PyPlot.savefig("/Users/agnescamilla/Documents/NTNU/PROSJEKT/Figurer/

#NewModEveryIter/comp_FE="*string(dt)

#*"_N="*string(N)*"_np="*string(np)*"_nm="

#*string(nm)*".pdf")

devfig = figure(figsize=(9,7))

PyPlot.scatter(timeSim,x1_dev1,color="royalblue",label="OC1",marker="o",lw=0.7)

PyPlot.scatter(timeSim,x1_dev3,color="crimson",label="OC3",marker="v",lw=0.7)

PyPlot.scatter(timeSim,x1_dev5,color="lightcoral",label="OC5",marker="s",lw=0.7)

PyPlot.scatter(timeSim,x1_devM,color="skyblue",label="MS",marker="d",lw=0.7)

PyPlot.axhline(y=0,xmin=0,xmax=1,label="zero deviation",lw=0.7)

PyPlot.xlabel("Time [hr]")

PyPlot.ylabel(L"x_1 - x_{sp}"*" [g/L]")

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "*string(nm))

PyPlot.legend()

#PyPlot.savefig("/Users/agnescamilla/Documents/NTNU/PROSJEKT/Figurer/

#NewModEveryIter/dev_FE="*string(dt)*"_N="

#*string(N)*"_np="*string(np)*"_nm="

#*string(nm)*".pdf")

CPUfig = figure(figsize=(9,7))

PyPlot.subplot(211)

PyPlot.scatter(timeSim[1:end-1],CPU1Sim, color="royalblue",label="OC1",marker="o")

PyPlot.scatter(timeSim[1:end-1],CPU3Sim, color="crimson",label="OC3",marker="v")

PyPlot.scatter(timeSim[1:end-1],CPU5Sim, color="lightcoral",label="OC5",marker="s")

PyPlot.scatter(timeSim[1:end-1],CPUMSim, color="skyblue",label="MS",marker="d")

PyPlot.xlabel("Time [hr]")

PyPlot.ylabel("CPU time [s]")

PyPlot.legend()

PyPlot.subplot(212)

PyPlot.scatter(timeSim[2:end-1],CPU1Sim[2:end], color="royalblue",label="OC1",

marker="o")

PyPlot.scatter(timeSim[2:end-1],CPU3Sim[2:end], color="crimson",label="OC3",

marker="v")

PyPlot.scatter(timeSim[2:end-1],CPU5Sim[2:end], color="lightcoral",label="OC5",

marker="s")

PyPlot.scatter(timeSim[2:end-1],CPUMSim[2:end], color="skyblue",label="MS",

marker="d")

PyPlot.xlabel("Time [hr]")

PyPlot.ylabel("CPU time [s]")

PyPlot.ylim(0,2)

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "*string(nm))

PyPlot.legend()

#PyPlot.savefig("/Users/agnescamilla/Documents/NTNU/PROSJEKT/Figurer/

#NewModEveryIter/CPU_FE="*string(dt)

#*"_N="*string(N)*"_np="*string(np)

52

A.5 newMethod.jl

#*"_nm="*string(nm)*".pdf")

CPUfig3 = figure(figsize=(9,7))

PyPlot.subplot(311)

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "*string(nm))

PyPlot.scatter(timeSim[1:end-1],CPU1Sim, color="royalblue",label="OC1",

marker="o")

PyPlot.scatter(timeSim[1:end-1],CPU3Sim, color="crimson",label="OC3",marker="v")

PyPlot.scatter(timeSim[1:end-1],CPU5Sim, color="lightcoral",label="OC5",

marker="s")

PyPlot.scatter(timeSim[1:end-1],CPUMSim, color="skyblue",label="MS",marker="d")

#PyPlot.xlabel("Time [hr]")

PyPlot.ylabel("CPU time [s]")

PyPlot.legend()

PyPlot.subplot(312)

PyPlot.scatter(timeSim[1:end-1],CPU1Sim[1:end], color="royalblue",label="OC1",

marker="o")

PyPlot.scatter(timeSim[1:end-1],CPU3Sim[1:end], color="crimson",label="OC3",

marker="v")

PyPlot.scatter(timeSim[1:end-1],CPU5Sim[1:end], color="lightcoral",label="OC5",

marker="s")

PyPlot.scatter(timeSim[2:end-1],CPUMSim[2:end], color="skyblue",label="MS",

marker="d")

#PyPlot.xlabel("Time [hr]")

PyPlot.ylabel("CPU time [s]")

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "*string(nm))

PyPlot.subplot(313)

PyPlot.scatter(timeSim[1:end-1],CPU1Sim[1:end], color="royalblue",label="OC1",

marker="o")

PyPlot.scatter(timeSim[1:end-1],CPU3Sim[1:end], color="crimson",label="OC3",

marker="v")

PyPlot.scatter(timeSim[1:end-1],CPU5Sim[1:end], color="lightcoral",label="OC5",

marker="s")

PyPlot.scatter(timeSim[2:end-1],CPUMSim[2:end], color="skyblue",label="MS",

marker="d")

PyPlot.xlabel("Time [hr]")

PyPlot.ylabel("CPU time [s]")

PyPlot.ylim(0,2)

PyPlot.title(L"N = "*string(N)*L", n_p = "*string(np)*L", n_m = "*string(nm))

#PyPlot.savefig("/Users/agnescamilla/Documents/NTNU/PROSJEKT/Figurer/

#NewModEveryIter/CPU3_FE="*string(dt)

#*"_N="*string(N)*"_np="*string(np)

#*"_nm="*string(nm)*".pdf")⌃ ⇧

53

	Summary
	Preface
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Motivation
	Specialization Project Goal
	Scope of Work

	Background and theory
	Model Predictive Control
	Multiple Shooting
	Orthogonal Collocation on Finite Elements

	Methodology
	Optimization of a biochemical reactor
	Dynamic model
	NMPC formulation

	Implementation

	Results & Discussion
	Comparing the Methods
	Changing the Length of the Finite Element
	Implementation - Making a new model vs. Updating the model

	Final Remarks
	Bibliography
	Julia Codes
	Main.jl
	methods.jl
	updatemodel.jl
	Plant.jl
	newMethod.jl

