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Abstract
The purpose of this specialization project is to investigate the opportunity to implement
least square extremum-seeking control (LSESC) to a gas lifted oil network, on lab scale.
LSESC is a purely data-driven, unconstrained, optimization method, which only relies
on measurements of the inputs and the cost function, but that require tuning of some pa-
rameters. It is an alternative to traditional model-based optimization, such as Real Time
Optimization (RTO). RTO brings up some challenges related to obtaining and updating
models, among other things, which LSESC can resolve.

In this specialization project two case studies are performed. First, the optimization
method is applied to a simple toy example, with one input, in order to study the tuning
parameters. Some guidelines for the parameter tuning were obtained. Next, the method is
applied to a model that represent the gas lifted oil network on lab scale. The first challenge,
in this case, is that the system has three inputs, that is, the gas lift rate in each of the three
wells, which makes the tuning more challenging. In addition, the system has a constraint
on the total gas available for gas lift, and a minimum and maximum limit on the inputs, so
the second challenge is constraint handling with an unconstrained optimization method.
To handle the constraints, active constraint control, along with LSESC and some logic, is
used in a step-by-step approach. The simulation results show that this method was able to
drive the system to its optimum, without violating the constraints. After the preliminary
testes in simulations, LSESC is merited to be implemented in the lab rig.
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Chapter 1
Introduction

Production optimization is a technique that generally seeks to maximize the production,
while minimizing the cost of production. Optimization of a process involves decision
making in separated time scales to achieve short, medium, and long term objectives. This
specialization project will focus on the medium term objectives. They often relate to max-
imizing daily profit, and the decisions are typically taken in the time scale of hours to days.
In current practice, medium-term production optimization is addressed by Real-time op-
timization (RTO). Traditionally, in RTO, a nonlinear steady-state model, which describes
the process, is used to solve an optimization problem online. Most RTO systems also re-
quire a model adaption step to update the model parameters, such as feed compositions
and efficiencies [5].

Given that you have a perfect model and use an approptiate solver for the optimization
problem, the inputs computed by the RTO match the plant optimal inputs. However, there
are some drawbacks of the model-based optimization, pointed out in [8], some of them are
listed below:

1. In complex processes, making a model for properly representing the behavior of the
system can be difficult and time consuming. Additionally it requires a very good
understanding of the process.

2. The model needs to be adapted during operation, to ensure that it reflects the current
plant behavior, and be compared against online measurements from the process. If
the model is not updated, the optimization is based on an inaccurate model, and the
inputs computed by the RTO are likely to be sub-optimal.

3. If steady state models are used, the model can not be updated before the plant has
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Chapter 1. Introduction

reached steady-state. The process operates sub-optimally during the steady-state
wait time.

4. If dynamic optimization is used (this solves item 3), the method requires high com-
putational capacity. Even with todays computers, this is a challenge.

5. The method that is used to solve the optimization problem, affects the computational
capacity demand, which is also influenced by the model complexity. There is a trade
off on how accurate the problem is solved, how complex the model is, and how much
computational capacity required to solve the problem.

In summary, modelling the process can be difficult, time consuming and an ongoing task
as conditions change over time. This, along with the computational issues, make model-
based optimization expensive [8].

On the other hand, model free optimization methods can be used. They are purely data-
driven and do not use a model to optimize the process, but measurements from the process.
One of these methods is Extremum Seeking Control (ESC) [1]. In ESC, the objective
function of the optimization problem needs to be measured. These measurements, along
with measurements of the inputs, are used to optimize the process. The gradient of the
objective function with relation to the input is estimated, and driven to zero. The objective
function is then at a minimum or a maximum [1], which yields optimal operation.

Using ESC can solve some of the problems with the traditional RTO approach, men-
tioned above. Since there is no need for a model, the problems regarding obtaining and
updating the model are gone. In addition, there is no steady-state wait time, since ESC do
not require steady state before updating the process. Also, estimating a gradient require
much less computational capacity, than solving a non-linear, model-based, optimization
problem.

As traditional RTO, ESC also has some challenges:

1. The method requires accurate measurements of the inputs and the cost function,
since they affect the gradient estimation and, consequently, the optimization perfor-
mance.

2. ESC have some tuning parameters, which can be challenging to tune. Simulations
of the process optimization is most likely necessary to obtain the right tuning, which
will require a model. If the goal is to avoid making a model, the tuning is even more
challenging.

3. ESC is in principle an unconstrained optimization method, so constraint handling
can be a challenge.

2



1.1 Specialization Project Goals

1.1 Specialization Project Goals

The goal of this specialization project is to better understand ESC, and investigate the
possibility of implementing it on an experimental lab rig. First, the tuning parameters that
effect the performance are studied in a simple system with only one input. Next, ESC is
applied to a system, in which a dynamic model is used for representing the experimental
lag rig of interest. In this second case study, we investigate how to handle constraints in
ESC implementations.
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Chapter 2
Theory and Background

2.1 Production Optimization

In production optimization the objective is to maximize the profit. This is done by max-
imizing the production and minimizing the cost of production, while satisfying the oper-
ational constraints. In current practice, production optimization is addressed by RTO. In
traditional RTO, the optimization requires [12]

1. An economic objective function to be maximized or minimized, that includes costs
and product values.

2. The operating model, which includes a steady-state process model and all con-
straints on the process variables .

The general form of an optimization problem includes a nonlinear objective function
and nonlinear constraints, and is called a nonlinear programming (NLP) problem [12]. In
this specialization project, a process where the optimal operating point can be described
by the following optimization problem is considered

min/max
x,u J(x,u,d)

s.t
f(x, u, d) = 0
g(x, u, d) ≤ 0

where J is the objective function, f and g represent the equality and inequality constraints,
respectively. f is the steady-state model equations and g represents operational limitations
for the process. x is the vector of state variables, u is the vector of manipulated variables
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Chapter 2. Theory and Background

used to optimize J and d is the vector of the disturbances. Together x, u and d represent
the process variables.

2.2 Extremum-Seeking Control

Extremum-seeking control (ESC) is a model free and adaptive control approach. The
method finds a local maximum or minimum of the objective function, despite disturbances,
varying system parameters and non-linearity. The objective function is assumed to be a
static map [3]. In ESC, there is no need for the model equations, f, so the optimization
problem can be written as

min/max
u J(u,d)

s.t
g(u, d) ≤ 0

The method finds the inputs, u, so that the objective function,J , is at an extremum
point. For unconstrained problems, this is done by driving the estimated gradients from
the inputs to the objective function, Ju, to zero. When the gradients are zero, the objective
function is at a minimum or maximum, which yields optimal operation. The gradients are
estimated by perturbing the inputs, and observing how they affect the objective function
[3].

Given that there are nu inputs, the size of the objective function gradient with respect
to inputs is (1 x nu), and can be written as

Ju = [Ju,1 Ju,2 ... Ju,nu
] (2.1)

By using measurements we can compute the gradient estimate Ĵu. Then, nu integral
controllers can be used to drive the gradients to zero. Integral control is used because the
control should be slow. In discrete time, the integral control on the input can be written as

uk+1 = uk + KI Ĵu (2.2)

where KI is the diagonal gain matrix. The integral gain determines how aggressively the
input changes [3].

2.2.1 Classical ESC

There are different extremum-seeking control approaches. The classical approach is adding
a sinusoidal perturbation to the input. The sinusoidal perturbation added to the input can

6



2.3 Least Square Extremum-Seeking Control

be written as
uk+1 = uk + asin(ωt) (2.3)

where a andw are the amplitude and frequency of the sinusoidal perturbation, respectively.

The perturbed input is implemented in the plant. This results in a sinusoidal output
perturbation and a sinusoidal cost function, J , that oscillates around the mean. The mean
of J is non-zero, so in order to subtract out the mean, J is passed through a high-pass
filter. After this, the input sinusoidal is multiplied to the signal, resulting in a demodulated
signal [3]. A low-pass filter is then applied to remove the noise of the signal, and we end
up with a signal, ξ [10]. This signal is an approximation of the gradient, and the sign of
ξ indicates how the input should be changed in order to move towards the optimal input
[10]. A block diagram of the classical ESC approach is shown in Figure 2.1.

Figure 2.1: Block diagram of the classical extremum-seeking control method.

2.3 Least Square Extremum-Seeking Control

An alternative approach, to the classical ESC, is least square extremum seeking control
(LSESC) [7]. In LSESC, least square estimation is used to estimate the gradients from
the inputs, u, to the objective function, J [7]. Using this method will result in fewer
tuning parameters, since there are no high and low pass filters that require tuning. In
addition there can be used other dither signals than a sinusoidal perturbation to excite the
system. This could possibly make the LSESC approach more applicable and relevant when
implementing the method in a chemical process, due to their inertia and relatively large
time constants. Therefore, this approach is used in the specialization project.

In LSESC, a moving window of the last N samples of data measurements of the ob-
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Chapter 2. Theory and Background

jective function and the inputs is used to estimate the gradients [15]. A moving window is
used to compute and average and mitigate the influence of noisy measurements. J is the
vector of the last N samples of the measured values of objective function, and U is the last
N samples of the measured inputs. At a time k they are given by the following

Jk = [Jk Jk−1 ... Jk−N+1]T (2.4)

Uk = [uk uk−1 ... uk−N+1]T (2.5)

At every time step, these two buffers are used to fit a linear model of the objective function,
as seen from Figure 2.2. The linear model estimation is given by the following equation

J = Ĵ
T

u u + m̂ (2.6)

where Ĵu is the vector of the estimated gradients from u to J, and m̂ is the bias.

Figure 2.2: Visualization of the linear model fit of the objective function as a function of the inputs,
from the last N samples of data.

To estimate Ju,a dither signal is added to the input. The dither is added in order to
observe how input changes affect the objective function. It guarantees that u is sufficiently
well conditioned to obtain accurate gradient approximations. The most common one in
ESC is a sinusoidal perturbation. In LSESC more general dithers can be added [7], such
as a PBRS or a square wave. A Block Diagram of LSESC is showed in Figure 2.3.

8



2.3 Least Square Extremum-Seeking Control

Figure 2.3: Block Diagram of LSESC

2.3.1 Least Square Estimation

Least square estimation (LSE) is a standards approach that is used to fit a set of data to a
model. The method is based on minimizing the sum of square errors, that is the ’distance’
from the observed values and the estimated values. For a sample with N observations and
r unknown model parameters, a general regression model, in matrix form, can be written
as [6] 

y1

y2

yN

 =


x1 1

x2 1

xN 1




θ0

θ1

θ2

θr

 +


e1

e2

eN

 (2.7)

where yi is the model output for observation i, xi is the vector of the (1xr) dependant
model variables for observation i and ei is the residual between the estimated model and
observation i, where i ∈ (1, ..., N ). θj is the unknown model parameter for the dependant
model parameter xj , where j ∈ (1, ..., r).

By introducing Φ as the regressor vector, as in [15], Equation 2.7 on matrix form is
given by

Y = [X 1] θ + e = Φθ + e

where Y is a vector of the model output for the N observations, X is the matrix of the m
dependent model variables for theN observations, e is the residual between the model and
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Chapter 2. Theory and Background

the observation for each of the N observations and θ is the parameters to be estimated.

As pointed out in [15],N > r to apply this method. The analytical solution to the least
square problem above is given by Equation 2.8 [11].

θ̂ = [ΦT Φ]−1ΦT Y (2.8)

Connecting this notation with the notation from LSESC above, gives the following

Y = J (2.9)

Φ = [U 1] (2.10)

θ̂ = [Ĵ
T

u m̂]T (2.11)

2.3.2 Parameter Tuning

Implementation of LSESC require correct tuning of the parameters. The parameters that
need tuning are the buffer length, N , the integral gains, KI , and the frequency, ω, and
amplitude, a, of the perturbation signals added to the inputs.

In ESC there are three time scales

• Slow - convergence to the optimum

• Medium - perturbation frequency

• Fast - the controlled plant dynamics

In order to have a good extremum-seeking controller, there should be a clear time scale
separation between these [15], and the parameters should be tuned accordingly. The
timescales of interest are the slow and medium. Regulatory controllers, such as PIDs,
are responsible for dealing with fast timescale disturbances.

The integral gain should be chosen small enough so that the timescale for the conver-
gence is slower than the timescale for the perturbation signal. And the frequency of the
perturbation signal must be significantly slower than the plant dynamics, this is necessary
in order to approximate the plant as a static map [15]. In [15], it is also mentioned that
in order to estimate the gradient of the objective function with respect to each input, for a
multiple inputs system, the inputs should have different perturbation frequencies.

10
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2.4 Constraint Handling in Extremum Seeking Control

ESC is in principle used for unconstrained optimization, but there are ways to handle
constraint with this method. One solution is using constraint relaxation and penalise con-
straint deviations. The constrained problem is converted into an unconstrained problem by
relaxing the constraints[4]. Thus, an optimization problem given by

min J

s.t
g ≤ 0

can be converted into

min J + w · g (2.12)

where w is some weighting factor, that penalises breaking the constraints.
Another alternative is using active constraint control, in addition to self-optimizing

control (SOC) for the unconstrained degrees of freedom (DOF) [8]. In short, SOC is
choosing CVs, that are controlled to a constant setpoint, in order to maintain close to
optimal operation without the need of reoptimization when disturbances occur [13]. In
this approach, the MV with the largest value is used to control the active constraint. Using
a small MV to control the active constraint may quickly saturate, leading to constraint
violation or suboptimal operation. The remaining MVs are used for SOC. [8].

The inputs that are not used to control the active constraint, can be used to drive the
estimated gradients to zero. The following self-optimizing CVs are used,

CVi := Ĵu,i−1 − Ĵu,i ∀i = 2, ..r (2.13)

where r is the number of inputs in the system. The self-optimizing CVs are controlled to
a constant setpoint of zero. By doing this, equal value of the gradients is achieved.

In this specialization project, the constraints are handled using the latter method. How
this is implemented for a given case is further explained in Chapter 4.2.3.
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Chapter 3
Case Study 1 - Simplified

Bioreactor

In this chapter Least Square Extremum Seeking Control (LSESC) is applied on a simple
biochemical reactor, with only one input. The model used in this case study is a slow
process, the timescale is in hours, and extremum seeking control is not a good optimization
method for a biochemical reactor. The goal of this case study is not to try and implement
extremum seeking on a bioreactor in real life, but to use the model as a toy example to study
how the tuning parameters of the method affect the optimization result. As mentioned in
Section 2.3.2, the tuning of the parameters is very important for the performance of the
optimization.

3.1 Methodology

3.1.1 The Model

The bioreactor is modeled as a CSTR with two components, substrate and biomass. A
flowsheet of the process is shown in Figure 3.1. The dynamic model for the biochemical
reactor is given by the following two equations, which are derived from the total and
component mass balances, as presented in [2].

dx1
dt

= Dx1,f −Dx1 + µx1 (3.1)
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dx2
dt

= Dx2,f −Dx2 −
µx1
Y

(3.2)

Where the first term of the equations represents the inflow, the middle term the outflow
and the last part represents consumption/generation. x1 is the biomass concentration and
x2 is the substrate concentration given in mass of cells

volume and mass of substrate
volume , respectively. x1,f

and x2,f is the concentration of biomass and substrate in the feed. Y is the yield, which
is calculated as the mass of cells produced per mass of substrate consumed. D is the
dilution rate given by F/V , where F is the volumetric flow rate and V is the volume of
the bioreactor. µ is the specific growth rate coefficient, in this case the Monod relation is
used. The Monod relation is given by Equation 3.3, where km and µmax are constants.

µmonod =
µmaxx2
km + x2

(3.3)

In this case study Y and V are assumed to be constant, to simplify the model. It is also
assumed that there is no biomass in the feed stream, so x1,f = 0.

Figure 3.1: Flowsheet of the biochemical reactor

3.1.2 Optimization Using LSE

The economic objective in this case is to maximise the steady-state production rate of cells,
ψ. Operational limitations of the reactor are represented by constraints on the dilution rate,
D. The optimization problem is written as

max ψ = Dx1
s.t

Dmin ≤ D ≤ Dmax

x1, x2 ≥ 0

14



3.1 Methodology

The manipulated variable that is used to maximize ψ in this problem is the dilution rate.
Thus, according to the notation from the theory in Chapter 2, the objective function, J , is
ψ and the input, u, is D. Since we only have one input, there is no need for writing the
equations in vector form.

In this case study we primarily look at a sinusoidal perturbation as the dither added
to the input, which is the most commonly used perturbation in ESC. The input in discrete
time can then be written as

uk+1 = uk + uk · asin(ωt) (3.4)

where a and ω are the amplitude and period of the sinusoidal wave, respectively. The use
of a signed pseudorandom binary sequence signal(PBRS) as dither, instead of a sinusoidal
perturbation, was also studied. A PBRS is most likely easier to implement in a real process,
due to its discrete nature which is more suitable to be used in computer-based systems. A
signed PBRS is a pseudo random binary sequence, seq, of 1 and -1, that repeats itself after
every w sampling times. Its amplitude can be adjusted by multiplying the sequence by a
factor a. Then, the generated sequence is added to the input as in

uk+1 = uk + a · seq(k) (3.5)

In both cases, an integral controller is used for adjusting the input, u, and driving the
estimated gradient, Ĵu, to zero. The integral controller can be written as

uk+1 = uk +KI Ĵu (3.6)

These values above, along with the buffer length, N, need to be tuned to be able to
have good control of the process.

3.1.3 Simulation

In this case study, a set of tuning parameters is used for the nominal case. They were
obtained by testing different values for each of the tuning parameters, until the LSESC
gave good performance. In the nominal case, and to study the the tuning parameters, a
sinusoidal perturbation was used as a dither. Using a PRBS dither instead of a sinusoidal
perturbation was also studied.

To study how each parameter affect the control, one of the tuning parameters was var-
ied at a time, and the other parameters were kept at their nominal values. Table 3.1 shows
the tuning for the nominal case in addition to the studied parameters range. Simulations in
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MATLAB were used to investigate how each parameter affects the LSESC performance.
The code used for the simulations is in Appendix B.

Table 3.1: Tuning for the nominal case and the range of values studied for each parameter.

Parameter Nominal Case Values Studied
a 0.0001 [0.00001, 0.0001, 0.001, 0.01]
ω 2π/5 [2π/10, 2π/5, 2π/3, π]
N 100 [50, 100, 200]
KI 0.0002 [0.00005, 0.0002, 0.001]
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3.2 Results

In this section the simulation results are presented, beginning with the nominal case.
Then the results for each of the parameter variations are presented in the following order,
changes in the amplitude of the perturbation, changes in the frequency of the perturbation,
changes in the buffer length and changes in the integral gain. Finally the result with PRBS
as perturbation is presented.

3.2.1 Base Case

Figure 3.2 shows the simulation results for the nominal case. The figure show that LSESC
is able to drive the input to the steady state optimal operating point, which was computed
previously. There is a drop in the input as the control starts. The reason for this is poorly
estimated gradients.
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Figure 3.2: Simulation results for the objective function and the manipulated variable for the nomi-
nal case.
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3.2.2 Changing Amplitude of Perturbation

In this section a change in the amplitude of the input sinusoidal perturbation signal is
added. Figure 3.3 shows, that for larger amplitudes, the controller is not able to find the
optimal operating point, the input keeps on increasing. This happens for both a=0.01 and
a=0.001. The deviation increases with increased amplitude.
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Figure 3.3: Simulation results for the objective function and the manipulated variable for different
values of the amplitude of the perturbation.

With smaller amplitudes, a=0.00001 and a=0.0001 (the nominal case), the controller
is able to find the optimal operating point. But, in this case, the control is slower, due to the
significant decrease of the input value after the control starts at 100h. This variation of the
inputs happens for all four simulations, but it is more significant with smaller amplitudes.
The reason for this is the poorly estimated gradients.

The figure also shows that the simulation results for a=0.001 and a=0.0001 are quite
similar. This indicates that the value for a is not so sensitive.

18



3.2 Results

3.2.3 Changing Frequency of Perturbation

In this section, changes in the frequency of the sinusoidal perturbation are studied. Figure
3.4 shows that for higher frequencies, there is a larger decrease in the input as the control
starts, similarly to the results in Figure 3.3. Consequently, higher frequencies lead to
slower convergence to the optimum and more economic loss.
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Figure 3.4: Simulation results for the objective function and the manipulated variable for different
values for the frequency of the sinusoidal perturbation.

A decrease in the frequency results in faster control in the first part of the simulation
interval, but after the disturbance occurs it adjusts the input in the wrong direction. The
black line, ω=2π/3, follows the red line, the nominal case, in the first part and and the blue
line, ω=2π/100, after the disturbance occurs.

Despite different performances with different frequencies, they all are able to reach the
optimal operating point.
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3.2.4 Changing Buffer Length

In this section, changes in the buffer length, N , are studied . Figure 3.5 shows that, by us-
ing different buffer lengths, the system gradients are properly estimated and drive the sys-
tem to its optimal value, but different buffer lengths give different performances. Shorter
buffer lengths give a bigger decrease in the input after the control starts. When long buffer
lengths are used, the control use some time to change in the right direction when the dis-
turbance occurs. This is because the gradient is to a greater extent calculated based on the
past.

The shorter the buffer length is, the faster the control starts, since the buffer needs to
be filled up for estimating the plant gradients.
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Figure 3.5: Simulation results for the objective function and the manipulated variable for different
values of the buffer length.

3.2.5 Changing Integral Gain

In this section, the integral gain, KI is changed within the range shown in Table 3.1. The
results can be seen in Figure 3.6. They show that, if the integral gain is large, the input will
oscillate around the optimal value, but the controller is still able to damp the oscillations
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and drive the system to its optimum. For integral gains smaller than the base case, the
control is slower, i.e. the input moves slower towards the optimum.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

t [h]

0.25

0.3

0.35

0.4

0.45

0.5

0.55

D
ill

u
ti
o
n
 r

a
te

 [
h

-1
]

Manipulated variable

K
I
 = 0.00005

K
I
 = 0.0002

K
I
 = 0.001

u
opt

0 200 400 600 800 1000 1200 1400 1600 1800 2000

t [h]

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 [
g
/(

L
 h

)]

Instantaneous profit

K
I
 = 0.00005

K
I
 = 0.0002

K
I
 = 0.001

opt

Figure 3.6: Simulation results for the objective function and the manipulated variable for different
values of the integral gain.

3.2.6 Using PBRS signal as dither

In this section, a PBRS signal is used as a dither added to the input, instead of a sinu-
soidal perturbation. The amplitude, integral gain and buffer length are the same as for the
sinusoidal perturbation. The results of the simulation are in Figure 3.7.

Figure 3.7 shows a decrease in the input when the disturbance occurs, similar to what
we see in Figure 3.5, when the buffer length is a above the base case. Such behavior was
a consequence of using long buffers for estimating the gradients. Therefore, the buffer
length is decreased to N=50, instead of N=100. The results in Figure 3.8 show that the
controller with this new tuning has a better performance.

The change in the performance is probably because the frequency for the PRBS per-
turbation is not the same as for the nominal case. The PRBS perturbation is added with
ω = 1[h−1], while the sinusoidal perturbation is added with ω = 2π/5
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Figure 3.7: Simulation results for the objective function and the manipulated variable using PRBS
dither with same tuning as the sinusoidal perturbation.
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Figure 3.8: Simulation results for the objective function and the manipulated variable using PRBS
dither with N = 50.
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3.3 Discussion

3.3.1 The Control Parameters

From the results it is clear that the tuning parameters value affect the control performance.

Amplitude

Figure 3.3 shows that the amplitude should be small enough so it can find the optimal
operating point, but not so small that the control becomes slow. The figure also shows that
for smaller amplitude, there is a larger decrease in the input as the control starts.

Freqency

For the frequency, in Figure 3.4, it is hard to see any clear patterns for how the frequency
should be tuned. Frequencies higher, ω=2π/100 and lower, ω=2π/3, than the base case give
very similar results. For high frequencies, there is a decrease in the input as the control
starts, and the control is therefore very slow.

Buffer Length

Figure 3.5 shows that if the buffer length is too long, there is a ’delay’ of the response in
the input as the disturbance occurs. With longer buffer lengths, more old data is saved in
the buffer and used for the gradient estimation. Thus, when a change occur it will take
some time for the gradient estimation to be updated to the current value.

A decrease in the input after the control starts occurs for all simulations, and it in-
creases with smaller buffer lengths. One thing to possibly test could be starting the control
after a certain time, smaller than the time to fill up the buffer length, to start the control
earlier. Sub-optimal control in the start, before the buffer is filled up, can possibly be better
than no control. How relevant this is depends on the time scale of the system. This is more
relevant to investigate if the time for filling the buffer is 50h vs 100h, than if it is 50s vs
100s.

Integral Gain

For the integral gain, in Figure 3.6, there is a clear pattern. If the integral gain is to large
there will be oscillation. The larger the integral gain, the bigger the oscillations. If the
integral gain is too small, the control will be slow. Hence, for obtaining a good control
performance the integral gain should be small for avoiding oscillations, but not so small
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that the controller is too slow. The decrease in the input after the control starts increases
with increased integral gain.

3.3.2 Applying the Method to a Real Process

For the control method to be implemented in a real process, there are some things that need
to be considered. As seen from the results, some of the simulations have abrupt change
in the input, especially after the control starts. This is a consequence of poor gradient
estimation from the LSE. These changes can potentially damage equipment or represent
a safety issue for the operation. Thus, this should be avoided and the control parameters
should be tuned accordingly. One possible solution could be to have a constraint on how
much u can change in one step, so that abrupt changes can be avoided.

Using this method in a real process will require that a dither is added to the input. How
easy it is to add a dither to the input will depend on the process. The dither do not have to
be a sinusoidal perturbation, it could also be a PBRS or a square wave. Figure 3.8 shows
that using a PBRS dither yields a similar performance in the case study. The PRBS is
easier to implemented in a real process.

Another consideration when implementing LSESC, is if it is desirable to continuously
perturb the input and if it is possible to do it. In most cases a stable process and input is
preferable. Processes that have continuously small perturbation in the input could possibly
take advantage of this control method. The disturbance that perturbs the input continuously
could be a replacement for the PRBS dither.

If this optimization method is going to be used in a real process, simulation on the
process behavior would be beneficial, and maybe necessary, when tuning the control pa-
rameters. In order to simulate the process behavior, a model for the process is necessary.
The motivation for using this optimization method is that it is model free, but if a model is
necessary for tuning, there is no clear advantage in using LSESC. One solution for this is to
use data measurements to approximate a model. There are several methods for doing this,
such as Dynamic Mode Decomposition, Kooperman Analysis and Sparse Identification of

Nonlinear Dynamics [3]. Then, the data-driven model can then be used for tuning the
controller. But again, this model could also be used in optimization methods that require
a model.

As the simulations show, extremum seeking is a relative slow optimization method.
It is best to use if the controlled process has fast dynamics. From the simulations of the
nominal case, in Figure 3.2, we see that the process reaches the optimal operating point
after approximately 600h, which is 25 days. As mentioned in the intro, this system is not
appropriate for ESC, but it was just used as a toy example to study the tuning parameters.
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3.4 Conclusion

Tuning the parameters for least square extremum control can be difficult, experience with
the method and the process facilitates this task. From this case study some guidelines have
been found, they are presented in Table 3.2 below.

In a real process a sinusoidal perturbation can be hard to implement, an alternative is
using a PRBS dither instead. Figure 3.8, show that this works in the simulations.

Table 3.2: Guidelines for the tuning parameters in LSESC

Parameter Guideline

The value should be small enough so that the optimal
a operating point is obtained, but not so small that the

control is too slow.

It was difficult to see any clear guidelines for the
ω frequency.

The length should be long enough so the LSE give a
N good estimate for the gradient, but not so long that

there is too much old data saved in the buffer.

The value should be so small that oscillations in the
KI input are avoided. It should not be too small, because

a decrease in KI gives slower control.
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Chapter 4
Case Study 2 - Gas Lifted Oil Well

Network

In this chapter least square extremum seeking control is applied to a gas lifted oil well
network model, containing 3 wells. A model is used for representing a real system, on lab
scale. The goal with this case study is to investigate the possibility to implement LSESC
on the experimental lab rig that the model represents. The main challenges with applying
LSESC to this system, is that it is a multiple input system and that there are constraints
that must be handled, despite fact that ESC originally is an unconstrained optimization
method.

4.1 System Description

The system we want to optimize is a gas lifted well network with 3 wells. A simple figure
of the gas lifted well network is shown in Figure 4.1.

The overall objective is to get oil up from the reservoirs, to the top facilities, in an
economical way. If the reservoir pressure is not sufficient, artificial lift methods can be
used to increase the production. In this system gas injection is used [14]. Compressed
gas is injected in the bottom of the well, through the annulus, that is the void between two
concentric objects where fluid can flow, and thereby reducing the fluid mixture density.
The hydrostatic pressure drop in the well is reduced, and the pressure at the bottom of the
well decreases, leading to increased flow from the reservoir [9]. The gain in production
by injecting gas is dependent on the outflow of the reservoir, decreased outflow give an
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Figure 4.1: Simple figure of the gas lifted well network. wgli is the gas lift rate in well i and wro,tot

is the total oil production from the 3 wells.

increase in the gain.

In the system, there is a limited amount of the total gas available for gas lift. The total
gas lift injection rate, for the 3 wells, can not exceed the limit wgl,max. Thus, to have
optimal operation, that is maximizing the total oil production, the optimal gas lift injection
rate, for each well, must be found. The gas lift in each well has an upper limit wmax

gl,i and
a lower limit wmin

gl,i . The values of wgl,max, wmax
gl,i and wmin

gl,i in the system are 5 L
min , 3

L
min and 1 L

min , respectively.

The gas lift method described, is commonly used in oil and gas production. In this
project we look at an experimental lab rig, that represent the gas lifted well system. The
method is tested on a model that represent the rig, in order to investigate the opportunity
to implement LSESC.

4.1.1 The Model

The production of the gas lifted wells is described and modelled using mass balances of
the different phases , density models, pressure models and flow models [9], which results
in a differential algebraic equation (DAE) on the form

ẋi = fi(xi, zi, ui, pi) (4.1)

gi(xi, zi, ui, pi) = 0 ∀i ∈ N = {1, .., nw} (4.2)

where fi(xi, zi, ui, pi) is a set of differential equations, and gi(xi, zi, ui, pi) is a set of
algebraic equations. The subscript i refers to a well i from a set of N = {1, .., nw} wells.
In this model there are three wells, so nw = 3. xi is the differential states, zi is the

28



4.2 The Optimization Method

algebraic states, ui is the decision variables and pi is the uncertain parameters. They are
given by

xi = [mgi moi ]
T

zi = [ρroi ρgri prhi pbhi wroi wpri wgri wlri ]
T

ui = [wgli ]
T

where mgi and moi is the gas and oil hold up, respectively. ρro,i is the mixture density
in the riser, ρgr,i is the gas density, prhi is the riser head pressure and pbhi is the pressure
below injection point. wroi is the oil rate from the resovoir, wgri is the riser head gas
production rate, wlri is the riser head liquid production rate and wpri is the riser head total
production rate. wgli is the gas lit rate, and the index i, refers to well i.

These equations are for one well, but the wells are connected, as they produce oil and
gas to the same top facilities. The full model is given in Appendix A, including the code
for the dynamic model in Appendix A.1.

4.2 The Optimization Method

In this section the optimization method is explained. This includes a description of the
optimization problem, the dithers added to the inputs, the control and the constraint han-
dling.

4.2.1 The Optimization Problem

The economic objective in this case study, is to maximize the profit,J . This is done by
finding the optimal gas lift injection rate, wgli , for each of the three wells. Thus, the MVs
for the optimization problem are given by

u = [u1 u2 u3]T = [wgl1 wgl2 wgl3 ]T

The optimization problem has a constraint on the total gas available for gas lift, wgl,max.
In addition, the gas lift injection rate for each well have an upper and a lower limit, wmax

gl,i

and wmin
gl,i . The optimization problem is written as

max J = αo

nw∑
i=1

wroi − αgl

nw∑
i=1

wgli

s.t
nw∑
i=1

wgli ≤ wgl,max

wmin
gl,i ≤ wgli ≤ wmax

gl,i ∀i ∈ N = {1, .., nw}
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J is the objective function describing the cost, where αo is the price of oil, αgl is the cost
of compressing the gas for gas lift injection and wroi is the oil rate from reservoir i.

4.2.2 The Dither

In this case study, a square wave is used as dither added to the inputs, u. A square wave
is a periodic waveform, where the amplitude alternates between a fixed minimum and
maximum, with the same duration at minimum and maximum. In order to estimate the
gradient, Ju, with respect to each input, the dither signals should have different frequencies
[15]. The frequency of the wave is the number of times the waveform repeats itself within
a given time period. The dither signals could also have different amplitudes. In discrete
time the inputs, with added dither, can be written as

uk+1 = uk + a · sq.wave =

wgl1,k

wgl2,k

wgl3,k

 +

a1 0 0

0 a2 0

0 0 a3


sq.wave(ωsq,1)

sq.wave(ωsq,2)

sq.wave(ωsq,3)

 (4.3)

where a· sq.wave represent the dither added to each of the inputs. a is the amplitude of
each of the signals, and ωsq,i is the frequency of the square wave added to input wgli,k.

4.2.3 The Control

Integral control is used to control the inputs, and drive the gradients, Ju, to zero. Each
input can have an individual integral gain, kIi . The integral gain must be chosen small
enough so the time scale of the gradient estimation is slower then the dither signal, as
mentioned in Section 2.3.2.

ESC is originally an unconstrained optimization method. In the case where the opti-
mum is unconstrained, the control can be written as

uk+1 =

wgl1,k

wgl2,k

wgl3,k

 +

kI,1 0 0

0 kI,2 0

0 0 kI,3


Ĵu,1Ĵu,2

Ĵu,3

 (4.4)

where the gradients are controlled to a constant set point of zero. This can be done by
using another approach, as done in [8], where the controlled variables are

CV1 := Ĵu,1 (4.5)
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controlled to a setpoint of zero, and

CVi := (Ĵu,i − Ĵu,i−1) ∀i = 2, 3 (4.6)

controlled to a setpoint of zero, which yields controlling all three gradients to zero. By
doing this, the control can be written as

uk+1 =

uk,1uk,2

uk,3

 +

k
′
I,1 0 0

0 k′I,2 0

0 0 k′I,3


 Ĵu,1

Ĵu,2 − Ĵu,1
Ĵu,3 − Ĵu,2

 (4.7)

When writing the control like this, it is more suitable in regards to handling the constraints.

4.2.4 The Constraint Handling

In this section the constraint handling, for the gas lifted well network, is explained. For the
controller to handle the constraints, active constraint control is used, along with ESC for
the two unconstrained DOF [8], as explained briefly in Section 2.4. Since there are both
constraints on the inputs and on the total gas available for gas lift, the constraint handling
can become more complicated. For example, if more than one of the input bounds become
active, there will no longer be two unconstrained DOF. When a constraint becomes active,
one degree of freedom is lost. To handle this, the method in [8] is applied, along with
some logical thinking, in order to control and optimize the process without violating any
of the constraints. An overview of the approach can be seen in Figure 4.2 and consists of
5 steps, explained below.

1. Check flows: As mentioned in the theory, the MV with the largest flow should be
used to control the active constraint. Thus, which MV that is the largest should be
checked for every iteration. Let the largest input be called uL, and the two other
inputs be called us1 and us2

2. Treat problem as unconstrained: New input, uk+1, is calculated by treating the
problem as an unconstrained problem, using the approach described in Equation
4.7. Which MV that is largest should be the taken into account. uL should be the
input controlled by only one gradient (the gradient with respect to uL), as shown in
Figure 4.2.

3. Check minumum and maximum constraint on inputs: Both wmin
gl,i and wmax

gl,i

must be checked. If one of the inputs is below the minimum or above the maximum,
the input should be changed to the minimum or maximum, respectively.
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4. Check constraint with maximum gas lift capacity: If the constraint is violated,
uL is used to control the constraint by setting

uL = wgl,max − us1 − us2 (4.8)

However, this can possibly violate the minimum constraint on uL. To avoid this the
the following is done:

• If the minimum constraint on uL is not going to be violated, the following
must be attained

us1 + us2 ≤ wgl,max − umin (4.9)

If not, the amount, (us1+us2)−(wgl,max−umin), needs to be subtracted from
us1 and us2. How the this should be divided between the two MVs, must be
taken into consideration. It must be subtracted in such a way that the minimum
and maximum constraint on the inputs are not violated. In this case, it is done
by setting

u′s1 = us1 −
[
(us1 + us2)− (wgl,max − umin)

] us1
us1 + us2

(4.10)

and

u′s2 = us2 −
[
(us1 + us2)− (wgl,max − umin)

] us2
us1 + us2

(4.11)

By doing this, the amount subtracted from one input, dependents on its size.
A larger value, results in a larger amount subtracted from the input.

One drawback with this approach is that it can cause the minimum constraint to
be violated. If one input is close to, or at the this constraint, the subtraction will
make the value of the input become lower than wmin

gl,i . This must be checked,
and taken care of. If this is the case for us1, the following must be done

u′′s2 = u′s2 − (wmin
gl,i − u′s1) (4.12)

u′′s1 = wmin
gl,i (4.13)

By doing this, us1 + us2 = wgl,max−wmin
gl,i , without violating the constraints

on the inputs. The approach is the same if us2 is the input violating the mini-
mum constraint. In this case uL is going to be equal to wmin

gl,i , when doing the
next step.
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4.2 The Optimization Method

• The constraint with maximum gas lift capacity can now be checked. If the
constraint is violated, i.e

nw∑
i=1

ui ≥ wgl,max (4.14)

uL must be set to
uL = wgl,max − us1 − us2 (4.15)

5. Update the input: Now, all the constraints are handled, and the input,uk+1, can be
updated.

Figure 4.2: Flow diagram for the constraint handling. uL is the MV with largest flow, while us1

and us1 are the to other MVs with smaller flows. umin and umax correspond to wmin
gl,i and wmin

gl,i

respectively.
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4.3 Results

In this section the simulation results are presented. The optimization method is applied to
two scenarios of disturbances. This is done to better validate the method, and to make sure
that the tuning is not tailored to one particular set of disturbances. The simulation results
for the two scenarios are shown in Figure 4.3 and 4.4. The figures show the control of the
three inputs, wgl1 , wgl2 and wgl3 , the value of the cost function and the total gas lift.
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Figure 4.3: Simulation results for disturbance scenario 1.
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Figure 4.4: Simulation results for disturbance scenario 2.

In scenario 1 the disturbances enters the system at 10 min and 20 min, and in scenario 2
the disturbance enters at 15 min. The disturbances represent an increase or decrease in the
outflow of the reservoirs. The disturbance scenarios illustrates a typical operating scenario,
which arises from changes in the reservoir natural pressure. With smaller reservoir outflow
the gain in the well production with respect to gas injection increases. As a consequence,
the optimal distribution of the available gas lift changes and a new operating strategy needs
to be found.
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In both disturbance scenarios the controller is able to drive the inputs to the optimal
operating point, which was previously computed, without violating the constraints. Thus,
LSESC works for this process with multiple inputs and constraints, in simulations. How-
ever, comparing these simulations results with the simulation result from the simple ex-
ample in Figure 3.2, from Case Study 1, the MVs oscillate more and the control actions
are less smooth.

4.3.1 Tuning Parameters

The tuning that was used for the parameters in this case study are shown in Table 4.1
below. It is worth to mention that another set of tuning parameters can work better for one
scenario of disturbances, and worse for the other. In this case, the goal was to find a set of
tuning that gave acceptable performance in both scenarios.

Table 4.1: Tuning parameters for Case Study 2

Parameter Description Value

a Amplitude for the sqaure waves 0.01
ω1 Frequency of square wave added to wgl,1 6
ω2 Frequency of square wave added to wgl,2 14
ω3 Frequency of square wave added to wgl,3 10
N Buffer length 30
kI1 Integral gain for wgl1 0.02
kI2 Integral gain for wgl2 0.02
kI3 Integral gain for wgl3 0.01
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4.4 Discussion

4.4 Discussion

4.4.1 The Simulation Result

Scenario 1

Figure 4.3 is the simulation results for disturbance scenario 1. It shows that when the
disturbance happens, at 10 minutes and 20 minutes, and the optimal value of the inputs
changes, some oscillation occurs. At 10 minutes, the optimal value changes for both wgl2

and wgl3 , but not for wgl1 . And at 20 minutes, the optimal value changes for both wgl1

and wgl,2, but not for wgl3 . In both these cases, the input that do not change its setpoint,
has an increase before it goes back down to its optimal value. This is because the gradient
estimation is less accurate as the disturbance occur. The consequence of this is less smooth
control, in addition to an economical loss, which can be seen as a drop in the cost function
as the disturbances occur. The economic loss is also related to the time the controller takes
to reach the new setpoint. The two inputs that changes their setpoint, at 10 and 20 minutes,
are able to move relatively smooth against their optimal value. The exception is wgl3 at 10
minutes, where the input has a little jump in the wrong direction as it moves to its optimum.
The reason for this can be the less accurate gradient estimation as the disturbance occur.

Scenario 2

Figure 4.4 is the simulation results for disturbance scenario 2. It shows that there is an
overshoot in wgl2 , in the beginning of the interval, before it settles to its optimum. How-
ever, this do not give a visible loss in the cost function. The range of values of wgl2 and
wgl3 , from around 2 minutes, and until they reach their optimal value, give nearly the same
value of the cost function. This indicates that the cost functions optimum, with respect to
the inputs, is relative flat, and that is probably why the overshoot happens. With respect to
the value of the inputs it looks like the system is operating sub-optimally, but by looking
at the cost function one can see that this is not the case.

When the disturbance happens in scenario 2, some oscillation occurs, which was the
case in scenario 1 as well, but its amplitude is larger in this scenario. Once again, for
scenario 2, the economical consequence of this is very small, the value of the cost function
is very similar after the disturbance occur. By looking at the inputs, the operation looks
sub-optimal, but not by looking at the cost function. This may be the reason why the
inputs uses more time to find their optimal value in this scenario, compared with scenario
1, where we see a clear connection between the cost function and the inputs not being at
their optimal value.
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Which MV that is the largest alternates, between wgl2 and wgl3 , in the time right after
the disturbance occur, meaning that which input that is used to control the constraint with
the maximum gas lift capacity, also alternates. This can be another reason for the noise.
One possible way to reduce the noise, as mentioned in Section 3.3.2, is to have a constraint
on how much the inputs can change in one step. A plot of the two inputs around the time
the disturbance take place is shown in Figure 4.5. This plot is obtained by zooming in
Figure 4.4.
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Figure 4.5: Simulation result of wgl2 and wgl3 around the time the disturbance occur, in scenario 2.

4.4.2 The Tuning

As mentioned in Case Study 1, in Chapter 3, tuning the controller is a challenging task.
With three inputs in the system, it is more challenging, since there are more parameters
to tune. From Case Study 1, it was shown that there are different values for the tuning
parameters that still yield an acceptable optimization performance. When a set of tuning
parameters that is able to drive the system to its optimum is found, one can start look-
ing at how each parameter affect the control, in order to improve the performance of the
controller.

From Case Study 1, we also saw that the performance was not so sensitive to the value
of the integral gain. So a good place to start with the integral gains, is setting all three
equal. When a set of parameters that works is obtained, you can start tuning each of them
separately. This approach was done in this case study.

The amplitude of the dither signals can also be set as the same for the three inputs,
but the frequencies must be set to different values, in order to estimate the gradient of the
objective function with respect to each input, as explained in the theory. In Case Study 1,
it was hard to see any clear guidelines for the frequency. A suggestion is to calculate the
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real value of the gradients, and compare them against the estimated gradients. Studying
how they match can be a valuable tool when tuning the buffer length and the amplitude
and frequency of the dither signals. The purpose of the dither signals and the buffer is to
estimate the gradients. If the gradient estimation is good, so is the tuning of the buffer and
dither signals. This suggestion is only possible if a model is used to represent the plant,
otherwise, it is not possible to calculate the ’true’ gradient.

4.4.3 Applying the Method to Other Processes

From the results, we can see that the constraint handling strategy performs satisfactorily
for both disturbances scenarios. Despite being defined for this specific case study, this
strategy can be extended for systems with different constraint sets, which contain upper
and lower bounds on the inputs as well as linear constraints involving two or more inputs.

However, in this case, adjustments in the strategy devised in Figure 4.2 are most likely
necessary. Since the logic of the constraint handling reflects the process optimization
at hand, different problems will require different strategies. Also, if there are several
complicating constraints that involve more than one input, the constraint handling can
become more complicated.

4.4.4 Implementation on Lab Rig

From the simulations, LSESC is now merited for implementation in the lab. However, the
simulations does not necessarily correspond to what would happen in the real system. The
model is not necessarily perfect, and unexpected disturbances can occur. The chances of
having to change the tuning, or that the controller will not work at all, are present.

There can be noise in the measurements. If the input values are noisy, the input pertur-
bations can become less significant, especially if the amplitude is small compared to the
noise. This can result in poor estimation of the gradients. If this is the case, one would
probably have to increase the amplitude of the perturbation, in order to make it more sig-
nificant and get a better estimation of the gradients.

The considerations mentioned in Section 3.3.2, with applying the method to a real
process, should also be thought through. For further work the controller should be imple-
mented and tested on the experimental lab rig.
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4.5 Conclusion

LSESC as an optimization approach in the gas lifted oil well network model, with mul-
tiple input and constraints, works in the simulations. More inputs make the tuning more
challenging, since the number of tuning parameters is increased. Despite the fact that ESC
originally is an unconstrained optimization method, it can handle constraints. By using
active constraint control, along with ESC and some logic, the system is driven to its op-
timum, without violating the constraint, for two scenarios of disturbances. It should be
further investigated if the approach works for all set of disturbances

Assuming that the constraint handling method works, not only for the two scenarios
of disturbances, the method can be used in similar processes, where there are constraints
involving more than one input, in addition to upper an lower bounds on the inputs. In this
case, adjustments to the logical approach, in Figure 4.2, are likely necessary for fitting the
method to the new system.

From the simulations, the prospect of implementing LSESC on the experimental lab
rig, which is represented by the model in Section 4.1.1, is good. But even though the
method works in simulations, there is no guarantee that it would work on the actual rig,
and the possibility of needing to re-tune the parameters is present. This should be tested
and further investigated.
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Chapter 5
Conclusion

In this specialization project there was performed two case studies. From both case studies
it was clear that tuning the parameters for LSESC can be a challenge. In the first case study
a simple system with one input was studied, and some guidelines for the tuning parameters
was found, they are presented in Table 3.2. In Case Study 2, a gas lifted well network, with
three inputs was studied. More inputs made the tuning more difficult, since the number of
tuning parameters was increased.

In traditional ESC, a sinusoidal perturbation is used to excite the system, which can
be hard to implement. In LSESC, other dither signals can be used, such as a PRBS or
a square wave. It was shown that using a PRBS or a square wave as a dither gave good
performance, in Case Study 1 and Case Study 2, respectively.

Despite the fact that ESC originally is an unconstrained optimization method, it can
handle constraints. By using active constraint control, along with ESC and some logic,
the gas lifted well network, in Case Study 2, was driven to its optimum, without violating
its constraints, for two scenarios of disturbances. A step-by-step approach for the con-
straint handling was established. This approach can be used in similar processes, but some
adjustments may be necessary for fitting the method to a new system.

From the simulation results in Case Study 2, one can conclude that the prospect of
implementing LSESC on the experimental lab rig is good. However, there are no guarantee
that the it will work on the actual rig. This should be tested and further investigated.
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Appendix A
Gas Lifted Wells Model

The modelling for the gas lifted wells are based mass balances of the different phases,
density models, pressure models and flow models [9]. This results in a DAE on the form

ẋi = fi(xi, zi, ui, pi) (A.1)

gi(xi, zi, ui, pi) = 0 ∀i ∈ N = {1, .., nw} (A.2)

where fi(xi, zi, ui, pi) is a set of differential equations, and gi(xi, zi, ui, pi) is a set of
algebraic equations. The subscript i refers to a well i from a set of N = {1, .., nw} wells.
In this model there are three wells, so nw = 3. xi is the differential states, zi is the
algebraic states, ui is the decision variables and pi is the uncertain parameters. They are
given by

xi = [mgi moi ]
T

zi = [ρroi ρgri prhi
pbhi

wroi wpri wgri wlri ]
T

ui = [wgli ]
T

where mgi and moi is the gas and oil hold up, respectively. ρro,i is the mixture density
in the riser, ρgr,i is the gas density, prhi is the riser head pressure and pbhi is the pressure
below injection point. wroi is the oil rate from the resovoir, wgri is the riser head gas
production rate, wlri is the riser head liquid production rate and wpri is the riser head total
production rate. wgli is the gas lit rate, and the index i, refers to well i.
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The differential equations are given by

f = [df1 df2] (A.3)

and the algebraic equations are given by

g = [f1 f2 f3 f4 f5 f6 f7 f8] (A.4)

These equations are shown in the code for the dynamic model below.

A.1 ErosionRigDynModelGrad.m

1 f u n c t i o n [ F , S xx , S xp , L xz , L p ] = ErosionRigDynModelGrad ( p a r )
2 % S i m u l a t e s SS model o f t h e r i g wi th t h e da t a − d r i v e n r e s e r v o i r
3 % model
4

5 % I n p u t s :
6 % p a r = sys tem p a r a m e t e r s
7 %
8 % O u t p u t s :
9 % F : sys tem i n t e g r a t o r

10 % F xk , F pk = sys tem s e n s i t i v i t i e s
11 %
12 % Other m− f i l e s r e q u i r e d : none
13 % S u b f u n c t i o n s : none
14 % MAT− f i l e s r e q u i r e d : none
15 %
16 % Author : J u l i o Paez
17 % e m a i l : j u l i o . paez . o l i v e i r a @ u s p . b r
18 % June 2020 ; L a s t r e v i s i o n :
19

20 %a d d p a t h (’< yourpa th >/ c a s a d i −matlabR2014a −v3 . 5 . 1 ’ )
21 i m p o r t c a s a d i . *
22

23 %% P a r a m e t e r s
24 %number o f w e l l s
25 n w = p a r . n w ; %[ ]
26 %gas c o n s t a n t
27 R = p a r . R ; %[m3 Pa Kˆ ? 1 mol ˆ ? 1 ]
28 %m o l e c u l a r we ig th
29 Mw = p a r .Mw; %[ kg / mol ? ]
30

31 %p r o p e r t i e s
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32 %d e n s i t y o f o i l − dim : n w e l l s x 1
33 r h o o = p a r . r h o o ; %[ kg / m3]
34 %1cP o i l v i s c o s i t y
35 m u o i l = p a r . m u o i l ;% [ Pa s ]
36 %d e n s i t y o f gas
37 r h o g = p a r . r h o g ; %[ kg / m3]
38

39 %p r o j e c t
40 %w e l l p a r a m e t e r s − dim : n w e l l s x 1
41 L w = p a r . L w ; %[m]
42 H w = p a r . H w ; %[m]
43 D w = p a r . D w ; %[m]
44 A w = p a r . A w ;%[m2]
45

46 %w e l l below i n j e c t i o n − [m]
47 L bh = p a r . L bh ;
48 H bh = p a r . H bh ;
49 D bh = p a r . D bh ;
50 A bh = p a r . A bh ;%[m2]
51

52 %r i s e r − [m]
53 L r = p a r . L r ;
54 H r = p a r . H r ;
55 D r = p a r . D r ;
56 A r = p a r . A r ;%[m2]
57

58

59 %% System s t a t e s
60 %gas ho ldup
61 m g = MX. sym ( ’ m gr ’ , n w ) ; % 1 : 3 [ kg ]
62 %o i l ho ldup
63 m o = MX. sym ( ’ m or ’ , n w ) ; % 4 : 6 [ kg ]
64

65 %o i l r a t e from r e s e r v o i r
66 w ro = MX. sym ( ’ w ro ’ , n w ) ; % 7 : 9 [ kg / s ]
67 %r i s e r head t o t a l p r o d u c t i o n r a t e
68 w pr = MX. sym ( ’ w pr ’ , n w ) ; % 10 :12 [ kg / s ]
69

70 %r i s e r head p r e s s u r e
71 p r h = MX. sym ( ’ p r h ’ , n w ) ; % 13 :15 [ b a r ]
72 %p r e s s u r e − below i n j e c t i o n p o i n t ( bot tom h o l e )
73 p bh = MX. sym ( ’ p bh ’ , n w ) ; % 16 :18 [ b a r ]
74

75 %m i x t u r e d e n s i t y i n r i s e r
76 r h o r = MX. sym ( ’ r h o r ’ , n w ) ; % 19 :21 [100 kg / m3]
77 %d e n s i t y gas
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78 r h o g r = MX. sym ( ’ r h o g r ’ , n w ) ; % 22 :24 [ kg / m3]
79

80 %r i s e r head gas p r o d u c t i o n r a t e gas
81 w gr = MX. sym ( ’ w gr ’ , n w ) ; % 25 :27 [ kg / s ]
82 %r i s e r head gas p r o d u c t i o n r a t e gas
83 w l r = MX. sym ( ’ w l r ’ , n w ) ; % 28 :30 [ kg / s ]
84

85 %% System i n p u t
86 %gas l i f t r a t e
87 Q gl = MX. sym ( ’ w gl ’ , n w ) ; % 1 : 3 [ L / min ]
88 %v a l v e oppen ing
89 vo=MX. sym ( ’ vo ’ , n w ) ; % 4 : 6 [0 −1]
90 %v e l o c i t y pump
91 vpump=MX. sym ( ’ vpump ’ , 1 ) ; % 7 [%]
92

93 %% p a r a m e t e r s
94 % f i x e d
95 %r i s e r t e m p e r a t u r e
96 T r = MX. sym ( ’ T r ’ , 1 ) ; %[ oC ]
97 %s e p a r a t o r p r e s s u r e
98 p s = MX. sym ( ’ p s ’ , 1 ) ; %[ b a r ]
99 %time t r a n s f o r m a t i o n : CASADI i n t e g r a t e s a lways from 0 t o 1 and t h e USER

does t h e t ime
100 %s c a l i n g wi th T .
101 T = MX. sym ( ’T ’ , 1 ) ; %[ s ]
102

103 % e s t i m a b l e
104 %r e s e r v o i r da t a − d r i v e n model
105 r e s t h e t a = MX. sym ( ’ r e s t h e t a ’ , n w ) ;
106 %r i s e r v a l v e c h a r a c t e r i s t i c s
107 v a l t h e t a = MX. sym ( ’ v a l t h e t a ’ , n w ) ;%[m2]
108

109 %% Modeling
110 %c o n v e r s i o n
111 CR = 6 0 * 1 0 ˆ 3 ; % [ L / min ] −> [m3 / s ]
112 %o i l from r e s e r v o i r f l o w r a t e [ kg / s ]
113 f1 = −( w ro . * 1 e −2) . *CR . / r h o o + (1 e −2*( r e s t h e t a . * 1 e1 ) ) . * ( Q gl ) + ( vo

. ˆ 0 . 0 0 2 4 8 5 5 2 6 − 0 . 9 9 4 0 6 5 ) . * ( ( vpump*1 e2 ) . ˆ 2 − 0 . 0 0 3 7 6 0 8 8 8 . * ( Q gl . * ( vpump

*1 e2 ) ) . ˆ 2 ) ;
114

115 % t o t a l r i s e r p r o d u c t i o n [ kg / s ]
116 f2 = − ( w pr . * 1 e −2) + ( ( w gr . * 1 e −5) + ( w l r . * 1 e −2) ) ;
117 %r i s e r head p r e s s u r e [ Pa ]
118 f3 = − p r h . * 1 e5 + ( w pr . * 1 e −2) . ˆ 2 . / ( ( 1 e −4* v a l t h e t a ) . ˆ 2 . * ( r h o r . * 1 e2 ) ) +

p s . * 1 e5 ; %25
119 %bot tom h o l e p r e s s u r e [ Pa ]
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120 f4 = −p bh . * 1 e5 + ( p r h . * 1 e5 + ( r h o r . * 1 e2 ) . * 9 . 8 1 . * H r + 128 . * m u o i l . * ( L w
+ L r ) . * ( w ro . * 1 e −2) . / ( 3 . 1 4 . * D bh . ˆ 4 . * ( r h o r . * 1 e2 ) ) ) ;

121 %r i s e r d e n s i t y [1 e2 kg / m3]
122 f5 = −( r h o r . * 1 e2 ) + ( ( ( m g . * 1 e −4) + m o ) . * p r h . * 1 e5 . *Mw. * r h o o ) . / ( m o . *

p r h . * 1 e5 . *Mw + r h o o . *R. * T r . * ( m g . * 1 e −4) ) ;
123 %d e n s i t y gas wi th p r e s s u r e [ kg / m3]
124 f6 = − r h o g r + p r h . * 1 e5 . *Mw/ ( R* T r ) ;
125

126 % p r o d u c t i o n d i s t r i b u t i o n
127 xL = ( m o . / ( ( m g . * 1 e −4) + m o ) ) ;
128 %xG = 1 − xL ;
129 %Gas Mass p r o d u c t i o n [ kg / s ] / %O i l Mass p r o d u c t i o n [ kg / s ]
130 f7 = −( w l r . * 1 e −2) + xL . * ( w pr . * 1 e −2) ;
131 % f7 = −w gr + xG . * w pr ;
132 % Volume [V]
133 f8 = −(A w . * L w + A r . * L r ) + ( m o . / r h o o + ( m g . * 1 e −4) . / r h o g r ) ;
134

135 %dynamic : change t h e s e t o d i f f e r e n t i a l
136 %gas [ kg ]
137 df1 = −( w gr . * 1 e −5) + Q gl . / ( CR . / r h o g r ) ;
138 %l i q u i d [ kg ]
139 df2 = −( w l r . * 1 e −2) + ( w ro . * 1 e −2) ;
140

141 %o b j e c t i v e f u n c t i o n
142 J = −(− 1 0 * ( ( w ro ( 1 ) *1e −2) *CR/ r h o o ( 1 ) ) − 1 0 * ( ( w ro ( 2 ) *1e −2) *CR/ r h o o ( 2 ) )

− 1 0 * ( ( w ro ( 3 ) *1e −2) *CR/ r h o o ( 3 ) ) . . .
143 + 0 . 5 . * ( Q gl ( 1 ) ) + 0 . 5 . * ( Q gl ( 2 ) ) + 0 . 5 . * ( Q gl ( 3 ) ) ) ;
144 % Form t h e DAE sys tem
145 d i f f = v e r t c a t ( df1 , d f2 ) ;
146 a l g = v e r t c a t ( f1 , f2 , f3 , f4 , f5 , f6 , f7 , f8 ) ;
147

148 % g i v e p a r a m e t e r v a l u e s
149 a l g = s u b s t i t u t e ( a lg , p s , p a r . p s ) ;
150 a l g = s u b s t i t u t e ( a lg , T r , p a r . T r ) ;
151

152 % c o n c a t e n a t e t h e d i f f e r e n t i a l and a l g e b r a i c s t a t e s
153 x v a r = v e r t c a t ( m g , m o ) ;
154 z v a r = v e r t c a t ( w ro , w pr , p rh , p bh , r h o r , r h o g r , w gr , w l r ) ;
155 u v a r = v e r t c a t ( Q gl , vo , vpump ) ;
156 p v a r = v e r t c a t ( r e s t h e t a , v a l t h e t a , T ) ;
157

158 %end model ing
159

160 %% Ca sa d i commands
161 %d e c l a r i n g f u n c t i o n i n s t a n d a r d DAE form ( s c a l e d t ime )
162 %dae = s t r u c t ( ’ x ’ , x va r , ’ z ’ , z v a r , ’ p ’ , v e r t c a t ( u va r , p v a r ) , ’ ode ’ , T* d i f f , ’
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a lg ’ , a l g ) ;
163 dae = s t r u c t ( ’ x ’ , x va r , ’ z ’ , z v a r , ’ p ’ , v e r t c a t ( u va r , p v a r ) , ’ ode ’ ,T* d i f f , ’

a l g ’ , a lg , ’ quad ’ , J ) ;
164 %c a l l i n g t h e i n t e g r a t o r , t h e n e c e s s a r y i n p u t s a r e : l a b e l ; i n t e g r a t o r ;

f u n c t i o n wi th IO scheme of a DAE ( f o r m a l i z e d ) ; s t r u c t ( o p t i o n s )
165 F = i n t e g r a t o r ( ’F ’ , ’ i d a s ’ , dae ) ;
166

167 % %i n t e g r a t i o n r e s u l t s
168 % Fend = F ( ’ x0 ’ , dxk , ’ z0 ’ , zk , ’ p ’ , [ uk ; t h e t a k ; p a r . T ] ) ;
169 %
170 % %e x t r a c t i n g t h e r e s u l t s ( from sy m b o l i c t o n u m e r i c a l )
171 % xk 1 = f u l l ( Fend . x f ) ;
172 % zk 1 = f u l l ( Fend . z f ) ;
173

174 % ================================================
175 % C a l c u l a t i n g s e n s i t i v i t y m a t r i x ( t h e t a )
176 % ================================================
177

178 % S xx = F u n c t i o n ( ’ s e n s S t a S t a t e s ’ ,{ x va r , z v a r , u va r , p v a r } ,{ j a c o b i a n (
v e r t c a t ( T* d i f f , a l g ) , v e r t c a t ( x va r , z v a r ) ) } ) ;

179 % S xp = F u n c t i o n ( ’ s e n s S t a S t a t e s ’ ,{ x va r , z v a r , u va r , p v a r } ,{ j a c o b i a n (
v e r t c a t ( T* d i f f , a l g ) , v e r t c a t ( u va r , p v a r ) ) } ) ;

180 % % S zz = F . f a c t o r y ( ’ s e n s S t a S t a t e s ’ ,{ ’ x0 ’ , ’ z0 ’ , ’ p ’} ,{ ’ j a c : z f : z0 ’} ) ;
181 % % S xz = F . f a c t o r y ( ’ s e n s S t a S t a t e s ’ ,{ ’ x0 ’ , ’ z0 ’ , ’ p ’} ,{ ’ j a c : x f : z0 ’} ) ;
182 % % S zx = F . f a c t o r y ( ’ s e n s S t a S t a t e s ’ ,{ ’ x0 ’ , ’ z0 ’ , ’ p ’} ,{ ’ j a c : z f : x0 ’} ) ;
183 %
184 % % S xp = F . f a c t o r y ( ’ s e n s P a r S t a t e s ’ ,{ ’ x0 ’ , ’ z0 ’ , ’ p ’} ,{ ’ j a c : x f : p ’} ) ;
185 % % S zp = F . f a c t o r y ( ’ s e n s P a r S t a t e s ’ ,{ ’ x0 ’ , ’ z0 ’ , ’ p ’} ,{ ’ j a c : z f : p ’} ) ;
186 % %
187 % L xz = F u n c t i o n ( ’ s e n s S t a S t a t e s ’ ,{ x va r , z v a r , u va r , p v a r } ,{ j a c o b i a n ( J ,

v e r t c a t ( x va r , z v a r ) ) } ) ;
188 % L p = F u n c t i o n ( ’ s e n s S t a S t a t e s ’ ,{ x va r , z v a r , u va r , p v a r } ,{ j a c o b i a n ( J ,

v e r t c a t ( u va r , p v a r ) ) } ) ;
189

190 S xx = F u n c t i o n ( ’ s e n s S t a S t a t e s ’ ,{ x va r , z v a r , u va r , p v a r } ,{ j a c o b i a n (
v e r t c a t ( T* d i f f , a l g ) , v e r t c a t ( x va r , z v a r ) ) } ) ;

191 S xp = F u n c t i o n ( ’ s e n s S t a S t a t e s ’ ,{ x va r , z v a r , u va r , p v a r } ,{ j a c o b i a n (
v e r t c a t ( T* d i f f , a l g ) , v e r t c a t ( u va r , p v a r ) ) } ) ;

192 L xz = F u n c t i o n ( ’ s e n s S t a S t a t e s ’ ,{ x va r , z v a r , u va r , p v a r } ,{ j a c o b i a n ( J ,
v e r t c a t ( x va r , z v a r ) ) } ) ;

193 L p = F u n c t i o n ( ’ s e n s S t a S t a t e s ’ ,{ x va r , z v a r , u va r , p v a r } ,{ j a c o b i a n ( J ,
v e r t c a t ( u va r , p v a r ) ) } ) ;

194 end
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Appendix B
MATLAB Code: Case study 1

In this appendix the code for the simulations in Case Study 1 is presented. caseStudy1.m
is the main script, Plant.m represent the biochemical reactor and LSE.m is the Least
Square Estimation with one input.

B.1 caseStudy1.m

1 c l e a r
2 c l o s e a l l
3 c l c
4 %% S e t t i n g t h e sys tem
5 %d e c l a r i n g i n t e g r a t i o n p a r a m e t e r s
6 T = 2000 ; % t ime h o r i z o n
7 d t = 1 ; %s a m p l i n g t ime
8 N = T* d t ;
9

10 %i n i t i a l c o n d i t i o n s
11 %s t a t e s
12 x10 = 1 ; %[ g / L ] − b iomass
13 x20 = 1 ; %[ g / L ] − s u b s t r a t e
14 x0 = [ x10 ; x20 ] ;
15 %i n p u t s
16 u0 = 0 . 3 5 ; %[ h ˆ −1] − D i l u t i o n Rate : F /V
17

18 %d i s t u r b a n c e s
19 mumax1 = 0 . 5 ;
20 mumax2 = 0 . 5 5 ;
21 [ uOpt1 , p s i O p t 1 ] = S t e a d y S t a t e O p t i m i z a t i o n ( x0 , mumax1 ) ;
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22 [ uOpt2 , p s i O p t 2 ] = S t e a d y S t a t e O p t i m i z a t i o n ( x0 , mumax2 ) ;
23

24 mumax = [ mumax1* ones ( 1 ,N* d t / 2 ) , mumax2* ones ( 1 ,N* d t / 2 + 1 ) ] ;
25 p s i O p t = [ p s i O p t 1 * ones ( 1 ,N* d t / 2 ) , p s i O p t 2 * ones ( 1 ,N* d t / 2 + 1 ) ] ;
26 uOpt = [ uOpt1 * ones ( 1 ,N* d t / 2 ) , uOpt2 * ones ( 1 ,N* d t / 2 + 1 ) ] ;
27

28 %C o n t r o l p a r a m e t e r s
29 N b u f f e r = 100 ; %B u f f e r l e n t h
30 KI = 0 . 0 0 0 2 ; %I n t e g r a l g a i n
31 a = 0 . 0 0 0 1 ; %Ampl i tude p e r t r u b a t i o n
32 w = 2* p i * 1 / 5 ;
33

34

35 %making PRBS d i t h e r
36 c i n i t = 9 ;
37 [ seq , c i n i t ] = nrPRBS ( c i n i t , T , ’ MappingType ’ , ’ s i g n e d ’ ) ;
38 seq = a * seq ;
39

40 %% For p l o t t i n g
41 %time a r r a y
42 t imeSim = [ ] ;
43 %s t a t e s a r r a y
44 xSim = [ ] ;
45 %o p t i m a l RTO i n p u t s a r r a y − d i l l u t i o n r a t e [ h ˆ −1]
46 uSim = [ ] ;
47 %p l a n t p r o f i t − d i l l u t i o n r a t e [ g / ( L h ) ]
48 ps iS im = [ ] ;
49

50 %% S i m u l a t i o n i n i t i a l i z a t i o n
51 t ime = 0 ;
52 xk = x0 ;
53 uk = u0 ;
54

55 %f o r p l o t t i n g
56 t imeSim = [ timeSim , t ime ] ;
57 xSim = [ xSim , xk ] ;
58 uSim = [ uSim , uk ] ;
59 ps iS im = [ psiSim , uk*xk ( 1 ) ] ;
60

61

62 %% S i m u l a t i o n
63 J b u f f e r = [ ] ;
64 u b u f f e r = [ ] ;
65 J u h a t S i m = [ 0 ] ;
66 J u h a t 2 S i m = [ 0 ] ;
67 Ju Sim =[ uk*xk ( 1 ) ] ;
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68

69 Jk = uk*xk ( 1 ) ;
70

71 f o r k =1:N
72

73 % Upda t ing / making b u f f e r l i s t
74 i f k<=N b u f f e r
75 J b u f f e r = [ J b u f f e r , Jk ] ;
76 u b u f f e r = [ u b u f f e r , uk ] ;
77 e l s e
78 J b u f f e r = [ J b u f f e r ( 2 : end ) , Jk ] ;
79 u b u f f e r = [ u b u f f e r ( 2 : end ) , uk ] ;
80 end
81

82 %S i m u l a t i n g t h e p l a n t b e h a v i o r d u r i n g d t
83 [ xk , Jk , dqdu ] = P l a n t ( xk , uk , d t , mumax ( k ) ) ;
84

85 %% LSE − G r a d i e n t e s t i m a t i o n
86 i f k>N b u f f e r
87 J u h a t = LSE ( J b u f f e r , u b u f f e r ) ;
88 e l s e
89 J u h a t = 0 ;
90 J u h a t 2 = 0 ;
91 end
92

93 J u h a t 2 S i m = [ Ju ha t2S im , J u h a t 2 ] ;
94 J u h a t S i m = [ Ju ha tS im , J u h a t ] ;
95 Ju Sim = [ Ju Sim , dqdu ] ;
96

97 % I − c o n t r o l l
98 uk = uk + KI* J u h a t ;
99

100 %Adding d i t h e r t o i n p u t s i g n a l , chose one of them
101 %S i n s o i d a l p e r t r u b a t i o n
102 uk = uk *(1 + a * s i n (w*k ) ) ;
103 %PRBS
104 %uk = uk + seq ( k ) ;
105 i f uk<0
106 uk = 0 ;
107 end
108

109 %C o n s t r a i n t s on D
110 i f uk<0
111 uk = 0 ;
112 e l s e i f uk>1
113 uk = 1 ;
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114 end
115

116 %f o r p l o t t i n g
117 t imeSim = [ timeSim , k* d t ] ;
118 xSim = [ xSim , xk ] ;
119 uSim = [ uSim , uk ] ;
120 ps iS im = [ psiSim , uk*xk ( 1 ) ] ;
121

122 sum pro f = sum ( ps iS im ) ; %use t o compare p r o f i t
123

124 end
125 %% p l o t d a t a
126 f i g u r e ( 1 )%p l o t s t a t e s
127 p l o t ( t imeSim , xSim ( 1 , 1 : end ) , ’ b ’ , t imeSim , xSim ( 2 , 1 : end ) , ’ r ’ )
128

129 xl im ( [ 0 , t imeSim ( end ) ] )
130 x l a b e l ( ’ t [ h ] ’ )
131 y l a b e l ( ’ C o n c e n t r a t i o n [ g / L ] ’ )
132 l e g e n d ({ ’ x 1 : Biomass ’ , ’ x 2 : S u b s t r a t e ’ } ) ;
133 t i t l e ( ’ Measured v a r i a b l e s ’ )
134

135 f i g u r e ( 2 )
136 %s g t i t l e ( ’ S i m u l a t i o n R e u l t s f o r t h e Base Case ’ )
137 s u b p l o t ( 2 , 1 , 1 ) %p l o t i n p u t s and o p t i n p u t s
138 s t a i r s ( t imeSim , uSim , ’ b ’ )
139 ho ld on
140 s t a i r s ( t imeSim ( 2 : end ) , uOpt ( 1 , 1 : l e n g t h ( t imeSim ) −1) , ’ b : ’ )%p r e v i o u s l y

c a l c u l a t e d
141

142 x l a b e l ( ’ t [ h ] ’ )
143 y l a b e l ( ’ D i l l u t i o n r a t e [ h ˆ{ −1} ] ’ )
144 l e g e n d ({ ’ u { p l a n t } ’ , ’ u { o p t } ’ } ) ;
145 t i t l e ( ’ M a n i p u l a t e d v a r i a b l e ’ )
146

147 yl im ( [ min ( uSim ) −0 .01 , max ( uSim ) + 0 . 0 5 ] )
148

149 s u b p l o t ( 2 , 1 , 2 )%p l o t p r o f i t and o p t p r o f i t
150 p l o t ( t imeSim , psiSim , ’ b ’ )
151 ho ld on
152 s t a i r s ( t imeSim ( 2 : end ) , p s i O p t ( 1 , 1 : l e n g t h ( t imeSim ) −1) , ’ b : ’ )
153

154 x l a b e l ( ’ t [ h ] ’ )
155 y l a b e l ( ’\ p s i [ g / ( L h ) ] ’ )
156 l e g e n d ({ ’\ p s i { p l a n t } ’ , ’\ p s i { o p t } ’ } ) ;
157 t i t l e ( ’ I n s t a n t a n e o u s p r o f i t ’ )
158 yl im ( [ ps iS im ( 1 ) −0 .01 , max ( ps iS im ) + 0 . 0 5 ] )
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159

160 f i g u r e ( 4 )
161 p l o t ( t imeSim , J u h a t S i m )
162 ho ld on
163 p l o t ( t imeSim , Ju Sim )
164 l e g e n d ( ’ J u h a t ’ , ’ Ju ’ )

B.2 Plant.m

1 f u n c t i o n [ xend , Jend , dqdu ] = P l a n t ( x0 , D, dt , mumax )
2 % dynamic e q u a t i o n s f o r b i o r e a c t o r
3 % B e q u e t t e book pg . 534
4

5 % s t a t e v a r i a b l e s
6 % x ( 1 ) = biomass − ” bugs ” t h a t consume t h e s u b s t r a t e
7 % x ( 2 ) = s u b s t r a t e
8 %
9 % D = d i l u t i o n r a t e ( F /V, t ime ˆ −1)

10 % Y = y i e l d b iomass / s u b s t r a t e
11 % mu = s p e c i f i c growth r a t e
12 % mumax = p a r a m e t e r ( bo th Monod and S u b s t r a t e I n h i b i t i o n )
13 % km = p a r a m e t e r ( bo th Monod and S u b s t r a t e I n h i b i t i o n )
14 % k1 = p a r a m e t e r ( S u b s t r a t e I n h i b i t i o n only , k1 = 0 f o r Monod )
15 % s f = s u b s t r a t e f e e d c o n c e n t r a t i o n
16

17 % c a l l i n g CasADi
18 a d d p a t h ( ’ / Use r s / f r i d a / Documents /MATLAB/ c a s a d i −osx −matlabR2015a −v3 . 5 . 5 ’ )
19 i m p o r t c a s a d i . *
20

21 %%%%%%%%%%%%%%%%%%
22 % p a r a m e t e r v a l u e s
23 %%%%%%%%%%%%%%%%%%
24 Y = 0 . 4 ;
25 km = 0 . 1 2 ;
26 s f = 4 . 0 ;
27 % k1 = 0 . 4 5 4 5 ;
28

29 %%%%%%%%%%%%%%%%%%
30 % D e c l a r e model v a r i a b l e s
31 %%%%%%%%%%%%%%%%%%
32

33 x1 = SX . sym ( ’ x1 ’ ) ; %[ g / L ] − biomass
34 x2 = SX . sym ( ’ x2 ’ ) ; %[ g / L ] − s u b s t r a t e
35 x = [ x1 ; x2 ] ;
36
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37 %%%%%%%%%%%%%%%%%%
38 % D e c l a r e sys tem i n p u t s
39 %%%%%%%%%%%%%%%%%%
40 u = SX . sym ( ’D’ ) ; %[ h ˆ −1] − D i l u t i o n Rate : F /V
41

42 %%%%%%%%%%%%%%%%%
43 % S u b s t r a t e I n h i b i t i o n e x p r e s s i o n f o r s p e c i f i c growth r a t e
44

45 %%%%%%%%%%%%%%%%%%
46 % Monod
47 %%%%%%%%%%%%%%%%%%
48 mu = mumax*x2 / ( km+x2 ) ;
49

50

51 %%%%%%%%%%%%%%%%%%
52 % dynamic e q u a t i o n s
53 %%%%%%%%%%%%%%%%%%
54

55 xdo t = [ ( mu − u ) *x1 ;
56 ( s f − x2 ) *u − mu*x1 /Y ] ;
57

58 %%%%%%%%%%%%%%%%%%
59 % q u a d r a t u r e (OF)
60 %%%%%%%%%%%%%%%%%%
61 L = x1*u ;
62

63 %%%%%%%%%%%%%%%%%%
64 % I n t e g r a t i n g t h e sys tem
65 %%%%%%%%%%%%%%%%%%
66

67 % F o r m u l a t e d i s c r e t e t ime dynamics
68 % CVODES from t h e SUNDIALS s u i t e
69 ode = s t r u c t ( ’ x ’ , x , ’ p ’ , u , ’ ode ’ , xdot , ’ quad ’ ,L ) ;
70

71 % b u i l d i n g t h e i n t e g r a t o r
72 o p t s = s t r u c t ( ’ t f ’ , d t ) ;
73 F = i n t e g r a t o r ( ’F ’ , ’ cvodes ’ , ode , o p t s ) ;
74 sim = F ( ’ x0 ’ , x0 , ’ p ’ ,D) ;
75

76 %G e t t i n g t h e s t a t e s and c o s t f u n c t i o n
77 xend = f u l l ( sim . x f ) ;
78 Jend = f u l l ( sim . q f ) ;
79 %%%%%%%%%%%%%%%%%%
80 % C a l c u l a t i n g s e n s i t i v i t i e s wi th CASADI MY WAY
81 %%%%%%%%%%%%%%%%%%
82 %c a l c u l a t i n g j a c o b i a n w. r . t . u
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83 F u = F u n c t i o n ( ’ s e n s i t i v i t y ’ ,{x , u} ,{ j a c o b i a n ( xdot , u ) } ) ;
84 %c a l c u l a t i n g j a c o b i a n w. r . t . x
85 F x = F u n c t i o n ( ’ s e n s i t i v i t y ’ ,{x , u} ,{ j a c o b i a n ( xdot , x ) } ) ;
86

87 %c a l c u l a t i n g SS s e n s i t i v i t i e s
88 S = − f u l l ( F x ( xend ,D) ) \ f u l l ( F u ( xend ,D) ) ;
89

90 %c a l c u l a t i n g OF s t e a d y − s t a t e g r a d i e n t
91 dqdu = D*S ( 1 ) + xend ( 1 ) ;

B.3 LSE.m

1 f u n c t i o n J u h a t = LSE2 ( J b u f f e r , u b u f f e r )
2 x = u b u f f e r ’ ;
3 y = J b u f f e r ’ ;
4 t h e t a = p o l y f i t ( x , y , 1 ) ;
5 J u h a t = t h e t a ( 1 ) ;
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Appendix C
MATLAB Code: Case study 2

In this appendix the codes used for the simulations in Case Study 2 are presented. The
codes in this case study are made to fit the actual lab rig, so the optimization method can
easily be tested on the rig. Main.m is the main script, in this file you can set up and
change the disturbances. The optimization is in LabViewES7.m and LSE2.m is the
least square estimation with multiple inputs. The model is in Appendix A.1.

ResultsPlotting.m is the plotting of the results, ParametersGasLiftModel.m
is the parameters used in the model, InitializationLabViewRTO.m is a configu-
ration file and InitialConditionGasLift3.m sets the initial conditions.

C.1 Main.m

1 % Runs a mock−up RTO problem , where t h e model and t h e sys tem a r e e q u a l and
t h e d i s t u r b a n c e s e t u p i s pre − d e t e r m i n e d .

2 % Other m− f i l e s r e q u i r e d : none
3 % S u b f u n c t i o n s : none
4 % MAT− f i l e s r e q u i r e d : none
5 c l e a r
6 c l o s e a l l
7 c l c
8

9 %n o i s e seed
10 rng ( ’ d e f a u l t ’ )
11 %% S i m u l a t i o n t u n i n g
12 %p a r a m e t e r s
13 p a r P l a n t = P a r a m e t e r s G a s L i f t M o d e l ;
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14

15 %i n i t i a l c o n d i t i o n
16 [ dxP lan t0 , z P l a n t 0 , u P l a n t 0 , t h e t a P l a n t 0 ] = I n i t i a l C o n d i t i o n G a s L i f t 3 ( p a r P l a n t

) ;
17

18 % s e t t i n g up t h e d i s t u r b a n c e s
19 t h e t a P l a n t A r r a y = l o a d ( ’ t h e t a P l a n t ’ ) ; %p r e v i o u s l y computed
20

21 % model i n t e g r a t o r s ( s c a l e d v a r i a b l e s )
22 %[ F , F xk , F pk , F u , F x ] = ErosionRigDynModel ( p a r P l a n t ) ;
23 [ F , S xx , S xp , L x , L u ] = ErosionRigDynModelGrad ( p a r P l a n t ) ;
24

25 %% Run c o n f i g u r a t i o n f i l e
26 I n i t i a l i z a t i o n L a b V i e w R T O %h e r e we use t h e same s y n t a x as i n t h e r i g
27

28 %% c r e a t i n g s i m u l a t i o n v e c t o r
29 % d1 d2 d3
30 % w1 : 45% −> 45% −> 35%
31 % w2 : 45% −> 35% −> 35%
32 % w3 : 35% −> 35% −> 35%
33 % 10 m i n u t e s each s t e p −> 10*60 = 600 p o i n t s
34 d l e n g t h = 600 ;
35

36 % time l i m i t s found manua l ly
37 d 4 5 t h e t a = mean ( t h e t a P l a n t A r r a y . v a l u e ( : , 1 : 1 1 4 ) , 2 ) ;
38 d 3 5 t h e t a = mean ( t h e t a P l a n t A r r a y . v a l u e ( : , 7 4 1 : 8 3 4 ) , 2 ) ;
39

40 %c r e a t i n g d i s t u r b a n c e a r r a y
41 t h e t a d 1 = [ d 4 5 t h e t a ( 1 ) ;
42 d 4 5 t h e t a ( 2 ) ;
43 d 3 5 t h e t a ( 3 ) ;
44 d 4 5 t h e t a ( 4 ) ;
45 d 4 5 t h e t a ( 5 ) ;
46 d 3 5 t h e t a ( 6 ) ] . * ones ( 6 , d l e n g t h ) ;
47

48 t h e t a d 2 = [ d 4 5 t h e t a ( 1 ) ;
49 d 3 5 t h e t a ( 2 ) ;
50 d 3 5 t h e t a ( 3 ) ;
51 d 4 5 t h e t a ( 4 ) ;
52 d 3 5 t h e t a ( 5 ) ;
53 d 3 5 t h e t a ( 6 ) ] . * ones ( 6 , d l e n g t h ) ;
54

55 t h e t a d 3 = [ d 3 5 t h e t a ( 1 ) ;
56 d 3 5 t h e t a ( 2 ) ;
57 d 3 5 t h e t a ( 3 ) ;
58 d 3 5 t h e t a ( 4 ) ;
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59 d 3 5 t h e t a ( 5 ) ;
60 d 3 5 t h e t a ( 6 ) ] . * ones ( 6 , d l e n g t h +300) ;
61

62 t h e t a A r r a y = [ t h e t a d 1 , t h e t a d 2 , t h e t a d 3 ] ;
63

64 d i s t A r r a y = [ [ 0 . 4 5 ; 0 . 4 5 ; 0 . 3 5 ; 0 . 4 ] . * ones ( 4 , d l e n g t h ) ,
[ 0 . 4 5 ; 0 . 3 5 ; 0 . 3 5 ; 0 . 4 ] . * ones ( 4 , d l e n g t h ) , [ 0 . 3 5 ; 0 . 3 5 ; 0 . 3 5 ; 0 . 4 ] . * ones ( 4 ,
d l e n g t h + 1+300) ] ;

65

66 %% S i m u l a t i o n i n i t i a l i z a t i o n
67 %s i m u l a t i o n p a r a m e t e r s
68 n I n i t = 1 ; %[ s ]
69 n F i n a l = s i z e ( t h e t a A r r a y , 2 ) ; %[ s ]
70 d e l t a T = 1 ; %[ s ]
71 p a r P l a n t . T = 1 ; %[ s ]
72 t g r i d = ( n I n i t : p a r P l a n t . T : n F i n a l ) / 6 0 ; %one measurements p e r second
73 %% C o n t r o l p a r a m e t e r
74 KI1 = 0 . 0 2 ;
75 KI2 = 0 . 0 2 ;
76 KI3 = 0 . 0 1 ;
77 N = 3 0 ;
78 %S e t t i n g up s q u a r e wave d i t h e r
79 a = 0 . 0 1 ;
80 f r e q 1 =6;
81 f r e q 2 =14;
82 f r e q 3 =10;
83

84 o f f s e t =0 ;
85 amp=a ;
86 du ty =50;
87 t =0 : d e l t a T : n F i n a l +10;
88 sq wave1= o f f s e t +amp* s q u a r e ( f r e q 1 . * t , du ty ) ;
89 sq wave2= o f f s e t +amp* s q u a r e ( f r e q 2 . * t , du ty ) ;
90 sq wave3= o f f s e t +amp* s q u a r e ( f r e q 3 . * t , du ty ) ;
91

92 d i t h e r 1 = sq wave1 ;
93 d i t h e r 2 = sq wave2 ;
94 d i t h e r 3 = sq wave3 ;
95 %% C o n t r o l l i m i t s
96 w g l t o t m a x = 5 ;
97 w gl max = 3 ;
98 w gl min = 1 ;
99

100 %t o make s u r e t h a t t h e p e r t r u b a t i o n do n o t g e t us ove r max l i m i t
101 w g l t o t m a x = 5 − 3* a ;
102 %% Run mock−up loop
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103 % a r r a y s f o r p l o t t i n g
104 f l a g A r r a y = [ ] ;
105 SSDArray = [ ] ;
106 o f A r r a y = [ ] ;
107 t h e t a H a t A r r a y = [ ] ;
108 x E s t A r r a y = [ ] ;
109 xOptArray = [ ] ;
110 uOptArray = [ ] ;
111 uImpArray = [ ] ;
112

113 x P l a n t A r r a y = [ ] ;
114 z P l a n t A r r a y = [ ] ;
115 m e a s P l a n t A r r a y = [ ] ;
116 o f P l a n t A r r a y = [ ] ;
117

118 J P l a n t A r r a y = [ ] ;
119 t o t g a s = [ ] ;
120 O v e c t o r A r r a y = [ ] ;
121 J u h a t A r r a y = [ ] ;
122 d o f P l a n t A r r a y = [ ] ;
123 sumOArray = [ ] ;
124 % i n i t i a l i z i n g s i m u l a t i o n
125 % s t a t e s
126 dxk = d x P l a n t 0 ;
127 zk = z P l a n t 0 ;
128 J u h a t = [ 0 ; 0 ; 0 ; 0 ] ;
129

130 % i n p u t s
131 O v e c t o r = u P l a n t 0 ( 1 : 3 ) ’ ; % we use t h i s name f o r c o n s i s t e n c y wi th f i l e

LabViewMPC .m
132 uk = [ O vec to r ’ ; d i s t A r r a y ( : , 1 ) ] ;
133 u P l a n t A r r a y = uk ;% i n o r d e r t o a v o i d s h i f t i n g t h e i n p u t a r r a y one s t e p

ahead
134

135 f o r kk = 1 : n F i n a l
136

137 % p r i n t i n g t h e loop e v o l u t i o n
138 f p r i n t f ( ’ kk >>> %6.4 f [ min ]\ n ’ , t g r i d ( kk ) )
139

140 % i n t e g r a t i n g t h e sys tem ( t h e model s am p l i n g t ime i s d e f i n e d by
141 Fend = F ( ’ x0 ’ , dxk , ’ z0 ’ , zk , ’ p ’ , [ uk ; t h e t a A r r a y ( : , kk ) ; p a r P l a n t . T ] ) ; %

model wi th t h e u p d a t e d p a r a m e t e r s
142

143 %e x t r a c t i n g t h e r e s u l t s ( from sy m b o l i c t o n u m e r i c a l )
144 dxk = f u l l ( Fend . x f ) ;
145 zk = f u l l ( Fend . z f ) ;
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146 J= f u l l ( Fend . q f ) ; %− ( sum ( O v e c t o r ) −8) ;
147

148 %comput ing t h e g r a d i e n t s
149 S = − f u l l ( S xx ( dxk , zk , uk , [ t h e t a A r r a y ( : , kk ) ; p a r P l a n t . T ] ) ) \ f u l l ( S xp ( dxk

, zk , uk , [ t h e t a A r r a y ( : , kk ) ; p a r P l a n t . T ] ) ) ;
150 dqdu = f u l l ( L x ( dxk , zk , uk , [ t h e t a A r r a y ( : , kk ) ; p a r P l a n t . T ] ) ) *S + f u l l ( L u

( dxk , zk , uk , [ t h e t a A r r a y ( : , kk ) ; p a r P l a n t . T ] ) ) ;
151

152 x P l a n t A r r a y = [ x P l a n t A r r a y , dxk ] ;
153 z P l a n t A r r a y = [ z P l a n t A r r a y , zk ] ;
154 m e a s P l a n t A r r a y = [ measP lan tAr ray , p a r .H* zk +

0 . 0 1 * [ 0 . 1 ; 0 . 1 ; 0 . 1 ; 0 . 0 0 1 ; 0 . 0 0 1 ; 0 . 0 0 1 ] . * randn ( 6 , 1 ) ] ; %ad d i ng a r t i f i c i a l
n o i s e t o t h e measurements

155 o f P l a n t A r r a y = [ o f P l a n t A r r a y , 2 ] ;
156 J P l a n t A r r a y = [ J P l a n t A r r a y , J ] ;
157 O v e c t o r A r r a y =[ O v e c t o r A r r a y , O vec to r ’ ] ;
158 J u h a t A r r a y = [ J u h a t A r r a y , J u h a t ] ;
159 d o f P l a n t A r r a y = [ d o f P l a n t A r r a y , dqdu ( 1 : 3 ) ’ ] ;
160 sumOArray = [ sumOArray , sum ( O v e c t o r ) ] ;
161

162 i f kk>N
163 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
164 %! ! ! I ’m r e a r r a n g i n g a l l t h e v e c t o r s here , so can t h e be e x a c t l y%
165 %t h e same as i n t h e a c t u a l r i g %
166 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
167 % v a l u e s o f t h e measured v a r i a b l e s f o r t h e l a s t 30 s e c o n d s ( dim =

ny [ 1 2 ] X 30)
168 % 9 : FI −101 [ l / min ]
169 %1 1 : FI −102 [ l / min ]
170 %1 3 : FI −103 [ l / min ]
171 % 3 : FIC −104 [ s l / min ]
172 % 5 : FIC −105 [ s l / min ]
173 % 7 : FIC −106 [ s l / min ]
174 %1 4 : dP −101 [ mbar D]
175 %1 5 : dP −102 [ mbar D]
176 %1 6 : dP −103 [ mbar D]
177 %1 8 : PI −101 [ mbar G]
178 %2 0 : PI −102 [ mbar G]
179 %2 2 : PI −103 [ mbar G]
180

181 I v e c t o r = [ m e a s P l a n t A r r a y ( 1 , ( kk −(N−1) ) : kk ) ;
182 m e a s P l a n t A r r a y ( 2 , ( kk −(N−1) ) : kk ) ;
183 m e a s P l a n t A r r a y ( 3 , ( kk −(N−1) ) : kk ) ;
184 O v e c t o r A r r a y ( 1 , ( kk −(N−1) ) : kk ) ;
185 O v e c t o r A r r a y ( 2 , ( kk −(N−1) ) : kk ) ;
186 O v e c t o r A r r a y ( 3 , ( kk −(N−1) ) : kk ) ;
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187 %u P l a n t A r r a y ( 3 , ( kk −29) : kk ) ;
188 ones ( 3 ,N) ; %dummy v a l u e s −−> i n t h e a c t u a l r i g , t h e y

w i l l be DP
189 m e a s P l a n t A r r a y ( 4 , ( kk −(N−1) ) : kk ) ;
190 m e a s P l a n t A r r a y ( 5 , ( kk −(N−1) ) : kk ) ;
191 m e a s P l a n t A r r a y ( 6 , ( kk −(N−1) ) : kk ) ] ;
192 % v a l u e s o f t h e i n p u t s ( gas l i f t ) o f t h e l a s t o p t i m i z a t i o n run (

dim = nQg [ 3 ] X 1)
193 O v e c t o r = u P l a n t A r r a y ( 1 : 3 , kk − 1) ;
194

195 % v a l u e s o f t h e c o n t r o l l e d v a r i a b l e s ( dim = nu [ 7 ] X 1)
196 P v e c t o r = [ uk ( 4 ) ;
197 uk ( 5 ) ;
198 uk ( 6 ) ;
199 uk ( 7 )
200 uk ( 1 ) ;
201 uk ( 2 ) ;
202 uk ( 3 ) ] ;
203

204 %Adding v a l u e s i n t o b u f f e r
205 u b u f f e r = [ u P l a n t A r r a y ( 1 , ( kk −(N−1) ) : kk ) ;
206 u P l a n t A r r a y ( 2 , ( kk −(N−1) ) : kk ) ;
207 u P l a n t A r r a y ( 3 , ( kk −(N−1) ) : kk ) ] ;
208

209 J b u f f e r = J P l a n t A r r a y ( 1 , ( kk −(N−1) ) : kk ) ;
210

211 % r u n n i n g o p t i m i z a t i o n code
212 LabViewES7
213

214 e l s e
215 J u h a t = [ 0 ; 0 ; 0 ; 0 ] ;
216 end
217

218 %Adding d i t h e r t o i n p u t
219 i n p u t = [ O v e c t o r ( 1 ) + d i t h e r 1 ( kk ) , O v e c t o r ( 2 ) + d i t h e r 2 ( kk ) , O v e c t o r

( 3 ) + d i t h e r 3 ( kk ) ] ;
220 O v e c t o r = i n p u t ;
221

222 uk = [ O vec to r ’ ; d i s t A r r a y ( : , kk + 1) ] ;
223

224 i f kk ˜= l e n g t h ( t g r i d ) % i n o r d e r t o a v o i d s h i f t i n g t h e i n p u t a r r a y
one s t e p ahead

225 u P l a n t A r r a y = [ u P l a n t A r r a y , uk ] ;
226 end
227 end
228
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229 tgr idRTO = ( 3 1 : 1 0 : n F i n a l ) / 6 0 ; %one measurements p e r second
230

231 %P r e v i o u s c a l c u l a t e d optimum
232 l o a d ( ’ R T O r e s u l t s u n c 2 . mat ’ ) ;
233 s ave ( name , ’ tgr idRTO ’ , ’ x E s t A r r a y ’ , ’ xOptArray ’ , ’ u P l a n t A r r a y ’ , ’ t h e t a H a t A r r a y ’

, ’ SSDArray ’ , ’ f l a g A r r a y ’ , ’ uOptArray ’ , ’ uImpArray ’ , ’ o f A r r a y ’ ) ;
234

235 tgr idRTO = ( 3 1 : 1 0 : n F i n a l +10) / 6 0 ;
236 r1 = [ uImpArray ( 1 , : ) , uImpArray ( 1 , end ) * ones ( 1 , 3 1 ) ] ;
237 r2 = [ uImpArray ( 2 , : ) , uImpArray ( 2 , end ) * ones ( 1 , 3 1 ) ] ;
238 r3 = [ uImpArray ( 3 , : ) , uImpArray ( 3 , end ) * ones ( 1 , 3 1 ) ] ;
239 uImpArray = [ r1 ; r2 ; r3 ] ;
240 %%
241 R e s u l t s P l o t t i n g

C.2 LabViewES7.m

1 % Main program
2 % Run I n i t i a l i z a t i o n f i l e f i r s t
3

4 %%%%%%%%%%%%%%%%
5 % Get V a r i a b l e s
6 %%%%%%%%%%%%%%%%
7 % % s e t p o i n t o f l i q u i d f l o w r a t e
8 % ys1 = v e c t o r ( 1 ) ;
9 % ys2 = v e c t o r ( 2 ) ;

10 % ys3 = v e c t o r ( 3 ) ;
11

12 % d i s t u r b a n c e s
13 % i f you want t o c o n v e r t t o 0 ( f u l l y c l o s e d ) t o 1 ( f u l l y open )
14 % measurement a l r e a d y i n between [ 0 , 1 ]
15 cv101 = P v e c t o r ( 1 ) ;
16 cv102 = P v e c t o r ( 2 ) ;
17 cv103 = P v e c t o r ( 3 ) ;
18 % c h a n g i n g measurement t o %
19 pRate = P v e c t o r ( 4 ) *100 ;
20

21

22 % always m a i n t a i n t h e i n p u t s g r e a t e r t h a n 0 . 5
23 %i n p u t s computed i n t h e p r e v i o u s MPC i t e r a t i o n
24 % Note t h a t t h e i n p u t s a r e t h e s e t p o i n t s t o t h e gas f l o w r a t e PID ’ s
25 f i c 1 0 4 s p = O v e c t o r ( 1 ) ;
26 f i c 1 0 5 s p = O v e c t o r ( 2 ) ;
27 f i c 1 0 6 s p = O v e c t o r ( 3 ) ;
28 %c u r r e n t i n p u t s o f t h e p l a n t

65



Chapter C. MATLAB Code: Case study 2

29 u0o ld =[ P v e c t o r ( 5 ) ; P v e c t o r ( 6 ) ; P v e c t o r ( 7 ) ] ;
30

31 % l i q u i d f l o w r a t e s [ L / min ]
32 f i 1 0 1 = I v e c t o r ( 1 , : ) ;
33 f i 1 0 2 = I v e c t o r ( 2 , : ) ;
34 f i 1 0 3 = I v e c t o r ( 3 , : ) ;
35

36 % a c t u a l gas f l o w r a t e s [ sL / min ]
37 f i c 1 0 4 = I v e c t o r ( 4 , : ) ;
38 f i c 1 0 5 = I v e c t o r ( 5 , : ) ;
39 f i c 1 0 6 = I v e c t o r ( 6 , : ) ;
40

41 % DP of t h e e r o s i o n boxes [ mbar ]
42 dp101 = I v e c t o r ( 7 , : ) ;
43 dp102 = I v e c t o r ( 8 , : ) ;
44 dp103 = I v e c t o r ( 9 , : ) ;
45

46 % t o p p r e s s u r e [ mbar g ]
47 % f o r c o n v e r s i o n [ b a r a ]−−>[mbar g ]
48 % p t o p n = p top *10ˆ −3 + 1 . 0 1 3 2 5 ;
49 p i101 = ( I v e c t o r ( 1 0 , : ) − 1 . 0 1 3 2 5 ) * 1 0 ˆ 3 ;
50 p i102 = ( I v e c t o r ( 1 1 , : ) − 1 . 0 1 3 2 5 ) * 1 0 ˆ 3 ;
51 p i103 = ( I v e c t o r ( 1 2 , : ) − 1 . 0 1 3 2 5 ) * 1 0 ˆ 3 ;
52

53 %%%%%%%%%%%%%%%%%%%%%%%%%%%
54 % CODE GOES HERE
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 y P l a n t A r r a y = [ f i 1 0 1 ; f i 1 0 2 ; f i 1 0 3 ] ;
57

58

59 y P l a n t = [ f i 1 0 1 ;
60 f i 1 0 2 ;
61 f i 1 0 3 ;
62 ] ;
63

64 u P l a n t = [ f i c 1 0 4 ; %c o n v e r s i o n [ L / min ] −−> [ kg / s ]
65 f i c 1 0 5 ;
66 f i c 1 0 6 ] ;
67

68 O v e c t o r = v e r t c a t ( f i c 1 0 4 s p , f i c 1 0 5 s p , f i c 1 0 6 s p ) ’ ;
69

70 %GRADIENT ESTIMATIOn
71 J u h a t = LSE2 ( J b u f f e r , u b u f f e r ,N) ;
72

73 %I f t h e g r a d i e n t e s t i m a t i o n does n o t g i v e a r e s u l t
74 i f i s n a n ( J u h a t ) ==1
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75 J u h a t = [ 0 ; 0 ; 0 ; 0 ] ;
76 end
77

78

79 f l a g E s t =1 ;
80

81 i f f l a g E s t == 1
82 %Checking maximum flow
83 [M, I ]=max ( O v e c t o r ) ;
84

85

86 i f I ==1
87 O v e c t o r = [ f i c 1 0 4 s p + KI1 * J u h a t ( 1 ) ;
88 f i c 1 0 5 s p + KI2 *( J u h a t ( 2 ) − J u h a t ( 1 ) ) ;
89 f i c 1 0 6 s p + KI3 *( J u h a t ( 3 ) − J u h a t ( 2 ) ) ] ’ ;
90

91 %Check max and min c o n s t r a i n t on i n p u t
92 f o r i =1:3
93 i f O v e c t o r ( i )<w gl min
94 O v e c t o r ( i ) = w gl min ;
95 e l s e i f O v e c t o r ( i )>w gl max
96 O v e c t o r ( i ) = w gl max ;
97 end
98 end
99

100 %Check max gas cap c o n s t r a i n t
101 i f O v e c t o r ( 3 ) + O v e c t o r ( 2 )>w g l t o t m a x
102 t o t = O v e c t o r ( 3 ) + O v e c t o r ( 2 ) ;
103 O v e c t o r ( 3 ) = O v e c t o r ( 3 ) − ( t o t −( w g l t o t m a x −

w gl min ) ) * O v e c t o r ( 3 ) / t o t ;
104 O v e c t o r ( 2 ) = O v e c t o r ( 2 ) − ( t o t −( w g l t o t m a x −

w gl min ) ) * O v e c t o r ( 2 ) / t o t ;
105 end
106

107 i f O v e c t o r ( 3 )<w gl min
108 O v e c t o r ( 2 ) = O v e c t o r ( 2 ) −( w gl min − O v e c t o r ( 3 ) ) ;
109 O v e c t o r ( 3 ) = w gl min ;
110 e l s e i f O v e c t o r ( 2 )<w gl min
111 O v e c t o r ( 3 ) = O v e c t o r ( 3 ) −( w gl min − O v e c t o r ( 2 ) ) ;
112 O v e c t o r ( 2 ) = w gl min ;
113 end
114

115 i f sum ( O v e c t o r )>w g l t o t m a x
116 O v e c t o r ( 1 ) = w g l t o t m a x − O v e c t o r ( 2 ) − O v e c t o r ( 3 ) ;
117 end
118
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119 e l s e i f I ==2
120 O v e c t o r = [ f i c 1 0 4 s p + KI1 * ( J u h a t ( 1 ) − J u h a t ( 3 ) ) ;
121 f i c 1 0 5 s p + KI2 * J u h a t ( 2 ) ;
122 f i c 1 0 6 s p + KI3 * ( J u h a t ( 3 ) − J u h a t ( 2 ) ) ] ’ ;
123 %Check max and min c o n s t r a i n t on i n p u t
124 f o r i =1:3
125 i f O v e c t o r ( i )<w gl min
126 O v e c t o r ( i ) = w gl min ;
127 e l s e i f O v e c t o r ( i )>w gl max
128 O v e c t o r ( i ) = w gl max ;
129 end
130 end
131

132 %Check max gas cap c o n s t r a i n t
133 i f O v e c t o r ( 1 ) + O v e c t o r ( 3 )>w g l t o t m a x − w gl min
134 t o t = O v e c t o r ( 1 ) + O v e c t o r ( 3 ) ;
135 O v e c t o r ( 3 ) = O v e c t o r ( 3 ) − ( t o t −( w g l t o t m a x −

w gl min ) ) * O v e c t o r ( 3 ) / t o t ;
136 O v e c t o r ( 1 ) = O v e c t o r ( 1 ) − ( t o t −( w g l t o t m a x −

w gl min ) ) * O v e c t o r ( 1 ) / t o t ;
137 end
138

139 i f O v e c t o r ( 3 )<w gl min
140 O v e c t o r ( 1 ) = O v e c t o r ( 1 ) −( w gl min − O v e c t o r ( 3 ) ) ;
141 O v e c t o r ( 3 ) = w gl min ;
142 e l s e i f O v e c t o r ( 1 )<w gl min
143 O v e c t o r ( 3 ) = O v e c t o r ( 3 ) −( w gl min − O v e c t o r ( 1 ) ) ;
144 O v e c t o r ( 1 ) = w gl min ;
145 end
146

147 i f sum ( O v e c t o r )>w g l t o t m a x
148 O v e c t o r ( 2 ) = w g l t o t m a x − O v e c t o r ( 1 ) − O v e c t o r ( 3 ) ;
149 end
150

151 e l s e i f I ==3
152 O v e c t o r = [ f i c 1 0 4 s p + KI1 * ( J u h a t ( 1 ) − J u h a t ( 2 ) ) ;
153 f i c 1 0 5 s p + KI2 *( J u h a t ( 2 ) − J u h a t ( 3 ) ) ;
154 f i c 1 0 6 s p + KI3 * J u h a t ( 3 ) ] ’ ;
155 %Check max and min c o n s t r a i n t on i n p u t
156 f o r i =1:3
157 i f O v e c t o r ( i )<w gl min
158 O v e c t o r ( i ) = w gl min ;
159 e l s e i f O v e c t o r ( i )>w gl max
160 O v e c t o r ( i ) = w gl max ;
161 end
162 end
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163

164 %Check max gas cap c o n s t r a i n t
165 i f O v e c t o r ( 1 ) + O v e c t o r ( 2 )> w gl to tmax − w gl min
166 t o t = O v e c t o r ( 1 ) + O v e c t o r ( 2 ) ;
167 O v e c t o r ( 1 ) = O v e c t o r ( 1 ) − ( t o t −( w g l t o t m a x −

w gl min ) ) * O v e c t o r ( 1 ) / t o t ;
168 O v e c t o r ( 2 ) = O v e c t o r ( 2 ) − ( t o t −( w g l t o t m a x −

w gl min ) ) * O v e c t o r ( 2 ) / t o t ;
169 end
170

171 i f O v e c t o r ( 1 )<w gl min
172 O v e c t o r ( 2 ) = O v e c t o r ( 2 ) −( w gl min − O v e c t o r ( 1 ) ) ;
173 O v e c t o r ( 1 ) = w gl min ;
174 e l s e i f O v e c t o r ( 2 )<w gl min
175 O v e c t o r ( 1 ) = O v e c t o r ( 1 ) −( w gl min − O v e c t o r ( 2 ) ) ;
176 O v e c t o r ( 2 ) = w gl min ;
177 end
178

179

180 i f sum ( O v e c t o r )>w g l t o t m a x
181 O v e c t o r ( 3 ) = ( w g l t o t m a x ) − O v e c t o r ( 2 ) − O v e c t o r ( 1 ) ;
182 end
183 end
184

185 SS = 0 ;
186 E s t i m a t i o n = f l a g E s t ;
187 O p t i m i z a t i o n = 1 ;
188 P a r a m e t e r E s t i m a t i o n = t h e t a H a t ’ ;
189 S t a t e V a r i a b l e s E s t i m a t i o n = ( p a r .H* z E s t H a t ) ’ ;
190

191 e l s e
192 %%%%%%%%%
193 %(dummy)%
194 %%%%%%%%%
195 % compute new v a l u e s f o r t h e gas f low r a t e s e t p o i n t s
196 O v e c t o r = v e r t c a t ( f i c 1 0 4 s p , f i c 1 0 5 s p , f i c 1 0 6 s p ) ’ ;
197

198 SS = 0 ;
199 E s t i m a t i o n = f l a g E s t ;
200 O p t i m i z a t i o n = 0 ;
201 R e s u l t = 0 ;
202 P a r a m e t e r E s t i m a t i o n = [ 0 , 0 , 0 , 0 , 0 , 0 ] ;
203 S t a t e V a r i a b l e s E s t i m a t i o n = [ 0 , 0 , 0 , 0 , 0 , 0 ] ;
204 S t a t e V a r i a b l e s O p t i m i z a t i o n = [ 0 , 0 , 0 , 0 , 0 , 0 ] ;
205 O p t i m i z e d A i r I n j e c t i o n = [ 0 , 0 , 0 ] ;
206 end
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C.3 LSE2.m

1 f u n c t i o n J u h a t = LSE2 ( J b u f f e r , u b u f f e r ,N)
2 N b u f f e r = N;
3 x = u b u f f e r ’ ;
4 y = J b u f f e r ’ ;
5

6 p h i = [ x ones ( N b u f f e r , 1 ) ] ;
7 t h e t a = i n v ( phi ’* p h i ) * phi ’* y ;
8

9 J u h a t = t h e t a ;

C.4 ResultsPlotting.m

1 %%%%%%%%%%%%
2 % P l o t t i n g %
3 %%%%%%%%%%%%
4 t ime = l i n s p a c e ( 1 , 3 0 , 1 8 0 0 ) ;
5 f i g u r e ( 1 )
6 s u b p l o t ( 5 , 1 , 1 )
7 p l o t ( t g r i d , O v e c t o r A r r a y ( 1 , : ) )
8 ho ld on
9 p l o t ( tgridRTO , uImpArray ( 1 , : ) , ’ L i n e s t y l e ’ , ’−− ’ , ’ Co lo r ’ , ’ r ’ )

10 t i t l e ( ’ M a n u i p l u a t e d V a r i a b l e , \omega {gl , 1} ’ )
11 x l a b e l ( ’ t ime [ min ] ’ )
12 y l a b e l ( ’L / min ’ ) ;
13 l e g e n d ( ’ u { P l a n t } ’ , ’ u {Opt} ’ )
14 xl im ( [ 0 , 3 5 ] )
15 yl im ( [ 0 . 9 3 . 1 ] )
16

17 s u b p l o t ( 5 , 1 , 2 )
18 p l o t ( t g r i d , O v e c t o r A r r a y ( 2 , : ) )
19 ho ld on
20 p l o t ( tgridRTO , uImpArray ( 2 , : ) , ’ L i n e s t y l e ’ , ’−− ’ , ’ Co lo r ’ , ’ r ’ )
21 t i t l e ( ’ M a n u i p l u a t e d V a r i a b l e , \omega {gl , 2} ’ )
22 x l a b e l ( ’ t ime [ min ] ’ )
23 y l a b e l ( ’L / min ’ ) ;
24 l e g e n d ( ’ u { P l a n t } ’ , ’ u {Opt} ’ )
25 xl im ( [ 0 , 3 5 ] )
26 yl im ( [ 0 . 9 3 . 1 ] )
27

28 s u b p l o t ( 5 , 1 , 3 )
29 p l o t ( t g r i d , O v e c t o r A r r a y ( 3 , : ) )
30 ho ld on
31 p l o t ( tgridRTO , uImpArray ( 3 , : ) , ’ L i n e s t y l e ’ , ’−− ’ , ’ Co lo r ’ , ’ r ’ )
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32 t i t l e ( ’ M a n u i p l u a t e d V a r i a b l e , \omega {gl , 3} ’ )
33 x l a b e l ( ’ t ime [ min ] ’ )
34 y l a b e l ( ’L / min ’ ) ;
35 l e g e n d ( ’ u { P l a n t } ’ , ’ u {Opt} ’ )
36 xl im ( [ 0 , 3 5 ] )
37 yl im ( [ 0 . 9 3 . 1 ] )
38

39 s u b p l o t ( 5 , 1 , 4 )
40 p l o t ( t g r i d , J P l a n t A r r a y )
41 ho ld on
42 t i t l e ( ’ Cos t f u n c t i o n ’ )
43 x l a b e l ( ’ t ime [ min ] ’ )
44 y l a b e l ( ’ c o s t ’ )
45 xl im ( [ 0 , 3 5 ] )
46

47 s u b p l o t ( 5 , 1 , 5 )
48 p l o t ( t g r i d , sumOArray )
49 ho ld on
50 y l i n e ( 5 , ’ L i n e s t y l e ’ , ’−− ’ , ’ Co lo r ’ , ’ r ’ )
51 t i t l e ( ’ T o t a l gas l i f t ’ )
52 l e g e n d ( ’ w {gl , t o t } ’ , ’ w {gl , to tmax} ’ )
53 x l a b e l ( ’ t ime [ min ] ’ )
54 y l a b e l ( ’L / min ’ )
55 xl im ( [ 0 , t g r i d ( end ) ] )
56 yl im ( [ 2 . 9 5 . 1 ] )
57 %%
58 f i g u r e ( 1 1 )
59 s u b p l o t ( 3 , 1 , 1 )
60 p l o t ( t g r i d , d o f P l a n t A r r a y ( 1 , : ) )
61 ho ld on
62 p l o t ( t g r i d , J u h a t A r r a y ( 1 , : ) )
63 l e g e n d ( ’ r e a l ’ , ’ e s t i m a t e ’ )
64 yl im ( [ − 1 0 , 1 0 ] )
65

66 s u b p l o t ( 3 , 1 , 2 )
67 p l o t ( t g r i d , d o f P l a n t A r r a y ( 2 , : ) )
68 ho ld on
69 p l o t ( t g r i d , J u h a t A r r a y ( 2 , : ) )
70 l e g e n d ( ’ r e a l ’ , ’ e s t i m a t e ’ )
71 yl im ( [ − 1 0 , 1 0 ] )
72

73 s u b p l o t ( 3 , 1 , 3 )
74 p l o t ( t g r i d , d o f P l a n t A r r a y ( 3 , : ) )
75 ho ld on
76 p l o t ( t g r i d , J u h a t A r r a y ( 3 , : ) )
77 l e g e n d ( ’ r e a l ’ , ’ e s t i m a t e ’ )
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78 yl im ( [ − 1 0 , 1 0 ] )

C.5 ParametersGasLiftModel.m

1 f u n c t i o n p a r = P a r a m e t e r s G a s L i f t M o d e l
2

3 %number o f w e l l s
4 p a r . n w = 3 ;
5 %gas c o n s t a n t
6 p a r . R = 8 . 3 1 4 ; %[m3 Pa / ( K mol ) ]
7 %m o l e c u l a r we ig th
8 p a r .Mw = 0 . 0 2 9 ; %[ kg / mol ] −− A t t e n t i o n : t h i s u n i t i s n o t u s u a l
9

10 %% P r o p e r t i e s
11 %d e n s i t y o f o i l − dim : n w e l l s x 1
12 p a r . r h o o = 996 .57* ones ( p a r . n w , 1 ) ; %[ kg / m3] − w a t e r
13 %1cP o i l v i s c o s i t y
14 p a r . m u o i l = 1*0 .000853* ones ( p a r . n w , 1 ) ; %[ Pa s o r kg / (m s ) ] − w a t e r
15 %D e n s i t y Gas
16 p a r . r h o g = 1 .2041* ones ( p a r . n w , 1 ) ; %[ kg / m3]
17 %r i s e r t e m p e r a t u r e
18 p a r . T r = 23+273; %[K]
19 %s e p a r a t o r p r e s s u r e
20 p a r . p s = 1 . 0 1 ; %[ b a r ]
21

22 %% P r o j e c t
23 %w e l l p a r a m e t e r s − dim : n w e l l s x 1
24 %l e n g t h
25 p a r . L w = 1 . 8 * ones ( p a r . n w , 1 ) ; %[m]
26 %h e i g h t
27 p a r . H w = 0* ones ( p a r . n w , 1 ) ; %[m]
28 %d i a m e t e r
29 p a r . D w = 0 .02 * ones ( p a r . n w , 1 ) ; %[m]
30 %w e l l t r a n s v e r s a l a r e a
31 p a r . A w = p i . * ( p a r . D w / 2 ) . ˆ 2 ;%[m2]
32

33 %w e l l below i n j e c t i o n − [m]
34 p a r . L bh = 0 . 4 * ones ( p a r . n w , 1 ) ;
35 p a r . H bh = 0* ones ( p a r . n w , 1 ) ;
36 p a r . D bh = 0 .02 * ones ( p a r . n w , 1 ) ;
37 p a r . A bh = p i . * ( p a r . D bh / 2 ) . ˆ 2 ;%[m2]
38

39 %r i s e r − [m]
40 p a r . L r = 2 . 2 * ones ( p a r . n w , 1 ) ;
41 p a r . H r = 2 . 2 * ones ( p a r . n w , 1 ) ;
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42 p a r . D r = 0 .02 * ones ( p a r . n w , 1 ) ;
43 %r i s e r a r e a s
44 p a r . A r = p i . * ( p a r . D r / 2 ) . ˆ 2 ;%[m2]
45

46 %% Upper l i m i t s
47 %Max gas l i f t f low
48 % p a r . qGLMax = 4 ; % [ L / min ]
49 %Max w e l l h e a d gas p r o d u c t i o n r a t e
50 %p a r . QgMax = 7 . 5 ; % [ L / min ] %CONSTRAINED
51 p a r . QgMax = 1000 ; % [ L / min ] %UNCONSTRAINED
52

53 %% E s t i m a t i o n
54 %P r e v i o u s l y c a l c u l a t e d c o v a r i a n c e
55 cov = [5 .91227126883972 e −06 , −2.06202609409489 e −07 , −1.89554128806828 e

−07 , −5.05804983673889 e −08 ,2 .01691604531746 e −08 , −1.46870984879245 e
− 0 8 ; . . .

56 −2.06202609409489 e −07 ,8 .98504731564069 e −06 , −1.57793863671730 e
−07 , −9.45999577341072 e −09 ,1 .58393325004350 e −07 ,3 .99881900108853 e
− 0 8 ; . . .

57 −1.89554128806828 e −07 , −1.57793863671730 e −07 ,5 .86527519642299 e
−06 ,8 .42373098367610 e −09 , −3.18596115962588 e −08 ,1 .02162653653725 e
− 0 7 ; . . .

58 −5.05804983673889 e −08 , −9.45999577341072 e −09 ,8 .42373098367610 e
−09 ,1 .07111470982306 e −06 , −6.58726935128263 e −08 ,2 .19056938187727 e
− 0 8 ; . . .

59 2.01691604531746 e −08 ,1 .58393325004350 e −07 , −3.18596115962588 e
−08 , −6.58726935128263 e −08 ,1 .30222960427062 e −06 , −5.39703493095107 e
− 0 8 ; . . .

60 −1.46870984879245 e −08 ,3 .99881900108853 e −08 ,1 .02162653653725 e
−07 ,2 .19056938187727 e −08 , −5.39703493095107 e −08 ,1 .10557288974228 e − 0 6 ] ;

61 %Sigma = eye ( 6 ) \cov ; %i n v f u n c t i o n somet imes i s n o t t h e b e s t f o r
i n v e r t i n g m a t r i x

62 p a r . Sigma = i n v ( cov ) ;

C.6 InitialConditionGasLift3.m

1 %I n i t i a l C o n d i t i o n S i m p l i f i e d
2 f u n c t i o n [ dx0 , z0 , u0 , t h e t a 0 ] = I n i t i a l C o n d i t i o n G a s L i f t 3 ( p a r )
3

4

5 %% I n p u t s
6 %gas l i f t r a t e
7 Q g l 0 = [ 0 . 9 8 5 5 3 0 8 6 4 1 9 7 5 3 1 ; 0 . 9 9 8 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 . 0 0 2 6 6 6 6 6 6 6 6 6 6 7 ] ; %[ L / min ]
8 %v a l v e oppen ing
9 vo 0 = [ 0 . 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 ; 0 . 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 ; 0 . 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 ] ; %[0 −1]
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10 %v e l o c i t y pump
11 vpump 0 = 35*1 e −2;% [0 −1]
12

13 %% S t a t e s
14 %gas ho ldup %%%%%%%%%%%%%%%
15 m g 0 = [0 .000301299301829417 ;0 .000301176749723761 ;0 .000304470148224803]*1

e4 ;%[1 e4 kg ]
16 %o i l ho ldup
17 m o 0 = [ 1 . 0 0 1 4 6 7 1 7 9 3 0 5 5 6 ; 1 . 0 0 4 5 1 7 9 4 9 1 0 5 8 9 ; 0 . 9 9 8 6 4 2 1 5 1 3 9 3 7 1 0 ] ;%[ kg ]
18

19 %o i l r a t e from r e s e r v o i r %%%%%%%%%%%%%%%%%%%%
20 w ro 0 = [0 .0653480683694890 ;0 .0672010939853007 ;0 .0655584758661665]*1 e2 ; %

[1 e2 kg / s ]
21 %r i s e r head t o t a l p r o d u c t i o n r a t e %%%%%%%%%%%%%%%%%%%%%%
22 w pr 0 = [0 .0653677288514124 ;0 .0672212423630201 ;0 .0655784636053547]*1 e2 ;%

[1 e2 kg / s ]
23 %r i s e r head p r e s s u r e
24 p r h 0 = [ 1 . 0 1 5 7 3 1 4 8 1 4 3 3 4 0 ; 1 . 0 2 7 8 1 7 9 0 1 2 2 5 8 0 ; 1 . 0 1 4 9 9 0 7 4 0 6 8 9 6 7 ] ;%[ b a r ]
25 %p r e s s u r e − below i n j e c t i o n p o i n t ( bot tom h o l e )
26 p b h 0 = [ 1 . 0 8 8 7 1 1 7 6 2 7 8 3 9 7 ; 1 . 1 0 2 6 0 1 6 0 1 3 9 6 0 0 ; 1 . 0 8 8 3 9 7 5 6 2 9 0 4 3 6 ] ;%[ b a r ]
27 %m i x t u r e d e n s i t y i n r i s e r
28 r h o r 0 = [ 7 . 9 7 1 8 2 0 2 6 0 2 0 0 7 0 ; 7 . 9 9 6 0 9 6 5 3 9 6 5 9 9 2 ; 7 . 9 4 9 3 6 4 6 3 5 1 6 7 3 9 ] ;%[100 kg / m3

]
29 %d e n s i t y gas
30 r h o g r 0 = [ 1 . 1 9 6 9 4 7 7 1 4 4 3 6 7 6 ; 1 . 2 1 1 1 9 0 4 6 7 3 7 9 5 1 ; 1 . 1 9 6 0 7 4 8 1 8 4 4 3 6 7 ] ;%[ kg / m3]
31 % t o t a l gas
32 w gr 0 = [1 .96604819234686 e −05;2 .01483777193892 e −05;1 .99877391882142 e

−05]*1 e5 ; %[1 e5 kg / s ]
33 % t o t a l l i q u i d
34 w l r 0 = [0 .0653480683694890 ;0 .0672010939853007 ;0 .0655584758661665]*1 e2 ; %

[1 e2 kg / s ]
35

36 %% P a r a m e t e r s
37 r e s t h e t a 0 = [ −54 .0722272955321; −42 .1710050834622; −51 .8274028690567]*1 e

−1;
38 v a l t h e t a 0 = [ 0 . 9 6 7 0 5 5 0 6 0 7 2 8 9 8 5 ; 0 . 5 6 3 1 6 9 6 5 6 1 0 6 6 2 8 ; 1 . 0 4 1 1 4 8 1 3 5 7 1 7 9 5 ] ;
39

40 dx0 = v e r t c a t ( m g 0 , m o 0 ) ;
41 z0 = v e r t c a t ( w ro 0 , w pr 0 , p r h 0 , p bh 0 , r h o r 0 , r h o g r 0 , w gr 0 , w l r 0 ) ;
42 u0 = v e r t c a t ( Q gl 0 , vo 0 , vpump 0 ) ;
43 t h e t a 0 = v e r t c a t ( r e s t h e t a 0 , v a l t h e t a 0 ) ;

C.7 InitializationLabViewRTO.m

1 % O p e r a t e t h e r i g unde r t h e i n i t i a l i n p u t s ussm
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2 % Wait f o r t h e r i g t o become s t a b l e
3 %c l e a r
4 %c l c
5

6 %% SS d e t e c t i o n C o n f i g u r a t i o n
7 SSConf . s spn = 5 ; %Number o f p o i n t s i n SS t o a s s u r e t h a t sys tem i s a t SS
8

9 %SS d e t e c t i o n f o r t h e whole p l a n t (MPA)
10 SSConf . d s s = 3 0 ; %l e n g t h o f t h e moving window used f o r SS i d e n t i f i c a t i o n
11 SSConf . ny = 3 ;
12 SSConf . r T h r e s = [ 2 . 2 ; 2 . 2 ; 2 . 2 ] ;
13 SSConf . lambda1 = [ 0 . 0 5 ; 0 . 1 ; 0 . 1 ] ;
14 SSConf . lambda2 = [ 0 . 1 ; 0 . 1 ; 0 . 1 ] ;
15 SSConf . lambda3 = [ 0 . 1 ; 0 . 1 ; 0 . 1 ] ;
16

17 %% Model t u n i n g
18 %p a r a m t e r s
19 p a r = P a r a m e t e r s G a s L i f t M o d e l ;
20 %i n i t i a l c o n d i t i o n
21 [ x0 , z0 , u0 , t h e t a 0 ] = I n i t i a l C o n d i t i o n G a s L i f t 3 ( p a r ) ;
22

23 %s t a t e s t o measurement mapping f u n c t i o n
24 p a r . nMeas = 6 ;
25 H = z e r o s ( 6 , 2 4 ) ;
26 H( 1 , 1 ) = 1e −2*60*1 e3 / p a r . r h o o ( 1 ) ; %wro− o i l r a t e from r e s e r v o i r , w e l l 1 [1

e2 kg / s ] −−> [ L / min ]
27 H( 2 , 2 ) = 1e −2*60*1 e3 / p a r . r h o o ( 2 ) ; %wro− o i l r a t e from r e s e r v o i r , w e l l 2
28 H( 3 , 3 ) = 1e −2*60*1 e3 / p a r . r h o o ( 3 ) ; %wro− o i l r a t e from r e s e r v o i r , w e l l 3
29 H( 4 , 7 ) = 1 ; %prh − r i s e r head p r e s s u r e w e l l 1
30 H( 5 , 8 ) = 1 ; %prh − r i s e r head p r e s s u r e w e l l 2
31 H( 6 , 9 ) = 1 ; %prh − r i s e r head p r e s s u r e w e l l 3
32 p a r .H = H;
33

34 %% O p t i m i z a t i o n t u n i n g
35 OptConf . l im = 0 . 1 ; %check p r o x i m i t y between new and o l d i n p u t s , i f t o o

c l o s e , don t change
36 OptConf . ku = 1 ; % i n p u t f i l t e r
37

38 %% i n i t i a l i z i n g e s t i m a t i o n
39 xEs tHa t = x0 ;
40 z E s t H a t = z0 ;
41 t h e t a H a t = t h e t a 0 ;
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