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Abstract

This project considers a classic case of reactor-separator-recycle process in which a tightly temperature controlled

CSTR is followed by a 22 stage distillation column. The distillate of the column is fed as recycle for the reactor,

and the bottom flow is used as the product stream for the plant. The goal of the project was to create a dynamic

set of equations for the case study and select a MPC discretization scheme in order to turn the resulting continuous

control problem into a discretized non-linear problem. This controller was then set to be able to dynamically solve

for the optimal inputs to the plant for a given objective function. The discretization scheme selected uses the

principle of multiple shooting, where we will shoot for the inputs L, V and F, which refer to the column reflux,

boil-up and feed respectively. The created NLP problem was then solved using the modelling framework CasADi

and their NLP solver IPOPT in MATLAB. The objective of the NMPC controller was to be able to tune these

inputs optimally to keep the bottom flow composition at a set value of 0.0105 [molA mol
�1]. Multiple controllers

were created with varying time-increments Dt. These were compared for multiple disturbance cases and compared

to see how their performance varied. In doing so, it was found that the smoother controller (controller with smaller

Dt) had overall lower adjustment-period before the controller managed to reset the value for xB. Additionally the

controller showed a lower spike in the composition at the time of disturbance. Both controllers spent the same

amount of time (5 timesteps) before reaching a steady operating state (where the inputs stopped changing) when

initiated from the same initial values. A third variant of the controller was also tested without any of the disturbance

cases imposed on the system. This controller would seek to attempt to adjust the bottom flow composition, xB,

as the set-point changed. While these set-point disturbances were relatively low in scale, their relative size were

almost half and double that of the initial set-point. When testing the adaptability for the controller it was found

that the controller performed exceptionally well, being able to achieve an error of 10�6 [molA mol
�1] after only 2

time-steps.
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Preface

This report is the result of a chemical process specialization project given to graduate students in the Norwegian

University of Science and Technology (NTNU) in their penultimate semester in the graduate year. The project

falls under the course ”TKP4580 Specialization Project, Chemical Engineering”. The work presented in this paper

was performed in Autumn 2020 under the main supervision of Johannes Jäschke and co-supervision of Zawadi

Ntengua Mdoe whom both work at the department of chemical engineering at NTNU.

While work on this project started somewhat slow due to a lack of knowledge on the procedure, it has been

insightful nonetheless and proven to show how much work is actually needed to create a plant controller. I would

like to personally thank my supervisor Zawadi for being as patient and helpful as he has been throughout the

project time, as well as Johannes for being available in the case Zawadi was not. I have eternal gratitude towards

all the aid they have provided me even during my most trying of times, and I hope that what I present in this paper

can live up to their expectations.

As for my own expectations, I am at the time of writing a bit overwhelmed by the sheer length the report managed

to accumulate which was way above what I had initially expected. So in that regard, I guess I have met my personal

expectations. If the ones correcting this report agree with me on the other hand, is a separate matter - but I would

like to remain optimistic.
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List of Symbols

Variable Description Unit

F0 The feed flow rate entering the plant [kmol min
�1]

F0,nom The nominal feed-rate before any disturbance [kmol min
�1]

zF0 The composition of the feed entering the system [molA mol
�1]

F Column feed flow rate [kmol min
�1]

zF Column feed composition [molA mol
�1]

L (or LT ) Reflux flow-rate [kmol min
�1]

V (or VB) Vapor boil-up rate [kmol min
�1]

D Column Distillate (reflux) flow rate [kmol min
�1]

B Bottom product flow rate [kmol min
�1]

Mr Reactor hold-up [kmol]

x1 (or xB) The composition at the bottom of the column [molA mol
�1]

x2 - x21 The composition at each of the column trays [molA mol
�1]

x22 (or xD) The composition at the distillate [molA mol
�1]

NT The total amount of stages/trays in the column (22) [-]

NF The stage at which the feed is located in the column (13) [-]

a Relative volatility (assumed to be constant) [-]

k1 Reaction rate constant (assumed to be constant) [min
�1]

Controller parameters

Np Prediction horizon for the optimization [min]

Ttot The total simulation time for the study [min]

xB,k The value of the bottom composition at t=k [molA mol
�1]

xss Optimal concentration of xB [molA mol
�1]

R Tuning parameter for xB deviation [-]

Q Tuning parameter for inputs uk [-]

P Tuning parameter for restricting changes to MR [-]

uk The input parameter at point t = tk [kmol min
�1]

MR,set Set-point value for reactor hold-up, MR [kmol]
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1 Introduction

Prediction is something that leans heavily towards the intuitive nature of how living beings interpret the world. For

example, when catching a ball, you instinctively estimate the ball’s position as well as its relative velocity towards

you before moving your body accordingly to catch it. Much in the same manner do we construct modern-day

controllers for chemical plants, in the manner that we use information on the plant’s operating state to predict a

trajectory for its states. This project is based on the principle of Model Predictive Control (MPC), where we use a

mathematical model of a plant in order to predict and optimize a set of inputs for the plant. Feedback is then used

to update a controller of the current state of the system before re-optimizing. Typically these types of optimizations

aim to minimize a objective function by finding a optimal set of inputs that does not violate any constraint. The job

of the controller is then to find the optimal inputs, based on the current state, that assures that a optimal operation

may be achieved. [3]

A big problem for the more traditional control methods is that their extensively complicated designs and ”tempo-

rary” solutions were found to not really scale well and be applicable to other systems despite shared similarities.

Good examples of this are Isidori(1989) [4], Marino(1995) [5] and Krstic(1995) [6]
et al. It was seen that while some

of the later designs could give very good approximations for the plants’ input parameters, they were not able to

systematically handle the imposed constraints in a very good manner. Since MPC’s implementation in 1996 by

some process industries (prime examples are Qin and Badgwell), [7] MPC quickly gained traction and set a new

precedent for process control. The method has been studied extensively both in the industry and academia, and it

is this control method that will be implemented in this project.

To show how non-linear MPC (NMPC) can be implemented, we use a case study that is a reactor-column-recycle

process. The system in question will be further defined under section 2, but is mainly consisting of a continuously

stirred tank reactor (CSTR), followed by a distillation column for product separation. Although a fairly simple

system, we will see that with some disturbances to the input feed, the created NMPC controller needs to be able to

aptly predict the optimal inputs of our system in order to minimize any loss. The goal for this report is to be able

to create a controller that is able to properly manage the plant, depending on the asked objective. Multiple cases

for disturbance and objective will be tested to verify that the controller is fully able to handle the system regardless

of the scenario imposed on it.

In order to achieve this however, the system first needs to be modelled using a set of model equations so we

have some notion of the time dynamics in place. These models will then be verified by a simple test of seeing

if the system goes towards steady-state from a set of initial parameters (preferably not too far off the steady-state

parameters), before a controller can be created. When we create a NMPC controller for the system we follow the

procedure further elaborated under chapter 4. In short, we will use the multiple shooting to convert our continuous

optimal control problem (OCP) into a non-linear problem (NLP), which then can be solved computationally.

1.1 Model Predictive Control

Model predictive control is the field of applying a receding predictive horizon to compute a set of manipulative

variables to create a optimal trajectory of a given set of states. [8] When doing this one can create a consistent

1
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controller that will always give close (depending on the permitted error) inputs for minimization of a objective

term, given a set of constraints. This is typically done by solving a continuous OCP given a set of initial conditions

as well as a set of constraints that must be uphold. The controller will create a set of inputs for a time instant

ti, which will be used for the following time-period Dt, to aquire the states xi+1. The OCP can be typically be

summarized by equations 1.1 shown below. [9]

min
x,u

Z
T

0
l

⇣
x(t),u(t)

⌘
dt

x(0) = x0

ẋ = f
�
x(t),u(t)

�

h
�
x(t),u(t)

�
 0

g
�
x(t),u(t)

�
= 0

(1.1)

From the equations 1.1 shown above, the objective function is given by l
�
x(t),u(t)

�
, where x(t) and u(t) are the

value of our states and inputs respectively, at time t. This is the function which we wish to minimize and is thus

the core of our OCP. The initial conditions of the system are given by a vector, x0, which contains all the initial

states for the system. It is assumed that the time dynamics of the states of the system is given by the function

f
�
x(t),u(t)

�
, and that the constraints of the system can be systematically divided into the equality constraints

h
�
x(t),u(t)

�
and the inequality constraints g

�
x(t),u(t)

�
.

Figure 1.1: Figure showing the principle behind model predictive control. It shows the present being at time t=k, where the amount of steps,

p, predicted into the future is the prediction horizon for the model. The figure illustrated how we use discretization in MPC to

try and align the reference trajectory with the predicted output of the model, using the predicted control output for the prediction

horizon. [1]

As can be seen in figure 1.1 the main idea behind MPC is to utilize the knowledge of the states xk at x(t=k) to

be able to predict an optimal sequence of inputs
�
uk,uk+1, ...,uk+p�1

�
at t = k,k+1...k+ p�1 which minimizes

the objective function, l
�
x(k),u(k)

�
, without violating any of the constraints for the process. To make sure the

plant does not drift away, only the first pair of inputs, uk, from the sequence is implemented in the plant. Then, at

the following timestep k+1, a state feedback xk+1 is used as the new xk and optimization is re-initialized for the

2
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following prediction horizon. This is then repeated for the following timesteps, ti, for as long as the simulation

run or plant is operated. The prediction horizon, Np, represents the amount of times the optimizer predicts into

the future, which gives the overall model better accuracy in its predictions at a cost of longer computation-time.

Through the use of discretization schemes, such as multiple shooting, we can go from a continuous OLP to a

discretized finite-dimensional NLP. therefore go from a OLP problem to a NLP.

1.2 Multiple Shooting Method

When creating a MPC controller there are numerous approaches one can take to create controllers from an OLP.

Methods like these include the discretization tools single shooting, collocation points, and multiple shooting. These

algorithms are based on the nature of the control problems and their purpose is to be able to transform infinite-

dimensional OCPs into a finite-dimensional NLP. [10] This is so that the problems readily can be solved using an

algorithmic approach. An example of this is CasADi’s IPOPT that uses a intensive point- method which uses a

estimated guess which is incrementally improved per iteration the algorithm is executed. This method is excep-

tionally computationally time-saving as the solvers never seek to iterate any optimization problem into its analytic

solution, but rather takes iterative steps towards a point with an acceptable difference. [11]

The multiple shooting method is a slightly more comprehensive method than that of single shooting, as it requires

additional constraints and decision variables, but is better suited for problems where non-linearity can become an

issue. Although the method is based on a lot of the same principles as single shooting, they vary slightly as single

shooting cannot provide adequate continuity where non-linearity is concerned. To begin this method we first need

to have a initial value, x0, for our problem at time of initiation, and we need dynamic equations for all our states.

From this we can create temporary (calculated) state values at the different time-steps, si using the time dynamics

equation f (x0,u0). Our temporary input-variable here, is denoted by qi and is the variable used to calculate the

temporary states si. [12]

u(ti) = qi, x(ti) = si, ẋi(t) = f
�
x(t),qi

�
, t 2 [ti, ti +N] (1.2)

From this, we obtain trajectory pieces for the states x1,x2, ...,xN (now s1,s2, ...,sN) in the problem using a decoupled

ODE solution (f), along with the decoupled cost function (L) for the time-step ti.

Li(si,qi) =
Z

ti+1

ti

l

⇣
xi

�
ti;si,qi

�
,qi

⌘
dt (1.3)

Since we want to retain continuity in our optimization, we enforce a equality constraint that the state si = x(ti;si�1,qi�1)

which can be visualized as a sort of stitching together of the value of the states at the border between each timestep.

This is visualized below in figure 1.2, where we can see the discrete change in the inputs create gaps for the states

that need to be connected for continuity. [13]
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Figure 1.2: Figure illustrating the resulting gaps that can arise in the continuous states, x1, ...,x4, when using discrete inputs u0, ...,u4. The

graph shows the equality constraint we need to enforce using multiple shooting to make sure our states are continuous. [2]

This is then repeated for each timestep, ti, in the prediction horizon, Np, to find states the states
�
s0,s1, ...,sN

�

for the respective inputs
�
q1,q2, ...,qN�1

�
. Combining these two we get a decision vector, which contains all the

parameters that will be optimized in the NLP. In essence, what has been done is turning a continuous OCP into a

discrete NLP. The CasADi NLP solver IPOPT can then be used to solve the problem using the decision variables,

based on the following equations;

min
x,u

n�1

Â
i=0

L
�
si,qi

�
, i = 0,1, ...,n�1

s.t.

g(si,qi) =

2

6666666664

s0 � x(0)

f (s0,q0)� s1

f (s1,q1)� s2
...

f (sN�1,qN�1)� sN

3

7777777775

= 0 , h(si,qi) =

2

6666664

h(s0,q0)
...

h(sN�1,qN�1)

h(sN)

3

7777775
 0

(1.4)

1.3 Structure of Report

As the introductory material of the report is finished, the following chapter 2 will proceed with presenting the

chemical plant which will represent our system for the case study. Following the case study a breakdown will
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commence in chapter 3. This chapter will open with some key assumptions that are made for model simplifica-

tion, before we start with the mathematical derivation of the state equations that are to be used for the dynamic

optimization. The state equations will help us create a OCP, which we in chapter 4 will discretize into a NLP

using the multiple shooting method. This chapter will prevent two disturbance cases which we will test our con-

troller on as well as two different discretization intervals, that will be compared against each other. Additionally a

separate non-disturbance case will be tested where we directly change the set-points in the controller to verify its

adaptability.

The results from the simulations are presented in chapter 5, with time-graphs for all the disturbance scenarios show-

ing the calculated optimal inputs as well as the resulting states. These are briefly discussed before a more elaborate

discussion is performed in chapter 6. Finally, the entire report is summarized and wrapped with a conclusion in

chapter 7.
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2 Case Study

Chemical processes are usually some sort of reaction section, in which all of the reactants in the plant will turn to

products and some bi-products, followed by a separation section. In this latter part, there are a variety of separation

techniques that are utilized to isolate the desired product from all the (potentially) unwanted bi-products. One

of the more common techniques used for product separation is distillation, in which the reactant stream from the

”reaction section” of the plant, is fed into a continuously boiling tower. This tower consists of multiple stages (or

trays), which are continuously boiled for separation. The boiled steam has a different composition than the liquid

it boiled from and is gathered in the tray above its original boiling-stage, before it is re-boiled again. The resulting

outcome is a top and bottom flow with very pure streams for each of the respective chemicals involved. [14]

In this project, we investigate the optimal control of a simple CSTR connected to a distillation column. The system

also has the distillate flow of the column feed back into the CSTR for recycle, while the bottom flow of the column

is used as a product stream for the plant. An illustration of this is attached below in figure 2.1.

Figure 2.1: Process diagram of the case study used for this report. The diagram shows a CSTR connected to a distillation column, where the

distillate is split into a reflux and a recycle to the CSTR. The bottom product of the column is extracted as the product stream.

2.1 Model assumptions and simplification

Typically chemical processes tend to be multi-stage complicated processes with several flow changes downstream,

this system has been simplified to only accompany a two-component system with compound A and B. In this
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system, the component A reacts in a simple first-order reaction to component B, shown below in equation 2.1.

A ! B (2.1)

In order to create a simple model for the system it is simplified further by the following assumptions;

(i) Constant Pressure

(ii) Constant relative volatility, a

(iii) Total Condenser

(iv) Equilibrium on all stages (trays) in the column

(v) No vapor holdup

(vi) Constant molar flows

(vii) Constant reactor temperature

(viii) 1st order reaction kinetics for the reaction

(ix) Column feed is assumed to have a liquid fraction = 1

While some of these assumptions might seem naive when performing chemical engineering to create a controller,

these types of models prove helpful as they can be readily be expanded upon if more extensive models are required.

For example, the assumption of strict temperature control on the CSTR makes it possible to assume that the reaction

rate constant, k, is constant. If this was not the case however, one would simply have to create a further more

detailed function for the rate in the dynamics part of the controller, and it would be able to adapt.

The constraints applied to the system was that the bottom composition, xB could not increase above 0.0105 [molA

mol
�1] and, that the Reactor holdup, MR, could not go above 2800 [kmol]. In order to assure stability for the system

however, these were implemented as soft constraints. A soft constraint is one where we allow the optimizer to cross

the constraint, but at a great ”cost” in the objective term. When a constraint like this is left soft, the optimizer will

therefore try to avoid crossing the constraint even though sometimes required for functional operation. The purpose

of introducing them as soft constraints is that we can study the system using these constraints first, before going

back to a real case with hard constraints with introduced back-off. Back-off is a term used for when a process is

operated below optimal operation to not violate any hard constraint for a possible impending disturbance. A final

constraint that was implemented as hard was that the input-parameter, V, should not go above 25 as this would

cause flooding in the tower.
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3 Modelling the system

The system consists of two main stages, namely the CSTR reactor and the distillation column. As these units are

mostly independent, the models derived from them can also be sectioned. We will first proceed with a derivation

for the equations used on the CSTR before considering the column equations. Finally at the end of this chapter

(see chapter 3.3) a brief summary of the states, inputs and parameters is included.

3.1 Modelling the CSTR

As aforementioned in chapter 2, we assume that the hold-up in the reactor is not constant. Based on this assumption,

we can derive the following equation 3.1 from a overall mass balance of the reactor. From this equation we get the

accumulation in the tank, or the reactor hold-up. Here F0 is a constant and D and F are the column reflux and tank

product stream, respectively.

dMR

dt
= F0 +D�F (3.1)

Onto the component balance for the CSTR, we need to derive an expression which can express the resulting

composition of the product stream, zF , accurately given initial conditions. The derivation of this is shown below

in equation 3.2 using a overall component balance over the reactor. Here the component accumulation term MRA

is defined as zF ⇤MR.

dMRA

dt
=

dzF MR

dt
= zF0F0 + xDD�FzF � kMRA

zF

dMR

dt
+MR

dzF

dt
= zF0F0 + xDD�FzF � kMRA

MR

dzF

dt
= zF0F0 + xDD�FzF � kMRA � zF

dMR

dt

dzF

dt
=

1
MR

⇤ (zF0F0 + xDD�FzF � k ⇤ zF MR � zF(F0 +D�F))

dzF

dt
=

F0

MR

(zF0 � zF)+
D

MR

(xD � zF)� kzF

(3.2)

Another important mention for this step is the assumption made about the reaction kinetics inside the reactor. This

was, as aforementioned, assumed to be a first-order reaction with a constant reaction constant k [min
�1] based on

the assumption that the CSTR is tightly temperature controlled. The reaction is used above as a consumption term

for the composition inside the reactor which is represented by �kMRA.

3.2 Modelling the column

For the distillation column we can derive an overall mass balance which nets us with equation 3.3.

F = D+B (3.3)
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From the assumptions made under chapter 2, we can set the following steady-state mass balances for the trays in

the column shown in equation 3.4. Equation 3.5 shows the exception, which is the feed tray. These equations are

for steady-state calculations as the change in tray-accumulation is assumed to be zero, dMx

dt
= 0.

V yi�1 +Lxi+1 =V yi +Lixi (3.4)

FzF + vyi�1 +Lxi+1 =V yi +Lxi (3.5)

Here the vapor-liquid equilibrium is described through equation 3.6, where the relative volatility a is (as mentioned

earlier) assumed to be constant.

yi,A =
aABxi,A

1+(aAB �1)xi,A
(3.6)

The condenser and reboiler here are assumed to be controlled and have a constant hold-up. This is done by

sacrificing two degrees of freedom, which are the vents VLV-6 and VLV-4 (see fig 2.1). This simplifies their mass

balances, and gives explicit expressions for the bottom flow, B, and distillate flow, D. Based on this we can do a

overall mass balance for the condenser, as well as the lower half of the tower to get expressions for B and D, which

is shown below in equations 3.7 - 3.8.

B = F +L�V (3.7)

D =V �L (3.8)

By modifying these steady-state equations, we can then derive component equations for the column trays for when

the system is not in steady-state by doing component balances for each of the trays.

3.2.1 Boiler

Starting with the reboiler, which we assume to be a equilibrium stage from our assumption above, we get time

dynamics for xB shown below in equation 3.9. Here it is also assumed that the hold-up in each tray is constant.

This implies that for all the trays it can be represented by multiplying with a constant K = 1
Mi
[kmol

�1], which is

set to 1 for the sake of simplicity.

dMx1

dt
= M1

dx1

dt
= (L+F)x2 �V y1 �Bx1 (3.9)

9
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3.2.2 Stripping-Section

Proceeding for the stripping trays, time dynamics equations can be derived for x2 - xNF�1 which is shown below

in equation 3.10. NF is here denoted as the stage at which the feed enters the column.

dMx,i

dt
= Mstrip

dxi

dt
= (L+F)xi+1 � (L+F)xi +V yi�1 �V yi 8 i = 2,3, ...,NF �1 (3.10)

3.2.3 Feed-Tray

Proceeding the stripping-section, we have the feed-stray. The equations for this stage can be derived as shown in

equation 3.11.

dMx,NF

dt
= MNF

dxNF

dt
= L⇤ xNF+1 � (L+F)xNF +V yNF�1 �V yNF +FzF (3.11)

3.2.4 Enrichment-Section

Above the feed tray we have the enrichment section of the column. These trays form time-dynamic equations for

the components xNF +1 - x21 for stages above the feed-tray, but below the condenser. The state-dynamics can be

calculated through equation 3.12.

dMx,i

dt
= Menrich

dxi

dt
= Lxi+1 �Lxi +V yi�1 �V yi 8 i = NF +1,NF +2, ...,NT �1 (3.12)

3.2.5 Condenser

And finally for the condenser, we can derive the following mass balance for xD = x22 shown in equation 3.13.

dMx,NT

dt
= MD

dxD

dt
=V yNT�1 �LxNT �DxNT (3.13)

3.3 Summarizing the model

From the derivations in chapter 3 and the plant shown in chapter 2 the system can be summarized in the following

manner; As the column consists of 22 trays, there is one composition state for each of the tray which includes the

composition for the bottom product flow as well as the distillate (reflux and recycle). The remaining components

in the plant is therefore zF0, which is the composition of the feedstock (set to be constant) and zF , which is the

composition of the column feed, shown in equation 3.2.

The flows of the system are the bottom product flow (B), the distillate flow (D), column reflux (L), the feedstock

(F0) and the column feed (F). And finally the hold-ups in the system are the ones for the reactor (MR), condenser

(MD) and boiler (MB). In total this sums to 33 variables, and as aforementioned of these MD, MB, zF0 is assumed to

be constant. The feedstock of the plant, F0, is set to be the disturbance. Remaining, then, is a total of 29 variables,
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to which a total of 26 state equations have been derived. The remaining 3 variables will therefore be used as inputs

for the NMPC. These inputs are the column reflux L, the column boil-up V and the column feed F.

x =

2

6666666666666666666666664

xB

x2

x3
...

x21

xD

D

B

zF

MR

3

7777777777777777777777775

ẋ =

2

6666666666666666666666664

Eq. 3.9

Eq. 3.10 (i=2)

Eq. 3.10 (i=3)
...

Eq. 3.12 (i=21)

Eq. 3.13

Eq. 3.8

Eq. 3.7

Eq. 3.2

Eq. 3.1

3

7777777777777777777777775

u =

2

6664

L

V

F

3

7775

min
x,u

Z
TTot

0
l

⇣
x(t),u(t)

⌘

s.t.

h
�
x(t),u(t)

�
 0

g
�
x(t),u(t)

�
= 0

(3.14)
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4 Dynamic Optimization

In order to be able to determine a proper cost function for the system, some steady-state calculations had to be

performed. To perform this, all the state equations were gathered into a vector, using CasADi’s symbolic variables.

This vector was then fed to CasADi’s NLP solver IPOPT, where the objective function was given as the symbolic

variable V, which represented the liquid boil-up in the column. This was repeated for all the disturbance cases for

the feedstock, F0. The solver quickly found solutions in which both the constraint for xB and MR were active for

all the impending disturbances. To test the robustness of the controller it was decided to perform NMPC set-point

tracking for these disturbances. The goal was to see how one could effectively control the system to the desired

set-point when various disturbances were applied to the feedstock. The goal of the NMPC set-point tracker is

to keep the deviation of xB from its constraint value as low as possible. The optimizer was created to be able to

convert our OCP into a NLP which can be solved. This was done using the multiple shooting method (see chapter

1.2), where the total simulation time, Ttot , was set to be 60 minutes and the prediction horizon, NP, was set to 10

minutes. All parameters used for the simulation, as well as their values, is summarized at the end of the chapter in

table 4.1. Additionally a short run-down of the pseudo-algorithm is summarized above the table.

4.1 Disturbance case I

As the plant already had a given feed of F0 = 460 [kmol hr
�1], nominal changes to this initial value was tested to

test the controller for various disturbances. The first of these cases uses the greatest change of the two as the plant

feed, F0, was disturbed by -20% at a given time-point, and then later on 120% of the initial feed at a later point in

time. The disturbance is illustrated below in figure 4.1.

For the second jump this then imposed a total disturbance impact of 40%⇤F0. Which was hypothesized to swing

the calculated bottom product composition, xB, the most.
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Figure 4.1: Time-graph showing the first disturbance case for this report. The disturbance is a negative-positive one that occurs at t=20 and

t=40 respectively. At these points the feedstock, F0, is changed to -20% and +20% of its initial value, respectively. This feed is the

feed that is entering the plant at the left of the process diagram in figure 2.1.
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4.2 Disturbance case II

The latter disturbance case would start with a milder disturbance of +10% at the first time-point, before later on

being disturbed to 120% of the nominal value, in the later time-point. This is illustrated below in figure 4.2. Thus

both cases end up at the same feed-stock, but through different means. Comparisons of these two could then be

evaluated to see if the controllers end up at the same final values for the two different cases.
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Figure 4.2: Time-graph showing the second disturbance case that is used for controller evaluation. The disturbance is a positive-positive

change that again occurs at t=20 and t=40 respectively. The former perturbation is 110% of the initial feed, and the latter one is

120% of the initial feed. The feed in question, is the one entering the CSTR, which is the feedstock of the plant.

The simulation time for the plant was set to be a full hour with t 2 [0,60] and the disturbances would occur

at t = 20[min], and t = 40[min] respectively. When performing set-point tracking on the system, the objective

function was set to minimize the deviation of xB from its nominal value of 0.0105 for both case A and B.

In order to test the refinement of the optimizer, the objective case defined below (equation 4.1) was tested for two

separate cases. The rough controller (case A) was using a time-increment of Dt = 1[min] and the smooth controller

(case B) was using a time-increment of Dt = 0.5[min]. This was done to see how the controllers varied and compare

the results produced by the two. Note that for the latter case (case C), only the rough controller was tested.

4.3 Case A - Disturbance rejection

The main objective of the set-point tracking is to keep the value of xB as close to its nominal value of 0.0105 as

possible. This was implemented by having a term R ⇤ (xB � xss)2 in the objective term, where xss was defined as

the optimal concentration of xB. The composition of the bottom product stream is xB, and R is a scaling constant

to get the objective priorities as desired.

Additionally the controller was introduced to a small cost for the deviation of input parameters L, V, F from their

previous value in the last timestep, to minimize fluctuations in the inputs. This was implemented by the term

(uk �uk�1)Q(uk �uk�1) in the objective function, where Q is a tuning-parameter simply used so that the optimizer
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will prioritize getting the bottom composition to a steady state over not changing the input parameters. uk is the

values of the inputs at t = k.

Finally a term
⇣

MR �MR,set

⌘
P

⇣
MR �MR,set

⌘
was added. Here MR is the value of the reactor hold-up and MR,set is

a set value for the controller. P is a parameter used for weights in the objective function. This term was added in

hindsight as the reactor would only fill and empty depending on the feedstock. In order to speed up the simulations

this term was added to force a pseudo steady-state on the system. This because over prolonged simulation-times,

the system would eventually go towards a value where dMR

dt
= 0. The main goal of the optimizer is still to keep

xB at its nominal value, and the weights R, P and Q were set to assure this. The resulting objective term for each

timestep t = k in this case is shown below in equation 4.1.

L

⇣
xk,uk

⌘
= R⇤

⇣
xB,k � xss

⌘2
+
⇣

uk �uk�1

⌘
Q

⇣
uk �uk�1

⌘
+P

⇣
MR �MR,set

⌘2
(4.1)

4.4 Case B - Smoother disturbance rejection

For the second case, the controller used the same objective term as mentioned for case A (see equation 4.1). This

time however, the simulations would be run with Dt = 0.5 [min]. In order to retain the same prediction horizon,

the optimizer would therefore have to run 20 time-steps to retain a 10 minute horizon. The goal of this case was to

compare the resulting inputs for the two controllers to check for any discrepancies and try to further evaluate these.

4.5 Case C - Set-point change tracking

The final case would do a set-point adjustment test to evaluate the controller’s ability to adapt to various set-point

values for xB. This case is an exception to the former two, as it will be performed without any disturbances imposed

on the system. This case only aims to see how well the controller managed to adjust the parameters of the inputs

to best be able to track the varying demand in xB. The objective function is therefore the same as the previous

two cases (see equation 4.1), as we still want to see the the inputs go towards a final value, and not fluctuate

unnecessary. Since this case changes the desired nominal value of xB, the value of xss was not a constant value of

0.0105. Rather the value of xss is as shown below in the intervals below.

xss =

8
>>><

>>>:

0.0105 for t 2 [0,20]

0.006 for t 2 [20,40]

0.02 for t 2 [40,60]

4.6 Algorithm summary

The entire code is attached and can be seen in Appendix A, but in short the algorithm can be summed up in the

following segment; First, a integration step was performed of all the states using time equations for the systems

from ti�1 to ti. Here, all the states were fed as symbolic variables to the integrator, the system inputs are fed

as symbolic parameters, and finally the initial values for the problem, seen in equation 4.2. The integrator was

then set up as a simple ODE system, and the CasADi integrator IDAS was used. The calculated states were then

fed into a optimizer, which utilized multiple shooting method (see chapter 1.2), to find the optimal inputs for the
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following timestep. The optimizer had a prediction horizon, Np, of 10 minutes where the proper constraints were

set. This entails the constraints for multiple-shooting as well as realistic constraints for the plant (see chapter 2, no

negative mass etc.). The prediction variables thus consisted of the states for the prediction horizon as well as the

inputs, which were solved as a NLP problem using CasADi’s IPOPT solver. Doing this, the first optimal inputs

for timestep ti were extracted. These values were then stored and fed to the integrator for the following time-step.

And the process was repeated throughout the total simulation time. All values were stored in separate arrays and

plotted. The resulting graphs are attached in chapter 5 and all parameters used are summarized in table 4.1.

Table 4.1: Table containing the most essential parameters that were used in the optimization.

Variable Description Value

Np Prediction horizon for the optimization 10 [min]

Ttot The total simulation time for the study 60 [min]

xB,k The value of the bottom composition at t=k - [molA mol
�1]

xss Optimal concentration of xB 0.0105 [molA mol
�1]

R Tuning parameter for xB deviation 500 [-]

Q Tuning parameter for inputs uk 10�5 [-]

P Tuning parameter for restricting changes to MR 10�5 [-]

uk The input parameter at point t = tk - [kmol min
�1]

MR,set Set-point value for reactor hold-up, MR 2800 [kmol]

All the different cases were initiated from the same set of initial states shown below in equation 4.2.

x0 =

2

6666666666666664

x1(= xB) = 0.5

x2 = 0.5
...

x21 = 0.5

x22(= xD) = 0.5

zF = 0.3

MR = 2800

3

7777777777777775

u0 =

2

6664

L = 15

V = 20

F = 5

3

7775
(4.2)
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5 Results

The study of the controller is divided into two different disturbance cases, as well as two different objective cases.

This results in a total of four results that have been simulated and categorized according to their matching set of

disturbances and objectives. As a comparison-value the previously calculated SS-values for the NLP is shown as

a reference in the graphs for case A. The values from these calculations were performed for all feed-disturbances

and are shown below in table 5.1. Additionally is the third case controller, which had no disturbance imposed on

it.

Table 5.1: Table showing the calculated steady-state values for the NLP. The objective function used was to minimize V, and all state equations

were set to go to zero. The values were calculated for all feed disturbance-cases that were imposed on the system. Here F0,nom refers

to the nominal value of F0, which is 460 kmol h
�1.

Inputs Disturbance, F0 =

[kmol min
�1 ] 0.8*F0,nom F0,nom 1.1* F0,nom 1.2 *F0,nom

L 8.39 11.45 13.14 14.66

V 11.87 17.16 20.30 23.84

F 9.66 13.38 15.59 18.08

5.1 Case A-I

For the case with negative-positive perturbation (case I), with the controller set to minimize input change the results

obtained (case A) are illustrated in figure 5.1.
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Figure 5.1: Time-graph showing the calculated optimal inputs from the controller of case A under the imposed disturbances from case I. The

graph also shows the calculated states for the bottom product composition, xB, throughout the simulation time. The graph also

shows the previously calculated SS-values found when the column boil-up V was set as the objective function.
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From this graph, and the following, we can see that the controller spends about 7 minutes to go from initial values to

steady-state for the inputs. The controller manages to settle xB to its set-point after 4 timesteps however, incurring

an error of 10�6 for the first disturbance. For the second perturbation, the controller spends 6 timesteps but is able

to converge to an error of 10�7. After the steady-state is reached, the inputs of the controller stop changing and we

would expect these to land on the previously calculated SS-values. The column feed, F, actually lands fairly close,

but both the column reflux and boil-up remain mostly unchanged. This would indicate that the system has found

another steady-state at which it is able to operate without violating any of the constraints. The same can be argued

for the latter perturbation as it can be seen that the boil-up is close to the previously calculated steady-state, while

the reflux and feed settle at alternative values.

As for xB, we can see that at the time of disturbance the state was slightly off its set-point. The value of the

maximum disturbance was found to be 2.2 ⇤ 10�5 [molA mol
�1]. Which is a fairly small disturbance onto the

composition itself.

5.2 Case B-I

The negative-positive perturbation for the controller using a time-increment of Dt = 0.5 [min] gave inputs that are

illustrated below in figure 5.2.
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Figure 5.2: Time-graph showing the calculated optimal inputs L, V, F, and the resulting state-value for the bottom composition, xB. The graph

is for the negative-positive feed perturbation with a -20% decrease in feed at t=20, and a +20% increase (from nominal value) at

t=40. The graph also shows the set-point for xB throughout which remains static through the simulation time.

As can be seen from the graph the controller adjusts the input parameters rather steeply initially, but smooths out

and approaches a steady state after 5 time-steps. The controller manages to adjust to the disturbance in when the

controller is operating at its preferred steady-state values, the impact the sudden feed-change does not seem to

impact the bottom composition too much, with the maximum peak being only 1.2*10�5. When comparing the two
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errors, we get 1.2⇤10�5

2.2⇤10�5 which is almost half of the maximum error to the controller in case A-I. However, much

of this can be argued to stem from the smoothness of the graphs that are used, but it is a noticeable difference

regardless. Similarly to the rough controller, this controller spends 4 timesteps before managing to adjust the value

of xB within an error of 10�6 for the first disturbance. Note however that each time-step for this controller is half

of the rough one. So 4 timesteps results in 2 minutes. In the later disturbance the controller also spends 6 timesteps

(3 min) to reach an error of 10�6.

5.3 Comparisons for Case I

Another comparison that can be done for the different controllers is comparing how the inputs changed. Below in

figure 5.3 an illustration is attached which shows the inputs in the same plot.
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Figure 5.3: Time-graph showing the resulting optimal inputs for both case A and B overlapped so that differences can be spotted more read-

ily.The graph shows the smoother controller (case B) in brighter color and the rougher controller (case A) with a shaded tint and

dots. This is for the first disturbance case, which was a negative-positive perturbation.

From this we can see that the smoother controller has a far greater spike in its inputs which leads to both the boil-up

as well as the reflux in the column to converge at larger values than that of the rougher controller. The feed for

both columns do however seem to act slightly different during the respective disturbances, but otherwise converge

to the same value.

A visual comparison was also created for the composition of the two cases, and the result is illustrated below in

figure 5.4.
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Figure 5.4: Time-graph showing comparison of the bottom flow composition for both the smooth (Dt = 0.5) and the rough (Dt = 1) controller.

The graph shows the graphs overlaying with varying colors for additional clarity.
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From this figure we can see visually see that the aforementioned errors are almost half for the smoother controller

compared to the rougher one. In practical terms, this means that if the constraint for xB was to be set hard, by using

a smoother controller one can operate with smaller back-off for the process. Additionally we see that the values

converge slightly faster for the smoother controller with about 3-4 timesteps.

5.4 Case A-II

Next up is the case for the double-positive perturbation in the feedstock. The rough controller’s (case A) ability

to track the xB set-point is tested first. The resulting calculated optimal inputs as well as the state for xB is shown

below in figure 5.5.
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Figure 5.5: Time-graph showing the calculated optimal inputs L, V, F for the double-positive perturbation case (case II). Here the plant-feed

is disturbed by +10% at t=20, and then further to +20% of the initial feed at t=40. The graph shows how the inputs changed and

how the resulting bottom composition xB was disturbed from its nominal value of 0.0105. The graph with inputs also shows the

calculated SS-values for the inputs at the respective disturbances.

As with case A-I, the controller spends the same amount of time for the initiating-phase to reach steady operation

and the inputs reach the same values as the previous case, which is what we would expect. For both of the

disturbances, the controller manages to recover the value of xB back to its set-point with the maximum perturbation

being 6.0 ⇤ 10�6 [mola mol
�1]. It can be seen that for t 2 [40,60] the calculated reflux seems to be close to the

calculated SS-value. Meanwhile, there is a substantial discrepancy in the input values for the reflux and the column

feed - which again suggests another suitable steady-state has been found that satisfies the constraints and objective.

5.5 Case B-II

For the case of the smooth controller (case B) with double positive perturbation for the feed, the results are shown

below in figure 5.6.
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Figure 5.6: Timeg-graph showing the change in xB for the simulation time for case B-II. This case had a double-positive perturbation at times

t=20 and t=40. The perturbations were of +10% and +20% of the initial feed at the respective time-points. The figure shows the

resulting calculated optimal inputs using the controller with Dt = 0.5[min].

Similarly to case B-I, the controller inputs as well as the value for xB seems to settle after 5 timesteps. The greatest

discrepancy for the bottom composition again seems to occur at t = 40[min], which is not surprising as this is

the greatest change in the disturbed variable. This discrepancy is found to be 3.0*10�6. When comparing the

controllers 3.0⇤10�6

6.0⇤10�6 which is half of the rough controller.

5.6 Comparisons for Case II

Similarly to the comparisons of the first case, the two controllers will be compared further with overlaying time-

graphs First, we evaluate the differences in the calculated inputs of the controllers over time, which is illustrated

below in figure 5.7.
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Figure 5.7: Time-graph showing the inputs for both controllers for case II. The smooth controller is represented with a stronger color, and

the rough controller has a darker shade to it with dots for visual clarification. The graphs are intended to show the discrepancies

between the two controllers, and show the effect of changing Dt for the discretization of the problem. Both controllers have the

same objective function and disturbance imposed.
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From this figure we can see similar results to the comparison of the first case, in which the inputs have greater

spike during the problem initialization which leads to the reflux and boil-up for the smooth controller to converge

to greater values than that of the rough controller. Similarly here too, the feed-graph seems to converge to same

value for both controllers. Again, we have a discrepency between the two controllers despite having identical

objective function and identical disturbances.

Moving on with the comparison, the composition of the two cases will be examined. The resulting change in

composition from these inputs are shown below in figure 5.8.
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Figure 5.8: Time-graph which shows the different compositions obtained when using different controllers. Here the smooth controller (Dt =

0.5) is highlighted in blue, while the rough controller (Dt = 1) is highlighted in red to ease visual comparison.

From the figure we can see that the smoother controller again is triumphant over its rougher counter-part. The

controller able to reduce the total impact on xB by roughly half. This can presumably lie in the fact that the

controller is able to react 0.5minutes faster than the rougher controller, which allows it to start adjusting faster to

minimize the losses. Additionally it can again be seen that the controller manages to converge 2-3 timesteps before

the rougher controller.

5.7 Case C

As stated in chapter 4, case C is a separate case with no disturbance imposed upon it. This case is meant only

to test the controllers ability to adjust xB towards a changing set-point, which was changed according the method

presented in chaptter 4.5. The results for the change in xB as well as the change in input parameters for this case is

illustrated below in figure 5.9.
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Figure 5.9: Figure showing both the change value for the bottom composition, as well as how its set-point changes at time-point t=20 and t=40

[min]. The set-point changes are described further under chapter 4.5. The graphs show how the inputs change the system to adapt

xB towards its set-point value.

From the figure we can see that the controller is apt when a set-point change for xB occurs. When any of the

changes occurs the controller requires 2 timesteps to be within an error of 3*10�6 from its new set-point. From

here it converges to the new set-point within an error of 10�8 within the following 3 timesteps. When the value

of xB is too high, the controller adjusts the column to increase the boil-up for further purification while lowering

the reflux. Vice versa, the controller increases the reflux and decreases the boil-up when xB is too low. This lets

hold-up in the higher trays cascade down the tower, and will increase the composition of xB at the bottom.
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6 Discussion

As previously stated under chapter 4, the reactor hold-up, although not constant, was set to fix itself in after the

bottom composition had reached its set-point. This assured that the controller would simply not start draining or

filling up the reactor tank when the various disturbances occurred, which would significantly decrease the time

required before any steady-state was reached. Various configurations for this were tested during the numerous

simulations run, and it was found that while having the controller prioritize keeping MR at a set value, letting the

reactor work as a intermediate ”buffer” gave overall better results. By having the feedstock disturbance, F0, have

to pass through a buffer before it entered the distillation column, it would greatly decrease the impact of the abrupt

disturbance had on the bottom composition, xB. The reason this was not implemented was that the molar flows

were relatively small (magnitude 10-20 kmol min
�1), while the tank was large in comparison (magnitude 3000

kmol). In order for the system to achieve steady state it would have possible forced simulation times of t 2 [0,300],

which was not achievable with the current computation-time required to simulate the system. The controller with

the smaller Dt already required almost 3 hours of simulation, which was for a 60 minute simulation time.

6.1 Converged input values

When looking at the graphs obtained under chapter 5, it can be seen that none of the graphs really converged

to their previously calculated steady-state. While this can be seen as a miss-calculation it can also largely lie in

the nature of the system that is considered. The system going to steady state simply means that we can have no

accumulation, and no matter what the calculated inputs are; as long as they hold the constraints and minimize the

objective function, we would also have that F0 = B. As can be seen from the graphs 5.1 and 5.5, for the final

time-period t 2 [40,60] all of the boil-ups converged to values that were smaller than the previously calculated

SS-value. While it is speculated if this could have been a previous calculation error in the steady-state calculation,

such an error could not be found upon re-evaluation of the code. The code is attached in appendix A.

Looking at figures 5.3-5.7, we can see that the two controllers with different Dt act quite differently, to even

converge to different values at steady operation. While different initialization and handling during disturbances

were somewhat expected, the discrepancy in convergence values is not. But this could also explain why none of

the controllers converged to the steady state calculations. It can be hypothesized that the scope of the problem,

adds strong non-linearity, which means neither case converges because of its trajectory. While no trials for this

could be run to validate the hypothesis, it strongly agrees with the amount of re-simulations that were performed

on the problem. When designing the controllers, the weights (R, Q, P) were adjusted repeatedly as changing these

gave completely different converged states than the previous trials.

When looking at the achieved results for the composition-changes (seen in figures 5.4 and 5.8 for case I and II

respectively), the performance of both controllers can be readily compared. From this it can be seen that the

smoother controller not only gives a lower overall deviation from the nominal value, but it also managed to recover

to the nominal value faster. While it is not surprising that the smoother controller managed to minimize the overall

impact on xB since the controller has a overall faster response-time. Since the controller also managed to converge

faster, it can thus be concluded that decreasing the time-increment, Dt, clearly improves the controller.
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6.2 Stability of the controller

Whilst not being part in the results, before a final comparison objective was set multiple simulations were run for

all the controllers to see how they operate and what results they can bring about. While doing so, one of the more

prominent results were the varying stability of the controllers created. While the smoother controller (with lower

Dt) required additional computation-time, it would often be able to keep dynamically optimizing for conditions

that caused rough controller to diverge. When the rougher controller was exposed to significantly difficult initial

conditions (that were far from the ss-values), it would only be able to dynamically optimize for 10-20 timesteps,

before showing a total collapse in all input parameters from the diverging optimizer. This was a consistent result

and from this we can argue that when creating these types of NMPC controller a adequately small Dt should always

be selected as it gives much grater stability to the controller.

6.3 Avoiding cell datatype in MATLAB

While a bit tricky to set up at first, a few trial and error experiences lead to some great troubleshooting shortcuts for

the remainder of the task. It was quickly seen that when working with CasADi’s symbolic variables, and attempting

to store these in an array one is not free to chose simply use arrays/lists in any way one might be used to. Here

one will need to append variables through specific methods to avoid getting the ”cell” datatype which Matlab can

automatically assign if one is not careful. The preferred method used for this study is illustrated below in code

extract 6.3. These data-types can be very rough to deal with depending on how the algorithm is set up. Typically

when Matlab works with cell data types it has no problem to identify the datatype inside as double/strings and

perform mathematical operations like addition, subtraction, division and multiplication - but when the datatype

inside a cell is a SX (or MX) datatype, the code would give the very unclear error messages that were hard to

troubleshoot. Sometimes these error messages were as simple as Matlab clearly stating that ”-” operation was not

possible for a cell datatype, but other times the code would run and give errors on completely unrelated lines.

Avoiding cell datatype for CasADi variables

1 %These v a r i a b l e s a r e s t o r e d as c e l l d a t a t y p e s

2 x = {} ;

3 x = {x { :} , SX . sym ( ’ myVar iab le1 ’ ) } ;

4 x = {x { :} , SX . sym ( ’ myVar iab le2 ’ ) } ;

5

6 %These v a r i a b l e s a r e now s t o r e d as SX d a t a t y p e s

7 myV ar i ab l e s = [ ] ;

8 f o r i =1 : l e n g t h ( x )

9 myVar i ab l e s = [ myVar i ab l e s ; x{ i } ] ;

10 end
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7 Conclusion

This project developed a dynamic optimizing NMPC controller that was applied for a reactor-column-recycle case

study. The developed model was successfully implemented in MATLAB using CasADi’s symbolic framework and

IPOPT NLP solvers. The presented case study was simplified using assumptions such that a mathematical model

and OLP could be created. From this the OLP was transformed into a NLP, which was dynamically solved for a set

simulation time. The controller was set to impact the inputs L, V and F which refer to the column reflux, boil-up

and feed respectively. Through the simulations, we can see that the controllers manage to minimize the impact

the incoming disturbance had on the bottom composition, xB, fairly well. The controllers were found to be able

to converge to the set-point value after 4 timesteps incurring an error of 10�6. Testing for different discretization

amount, it was found that having a smaller Dt resulted in lower errors for the discrepancy in xB. For this case study,

when using a Dt of 0.5[min], it was found that leaving a relatively small back-off of 1.2*10�5 is all that is required

if the constraint for the bottom composition should be hard. This error was found when the disturbance was the

greatest varying with 40% of its initial value. Additionally it was found that by having smaller time-increments in

the control gave a more stable controller. This controller would converge for multiple scenarios where the rougher

controller diverged, such as more extreme initial conditions. The controllers also showed differences in the steady

states they converged to, which was hypothesized to lay in the non-linear nature of the problem but no further tests

were run to verify this. When evaluating the controllers’ performance to adjust to varying set-point in xB it was

found that both controllers managed to adapt fairly well and only required 5 timesteps before converging to its

new set-point with an error of 10�8. However, it is clearly noted that having a smaller time-increment, Dt, clearly

improves the controllers ability to maximum disturbance, and its ability to reset the composition to its nominal

value. While there is still a lot of further work that should be done on this topic, this report managed to cover a

basic model and make a basic NMPC controller which is able to satisfy constraints and objectives accordingly. The

next step for developing this model should probably be to search for a objective term that is able to give consistent

converging values, despite varying time-increments between each controller. Additionally, the controller should be

implemented now using the hard constraints that were initially presented in the case study, but left soft for stability.
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A Code Attachment

A.1 Main function

1 %Here I go ! −Mika
2 %c a l l i n g CasADi
3 a d d p a t h ( ’C:\ Users\micha\Documents\ c a s a d i −windows −matlabR2016a −v3 . 5 . 3 ’ )
4 i m p o r t c a s a d i . *
5

6 %% S c r i p t f o r o p t i m i z a t i o n o f r e a c t o r , s e p a r a t o r and r e c y c l e p r o c e s s .
7 %% The n u m e r i c a l d e s c r i p t i o n o f t h e p r o c e s s i s t a k e n from L a r s s o n e t a l ( 2 0 0 3 )
8

9 % The P a r a m e t e r s / s t a t e v a r i a b l e s v e c t o r i s d e f i n e d as :
10 % x ( 1 : p a r . NT) : Tray c o m p o s i t i o n s [ − ]
11 % x ( p a r . NT+1) : Re f l ux L [ kmol / min ] i n p u t
12 % x ( p a r . NT+2) : Bo i lup V [ kmol / min ] s t a t e
13 % x ( p a r . NT+3) : Top / d i s t i l l a t e f low D [ kmol / min ] i n p u t STATE??
14 % x ( p a r . NT+4) : Bottom p r o d u c t f low B [ kmol / min ] i n p u t
15 % x ( p a r . NT+5) : Feed t o column r a t e F [ kmol / min ] i n p u t STATE??
16 % x ( p a r . NT+6) : Feed t o column c o m p o s i t i o n zF [ − ] s t a t e
17 % x ( p a r . NT+7) : R e a c t o r ho ldup Mr [ kmol ] s t a t e
18 % x ( p a r . NT+8) : Feed t o r e a c t o r F0 [ kmol / min ] s t a t e ( s e t v a l u e )
19 %
20 % The t r a y c o m p o s i t i o n s s t a r t a t t h e r e b o i l e r , so x ( 1 ) i s t h e bot tom
21 % c o m p o s i t i o n xB and x ( p a r . NT) i s t h e d i s t i l l a t e c o m p o s i t i o n xD
22

23 c l c
24 c l e a r
25 g l o b a l p a r ;
26

27 % D e f i n i t i o n o f he t e m p e r a t u r e i n t h e column as a f u n c t i o n o f t h e c o m p o s i t i o n
28 T = @( x ) 100−x *20 ;
29

30 % Column p a r a m e t e r s
31 p a r . qF = 1 ; % Feed q u a l i t y / l i q u i d f r a c t i o n [ − ]
32 p a r . NT = 2 2 ; % # of t r a y s [ − ]
33 p a r . NF = 1 3 ; % P o s i t i o n o f t h e F e e d s t a g e [ − ]
34 p a r . a l p h a = 2 ; % R e l a t i v e v o l a t i l i t y [ − ]
35 p a r . Vmax = 1 5 0 0 / 6 0 ; % Maximal vapour f low b e f o r e f l o o d i n g [ kmol / min ]
36

37 % CSTR p a r a m e t e r s
38 p a r . F0 = 4 6 0 / 6 0 ; % Feed f l o w r a t e [ kmol / min ]
39 p a r . zF0 = 0 . 7 ; % Feed c o m p o s i t i o n ( mole f r a c t i o n )
40 p a r . k1 = 0 . 3 4 1 / 6 0 ; % R e a c t i o n r a t e [ 1 / min ]
41

42 % F l a g s
43 p a r . OPTI = 0 ;
44 p a r . c a s e I = 1 ; % Case 1 i s f i x e d f e e d flow , c a s e 2 i s maximum p r o d u c t i o n
45 p a r . C o n I n d i c e s = 0 ; % I n d i c e s o f t h e s t a t e v a r i a b l e s t h a t w i l l be k e p t c o n s t a n t
46 p a r . ConSSvalues = 0 ; % Values o f t h e s t a t e v a r i a b l e s t h a t w i l l be k e p t c o n s t a n t
47 p a r . B e s t I n d i c e s = [ ] ; % I n d i c e s o f t h e b e s t c a n d i d a t e s o f t a s k 3
48

49 % D e f i n i t i o n o f t h e c o n s t r a i n t s k e p t a c t i v e
50 p a r . C o n I n d i c e s = [ ] ’ ;
51 p a r . ConH = [ ] ’ ;
52

53 %% Task 2 : C a l c u l a t i o n o f o p t i m a l o p e r a t i n g p o i n t f o r a g i v e n f e e d F0
54

55 % D e f i n i t i o n o f t h e b o u n d a r i e s a s a f u n c t i o n o f t h e s t a t e s
56 s w i t c h p a r . c a s e I
57 c a s e 1
58 l b = z e r o s ( p a r . NT+8 ,1 ) ; % x >= 0
59 ub =[ ones ( p a r . NT, 1 ) ; ones ( 8 , 1 ) * I n f ] ; % G e n e r a l Upper Bounds
60 ub ( 1 ) = 0 . 0 1 0 5 ; % xB <= 0 .0105
61 ub ( p a r . NT+7) =2800; % Mr <= 2800 ;
62 % F0 = f i x e d ;
63 l b ( p a r . NT+8)= p a r . F0 ;
64 ub ( p a r . NT+8)= p a r . F0 ;
65 c a s e 2
66 l b = z e r o s ( p a r . NT+8 ,1 ) ; % x >= 0
67 ub =[ ones ( p a r . NT, 1 ) ; ones ( 8 , 1 ) * I n f ] ; % G e n e r a l Upper Bounds
68 ub ( 1 ) = 0 . 0 1 0 5 ; % xB <= 0 .0105
69 ub ( p a r . NT+7) =2800; % Mr <= 2800 ;
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70 ub ( p a r . NT+2)= p a r . Vmax ; % V <= Vmax ;
71 o t h e r w i s e
72 e r r o r ( ’ p a r . c a s e I has t o be 1 or 2 ’ )
73 end
74

75 % D e f i n i t i o n o f i n i t i a l v a l u e s f o r t h e d e c i s i o n v a r i a b l e v e c t o r
76 x0 = [ ones ( 1 , p a r . NT) * 0 . 4 15 20 5 5 10 0 . 5 1000 4 0 0 / 6 0 ] ’ ;
77

78

79

80

81

82 %C r e a t i n g CasADi ’ s s y m b o l i c v a r i a b l e s
83 x sym = {} ;
84 f o r i =1 : p a r . NT
85 Xk = SX . sym ( [ ’ X ’ num2s t r ( i ) ] ) ;
86 x sym = {x sym { :} , Xk} ;
87 end
88 x sym = {x sym { :} , SX . sym ( ’L ’ ) } ;
89 x sym = {x sym { :} , SX . sym ( ’V’ ) } ;
90 x sym = {x sym { :} , SX . sym ( ’D’ ) } ;
91 x sym = {x sym { :} , SX . sym ( ’B ’ ) } ;
92 x sym = {x sym { :} , SX . sym ( ’F ’ ) } ;
93 x sym = {x sym { :} , SX . sym ( ’ zF ’ ) } ;
94 x sym = {x sym { :} , SX . sym ( ’Mr ’ ) } ;
95 x sym = {x sym { :} , SX . sym ( ’ F0 ’ ) } ;
96

97 %E x t r a c t c o n s t r a i n t s from n l c o n
98 g = {} ;
99 ceq = n l c o n ( x sym ) ;

100 %D ef in e l b g and ubg f o r t h e c o n s t r a i n t s
101 l b g = [ ] ;
102 ubg = [ ] ;
103 f o r i =1 : l e n g t h ( ceq )
104 g = {g { :} , ceq ( i ) } ;
105 l b g = [ l b g ; 0 ] ;
106 ubg = [ ubg ; 0 ] ;
107 end
108

109 % N o n l i n e a r i n e q u a l i t y c o n s t r a i n t s C( x ) < 0 , n o t e x i s t i n g
110 g = {g { :} , x sym{ p a r . NT+7}{ :} − 2800} ;
111 l b g = [ l b g ; − i n f ] ;
112 ubg = [ ubg ; 0 ] ;
113

114 g = {g { :} , x sym {1}{ :} −0 .0105} ;
115 l b g = [ l b g ; − i n f ] ;
116 ubg = [ ubg ; 0 ] ;
117

118

119 %C r e a t e t h e s t r u c t f o r t h e n l p problem
120 n l p = s t r u c t ( ’ x ’ , v e r t c a t ( x sym { :} ) , ’ f ’ , o b j f u n ( x sym ) , ’ g ’ , v e r t c a t ( g { :} ) ) ;
121

122 %Ass ign s o l v e r − Use IPOPT
123 s o l v e r = n l p s o l ( ’ s o l v e r ’ , ’ i p o p t ’ , n l p ) ;
124 s o l = s o l v e r ( ’ x0 ’ , x0 , ’ l b x ’ , lb , ’ ubx ’ , ub , ’ l b g ’ , lbg , ’ ubg ’ , ubg ) ;
125 nom . x = f u l l ( s o l . x ) ;
126

127 %Put p r i n t i n s e p a r a t e s c r i p t
128 n i c e p r i n t ( nom ) ;
129

130

131 %% Time dynamics
132 %d e c l a r i n g i n t e g r a t i o n p a r a m e t e r s
133 T = 6 0 ; % t ime h o r i z o n
134 N = 6 0 ; %Case A
135 %N = 12 0 ; %Case B
136 d t = T /N; %Sampl ing t ime
137

138 t imeSim = [ ] ; %C u r r e n t t ime i n t h e s i m u l a t i o n
139 xSim = [ ] ; %C u r r e n t xB i n t h e s i m u l a t i o n
140 uSim = [ ] ; %C u r r e n t U k i n t h e s i m u l a t i o n
141 F 0 d i s t = [ ] ; %D i s t u r b e d f e e d s t o c k
142 F0sim = [ ] ; %C u r r e n t f e e d s t o c k − i n p u t
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143 parSim = [ ] ; %C u r r e n t SS− v a l u e f o r U
144 holdUp = [ ] ; %Mr saved t o s e p a r a t e a r r a y f o r p l o t s
145

146 F 0 d i s t = [ p a r . F0* ones ( 1 , 1 9 * ( 1 / d t ) +1) , p a r . F0*1* ones ( 1 , 2 0 * ( 1 / d t ) ) , p a r . F0*1* ones ( 1 , 2 1 * ( 1 / d t ) )
] ; %No D i s t u r b a n c e

147 % F 0 d i s t = [ p a r . F0* ones ( 1 , 1 9 * ( 1 / d t ) ) , p a r . F0 *0 .8 * ones ( 1 , 2 0 * ( 1 / d t ) ) , p a r . F0 * 1 .2* ones ( 1 , 2 1 * ( 1 /
d t ) ) ];% Case I

148 %F 0 d i s t = [ p a r . F0* ones ( 1 , 1 9 * ( 1 / d t ) ) , p a r . F0 *1 .1* ones ( 1 , 2 0 * ( 1 / d t ) ) , p a r . F0 *1 .2 * ones ( 1 , 2 1 * ( 1 / d t
) ) ];% Case I I

149

150 %SS− v a l u e s
151 %F0 * 0 . 8 ==> L , v , D, B , F : 8 . $39 , 1 1 . 8 7 , 3 . 4 8 , 6 . 1 8 , 9 . 6 6
152 %F0 * 1 . 1 ==> L , V, D, B , F : 1 3 . 1 3 6 , 2 0 . 2 9 6 , 7 . 1 6 , 8 . 4 3 3 , 15 .593
153 %F0 * 1 . 2 ==> L , V, D, B , F : 1 4 . 6 6 , 2 3 . 8 4 , 8 . 8 8 , 8 . 9 , 18 .08
154

155 %Manual ly swapped i d e a l SS− v a l u e s f o r each run
156 idSim = [ 0 . 0 1 0 5 * ones ( 1 9 * ( 1 / d t ) , 1 ) ; 0 .0105* ones ( 2 0 * ( 1 / d t ) , 1 ) ; 0 .0105* ones ( 2 1 * ( 1 / d t ) , 1 ) ] ; %xb
157 %idSim = [ 0 . 0 1 0 5 * ones ( 1 9 * ( 1 / d t ) , 1 ) ; 0 .006* ones ( 2 0 * ( 1 / d t ) , 1 ) ; 0 . 02* ones ( 2 0 * ( 1 / d t ) +1 ,1 ) ] ; %xb

Case C
158

159

160 idSim = [ idSim , [ 1 1 . 4 4 5 * ones ( 1 9 * ( 1 / d t ) , 1 ) ; 8 . 39 * ones ( 2 0 * ( 1 / d t ) , 1 ) ; 14 .66* ones ( 2 1 * ( 1 / d t ) , 1 ) ] ] ;
%L

161 idSim = [ idSim , [ 1 7 . 1 6 * ones ( 1 9 * ( 1 / d t ) , 1 ) ; 11 .87* ones ( 2 0 * ( 1 / d t ) , 1 ) ; 23 .84* ones ( 2 1 * ( 1 / d t ) , 1 ) ] ] ;
%V

162 idSim = [ idSim , [ 5 . 7 1 * ones ( 1 9 * ( 1 / d t ) , 1 ) ; 3 . 48 * ones ( 2 0 * ( 1 / d t ) , 1 ) ; 8 . 88 * ones ( 2 1 * ( 1 / d t ) , 1 ) ] ] ;
%D

163 idSim = [ idSim , [ 7 . 6 7 * ones ( 1 9 * ( 1 / d t ) , 1 ) ; 6 . 18 * ones ( 2 0 * ( 1 / d t ) , 1 ) ; 8 . 9 * ones ( 2 1 * ( 1 / d t ) , 1 ) ] ] ;
%B

164 idSim = [ idSim , [ 1 3 . 3 8 * ones ( 1 9 * ( 1 / d t ) , 1 ) ; 9 . 66 * ones ( 2 0 * ( 1 / d t ) , 1 ) ; 18 .08* ones ( 2 1 * ( 1 / d t ) , 1 ) ] ] ;
%F

165 % ˆ+1 h e r e i f N=120
166 %% S i m u l a t i o n i n i t i a l i z a t i o n
167 x0 = nom . x ;
168 xk = [ x0 ( 1 : p a r . NT) ; 0 . 3 ; 2 7 0 0 ] ; %I n i t i a l SS− v a l u e s f o r t h e s t a t e s
169 uk = x0 ( p a r . NT+1: p a r . NT+5) ; %For t h e f i r s t run . X0 f o r L , V, F
170

171 %Saving i n i t i a l s t a t e s t o p l o t t i n g − a r r a y s
172 t imeSim = [ timeSim , 0 ] ;
173 xSim = [ xSim ; xk ( 1 ) ] ;
174 uSim = [ uSim , uk ] ;
175 F0sim = [ F0sim , F 0 d i s t ( 1 ) ] ;
176 parSim = [ parSim , [ idSim ( 1 , 1 ) ; idSim ( 1 , 2 ) ; idSim ( 1 , 3 ) ; idSim ( 1 , 4 ) ; idSim ( 1 , 5 ) ; idSim ( 1 ,

6 ) ; ] ] ;
177 holdUp = [ holdUp ; xk ( end ) ] ;
178 f o r k =1:N
179

180 f p r i n t f ( ’>>> I t e r a t i o n : %d \n ’ , k )
181

182 %S i m u l a t i n g t h e p l a n t b e h a v i o r d u r i n g d t
183 xk = dynamics ( x sym , xk , dt , F 0 d i s t ( k ) , uk ) ;
184 uk = o p t i m i z e r ( x sym , idSim ( k , 1 ) , uk , xk , F 0 d i s t ( k ) * ones ( 2 0 , 1 ) , d t ) ;
185

186

187

188 %Adding d a t a t o a r r a y f o r p l o t t i n g
189 t imeSim = [ timeSim , k* d t ] ;
190 xSim = [ xSim , xk ( 1 ) ] ; %C a l c u l a t e d xB
191 uSim = [ uSim , uk ] ; %C a l c u l a t e d o p t i m a l U
192 parSim = [ parSim , [ idSim ( k , 1 ) ; idSim ( k , 2 ) ; idSim ( k , 3 ) ; idSim ( k , 4 ) ; idSim ( k , 5 ) ; idSim (

k , 6 ) ; ] ] ;
193 F0sim = [ F0sim , F 0 d i s t ( k ) ] ;
194 holdUp = [ holdUp ; xk ( end ) ] ;
195

196 %%%%%%%%%%
197 % p l o t t i n g
198 %%%%%%%%%%
199

200 f i g u r e ( 1 ) ;
201 f i g S i z e = [ 2 1 , 2 9 ] ; % [ width , h e i g h t ]
202 f i g U n i t s = ’ C e n t i m e t e r s ’ ;
203

204
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205 c l e a r f i g u r e
206 c l f ;
207

208 %p l o t d a t a
209 s u b p l o t ( 2 , 1 , 1 ) , %p l o t s t a t e s
210 p l o t ( t imeSim , xSim ( 1 : end ) , t imeSim , parSim ( 1 , 1 : end ) , ’−− ’ )
211 ho ld on ;
212

213 x l im ( [ 0 , t imeSim ( end ) ] )
214 y l im ( [ 0 . 0 0 8 , 0 . 0 1 3 ] )%max ( xSim ) + 0 . 0 0 5 ] )
215 g r i d ( )
216 x t i c k s ( 0 : 5 : k )
217

218 x l a b e l ( ’ Time [ min ] ’ )
219 y l a b e l ( ’xB Compos i t ion [ molA mol ˆ{ −1} ] ’ )
220 l e g e n d ({ ’ x B : Biomass ( Measured ) ’ , ’ x B : S e t p o i n t ’ } ) ;
221 t i t l e ( ’ Measured v a r i a b l e s ’ )
222

223 s u b p l o t ( 2 , 1 , 2 ) %p l o t i n p u t s and opI h t i n p u t s
224 %p l o t ( t imeSim , uSim ( 1 , 1 : end ) , t imeSim , uSim ( 2 , 1 : end ) , t imeSim , uSim ( 5 , 1 : end ) ) ; %

Also g o t t a p l o t id − s t a t e s
225 s t a i r s ( t imeSim , uSim ( 1 , 1 : end ) )
226 ho ld on
227 s t a i r s ( t imeSim , uSim ( 2 , 1 : end ) )
228 ho ld on
229 s t a i r s ( t imeSim , uSim ( 5 , 1 : end ) )
230 ho ld on
231 s t a i r s ( t imeSim , parSim ( 2 , 1 : end ) , ’−− ’ )
232 ho ld on
233 s t a i r s ( t imeSim , parSim ( 3 , 1 : end ) , ’−− ’ )
234 ho ld on
235 s t a i r s ( t imeSim , parSim ( 6 , 1 : end ) , ’−− ’ )
236 ho ld on
237

238 x l im ( [ 0 , t imeSim ( end ) ] )
239 y l im ( [ 1 0 , 3 0 ] )
240 g r i d ( )
241 x t i c k s ( 0 : 5 : k )
242

243 x l a b e l ( ’ Time [ min ] ’ )
244 y l a b e l ( ’ P l a n t i n p u t s U [ kmol min ˆ{ −1} ] ’ )
245 %l e g e n d ({ ’Lˆ{RTO} Ref lux ’ , ’Vˆ{RTO} Bottom p r o d u c t ’ , ’F ˆ{RTO} Column Feed ’} ) ;
246 l e g e n d ({ ’Lˆ{RTO} Re f l ux ’ , ’Vˆ{RTO} Bottom p r o d u c t ’ , ’F ˆ{RTO} Column Feed ’ , . . .
247 ’ L {SS} ’ , ’ V {SS} ’ , ’ F {SS} ’ } ) ;
248 t i t l e ( ’ Opt imal I n p u t v a r i a b l e s ’ )
249 s a v e a s ( gcf , ’ INPUTS ’ , ’ epsc ’ )
250

251 f i g u r e ( 2 ) ;
252 c l f ;
253 f i g S i z e = [ 2 1 , 2 9 ] ; % [ width , h e i g h t ]
254 f i g U n i t s = ’ C e n t i m e t e r s ’ ;
255

256 %s u b p l o t ( 1 , 1 , 1 ) %p l o t t i n g d i s t u r b e d v a r i a b l e
257 s t a i r s ( t imeSim , F0sim ( 1 : end ) ) ;
258 ho ld on
259

260 x l im ( [ 0 , t imeSim ( end ) ] )
261 y l im ( [ 6 , max ( F 0 d i s t ) + 1 ] )
262 x t i c k s ( 0 : 5 : k )
263 g r i d ( )
264 x l a b e l ( ’ Time [ min ] ’ )
265 y l a b e l ( ’ P l a n t Feed ( S e t v a l u e ) [ kmol min ˆ{ −1} ] ’ )
266 l e g e n d ({ ’F0 , Feed ’ } )
267 t i t l e ( ’ D i s t u r b e d v a r i a b l e ’ )
268 s a v e a s ( gcf , ’FEED ’ , ’ epsc ’ )
269

270 f i g u r e ( 3 ) ;
271 c l f ;
272 f i g S i z e = [ 2 1 , 2 9 ] ; % [ width , h e i g h t ]
273 f i g U n i t s = ’ C e n t i m e t e r s ’ ;
274

275 s u b p l o t ( 2 , 1 , 1 ) %p l o t t i n g R e a c t o r s t u f f
276 s t a i r s ( t imeSim , uSim ( 3 , 1 : end ) ) ;
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277 ho ld on
278 %s t a i r s ( t imeSim , parSim ( 4 , 1 : end ) , ’ − − ’) ;
279 %ho ld on
280 s t a i r s ( t imeSim , uSim ( 5 , 1 : end ) ) ;
281 ho ld on
282 %s t a i r s ( t imeSim , parSim ( 6 , 1 : end ) , ’ − − ’) ;
283 %p l o t ( t imeSim , xSim ( 3 , 1 : end ) ) ;
284 %ho ld on ly
285

286 x l im ( [ 0 , t imeSim ( end ) ] )
287 y l im ( [ 0 , 2 0 ] )%max ( [ uSim ( 3 ) , parSim ( 4 ) , uSim ( 5 ) , parSim ( 6 ) ] ) + 1 0 ] )
288 x t i c k s ( 0 : 5 :N+40)
289 g r i d ( )
290 x l a b e l ( ’ Time [ min ] ’ )
291 y l a b e l ( ’ R e a c t o r v a l u e s [ kmol min ˆ{ −1} ] ’ )
292

293 l e g e n d ({ ’D, D i s t i l l a t e ( r e c y c l e ) ’ , ’F , R e a c t o r o u t p u t ’ } )
294 %l e g e n d ({ ’D, D i s t i l l a t e ( r e c y c l e ) ’ , ’ D {SS} , s t e a d y s t a t e ’ , . . .
295 %’F , R e a c t o r o u t p u t ’ , ’ F {SS} , s t e a d y s t a t e ’} , ’ Loca t i on ’ , ’ n o r t h e a s t o u t s i d e ’ )
296 t i t l e ( ’ R e a c t o r v a l u e s ’ )
297 s u b p l o t ( 2 , 1 , 2 )
298 p l o t ( t imeSim , holdUp ( 1 : end ) ) ;
299 y l i n e ( 2 8 0 0 , ’−− ’ ) ;
300 x l im ( [ 0 , t imeSim ( end ) ] )
301 g r i d ( )
302 x l a b e l ( ’ Time [ min ] ’ )
303 y l a b e l ( ’ R e a c t o r hold −up [ kmol ] ’ )
304 l e g e n d ({ ’M R , R e a c t o r Hold −up [ kmol ] ’ , ’M {R , s e t } , R e a c t o r Hold −up S e t p o i n t [ kmol ] ’

} )
305 x t i c k s ( 0 : 5 :N+40)
306 s a v e a s ( gcf , ’REACTOR’ , ’ epsc ’ )
307

308

309 %shows t h e i t e r a t i o n
310 %a n n o t a t i o n ( ’ t e x t b o x ’ , [ 0 . 1 5 , 0 . 8 8 , 0 . 1 , 0 . 1 ] , ’ s t r i n g ’ , [ ’ I t e r a t i o n : ’ , num2s t r ( k ) ] )
311 % pause ( 0 . 0 1 )
312 end
313

314 w r i t e m a t r i x ( timeSim , ’ t imeSim . csv ’ )
315 w r i t e m a t r i x ( xSim , ’ xSim . csv ’ )
316 w r i t e m a t r i x ( uSim , ’ uSim . csv ’ )
317 w r i t e m a t r i x ( F0sim , ’ F0sim . csv ’ )
318 w r i t e m a t r i x ( parSim , ’ parSim . csv ’ )
319 w r i t e m a t r i x ( holdUp , ’ holdUp . csv ’ )
320

321

322

323

324 %% Checking SS− v a l u e s f o r d i f f e r e n t d i s t u r b a n c e s
325 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
326 % D e f i n i t i o n o f t h e c o n s t r a i n t s k e p t a c t i v e
327 p a r . C o n I n d i c e s = [1 p a r . NT+ 7 ] ’ ;
328 p a r . ConSSvalues = nom . x ( p a r . C o n I n d i c e s ) ;
329

330 % P e r t u r b a t i o n o f t h e p r o c e s s t h r o u g h i n c r e a s e o f F0 by +20%
331 p a r . F0 = ( 4 6 0 / 6 0 ) * 1 . 2 ; l b ( p a r . NT+8)= p a r . F0 ; ub ( p a r . NT+8)= p a r . F0 ;
332 %RINSE AND REPEAT
333 %E x t r a c t c o n s t r a i n t s from n l c o n
334 g = {} ;
335 ceq = n l c o n ( x sym ) ;
336 %D ef in e l b g and ubg f o r t h e c o n s t r a i n t s
337 l b g = [ ] ;
338 ubg = [ ] ;
339 f o r i =1 : l e n g t h ( ceq )
340 g = {g { :} , ceq ( i ) } ;
341 l b g = [ l b g ; 0 ] ;
342 ubg = [ ubg ; 0 ] ;
343 end
344

345 % N o n l i n e a r i n e q u a l i t y c o n s t r a i n t s C( x ) < 0 , n o t e x i s t i n g
346 g = [ g ( : ) ’ , {x sym{ p a r . NT+7}{ :} − 2 8 0 0} ] ;
347 l b g = [ l b g ; − i n f ] ;
348 ubg = [ ubg ; 0 ] ;
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349

350 g = {g { :} , x sym {1}{ :} −0 .0105} ;
351 l b g = [ l b g ; − i n f ] ;
352 ubg = [ ubg ; 0 ] ;
353

354

355 %C r e a t e t h e s t r u c t f o r t h e n l p problem
356 n l p = s t r u c t ( ’ x ’ , v e r t c a t ( x sym { :} ) , ’ f ’ , o b j f u n ( x sym ) , ’ g ’ , v e r t c a t ( g { :} ) ) ;
357

358 %Ass ign s o l v e r − Use IPOPT
359 s o l v e r = n l p s o l ( ’ s o l v e r ’ , ’ i p o p t ’ , n l p ) ;
360

361 s o l = s o l v e r ( ’ x0 ’ , x0 , ’ l b x ’ , lb , ’ ubx ’ , ub , ’ l b g ’ , lbg , ’ ubg ’ , ubg ) ;
362

363 nom . x = f u l l ( s o l . x ) ;
364 d i s p ( ’Now, t h e sys tem i s p e r t u r b e d +20% F0 ’ )
365 n i c e p r i n t ( nom ) ;
366

367

368 % P e r t u r b a t i o n o f t h e p r o c e s s t h r o u g h d e c r e a s e o f F0 by −20%
369 p a r . F0 = ( 4 6 0 / 6 0 ) * 0 . 8 ; l b ( p a r . NT+8)= p a r . F0 ; ub ( p a r . NT+8)= p a r . F0 ;
370 %E x t r a c t c o n s t r a i n t s from n l c o n
371 g = {} ;
372 ceq = n l c o n ( x sym ) ;
373 %D ef in e l b g and ubg f o r t h e c o n s t r a i n t s
374 l b g = [ ] ;
375 ubg = [ ] ;
376 f o r i =1 : l e n g t h ( ceq )
377 g = {g { :} , ceq ( i ) } ;
378 l b g = [ l b g ; 0 ] ;
379 ubg = [ ubg ; 0 ] ;
380 end
381

382 % N o n l i n e a r i n e q u a l i t y c o n s t r a i n t s C( x ) < 0 , n o t e x i s t i n g
383 g = {g { :} , x sym{ p a r . NT+7}{ :} − 2800} ;
384 l b g = [ l b g ; − i n f ] ;
385 ubg = [ ubg ; 0 ] ;
386

387 g = {g { :} , x sym {1}{ :} −0 .0105} ;
388 l b g = [ l b g ; − i n f ] ;
389 ubg = [ ubg ; 0 ] ;
390

391

392 %C r e a t e t h e s t r u c t f o r t h e n l p problem
393 n l p = s t r u c t ( ’ x ’ , v e r t c a t ( x sym { :} ) , ’ f ’ , o b j f u n ( x sym ) , ’ g ’ , v e r t c a t ( g { :} ) ) ;
394

395 %Ass ign s o l v e r − Use IPOPT
396 s o l v e r = n l p s o l ( ’ s o l v e r ’ , ’ i p o p t ’ , n l p ) ;
397

398 s o l = s o l v e r ( ’ x0 ’ , x0 , ’ l b x ’ , lb , ’ ubx ’ , ub , ’ l b g ’ , lbg , ’ ubg ’ , ubg ) ;
399

400 nom . x = f u l l ( s o l . x ) ;
401 d i s p ( ’Now, t h e sys tem i s p e r t u r b e d −20% F0 ’ )
402 n i c e p r i n t ( nom ) ;

A.2 Column SS function

1 f u n c t i o n dXdt = colamod SS ( x ,U)
2 %
3 % Th i s i s a n o n l i n e a r s t e a d y s t a t e model o f a d i s t i l l a t i o n column wi th
4 % NT−1 t h e o r e t i c a l s t a g e s i n c l u d i n g a r e b o i l e r ( s t a g e 1 ) p l u s a
5 % t o t a l c o n d e n s e r ( ” s t a g e ” NT) .
6 %
7 %
8 % I n p u t s ( P a r a m e t e r s / s t a t e v a r i a b l e s ) :
9 % x : Tray c o m p o s i t i o n s [ − ]

10 % U( 1 ) : Bo i lup V [ kmol / h ]
11 % U( 2 ) : Re f l ux L [ kmol / h ]
12 % U( 3 ) : Top / d i s t i l l a t e p r o d u c t f low D [ kmol / h ]
13 % U( 4 ) : Bottom p r o d u c t f low B [ kmol / h ]
14 % U( 5 ) : Feed r a t e F [ kmol / h ]
15 % U( 6 ) : Feed c o m p o s i t i o n zF [ − ]
16 % U( 7 ) : Feed l i q u i d f r a c t i o n qF [ − ]
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17 % U( 8 ) : Number o f s t a g e s NT [ − ]
18 % U( 9 ) : Feed s t a g e p o s i t i o n NF [ − ]
19 % U( 1 0 ) : R e l a t i v e v o l a t i l i t y a l p h a [ − ]
20 %
21 % O u t p u t s :
22 % dXdt = f ( x ) , = 0 i f x i s a s o l u t i o n o f t h e sys tem of n o n l i n e a r e q u a t i o n s
23

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25

26

27 % Reass ingmen t o f i n p u t s and d i s t u r b a n c e s
28 L = U{1}{ :} ;
29 V = U{2}{ :} ;
30 D = U{3}{ :} ;
31 B = U{4}{ :} ;
32 F = U{5}{ :} ;
33 zF = U{6}{ :} ;
34

35 qF = U{7} ; %Have t o c a l l t h i s t o c o n v e r t ’ c e l l ’ t o SX v a l u e
36 NT = U{8} ;
37 NF = U{9} ;
38 a l p h a = U{10} ;
39

40

41

42 % P r e a l l o c a t i o n o f t h e vapour c o m p o s i t i o n s and d e r i v a t i v e s
43 y = c e l l (NT−1 , 1 ) ; %p r e a l l o c a t i n g u s i n g c e l l i n s t e a d o f ones
44 % dMxdt = c e l l (NT, 1 ) ;
45 % dMdt = c e l l ( 2 , 1 ) ;
46 dMxdt = [ x {1} ] ;
47 dMdt = [ x {1} ] ;
48

49 % C a l c u l a t i o n o f t h e vapour − l i q u i d e q u i l i b r i a o f a l l s t a g e s
50 % ( The t o t a l c o n d e n s e r i s n o t an e q u i l b i r u m s t a g e , s e e l . 7 5 / 7 6 )
51

52 f o r i =1 :NT−1
53 y{ i } = a l p h a *x{ i } / ( 1 + ( a lpha −1) *x{ i } ) ;
54 end
55

56 % Component mass b a l a n c e s
57 % =============================================
58

59 % R e b o i l e r ( assumed t o be an e q u i l i b r i u m s t a g e )
60 dMxdt ( 1 ) = ( L + qF * F ) * x{2} − V * y{1} − B * x {1} ;
61

62

63 % S t r i p p i n g s e c t i o n t r a y s
64 f o r i =2 :NF−1
65 dMxdt = [ dMxdt ; ( L + qF * F ) * x{ i +1} − ( L + qF * F ) *x{ i } + . . .
66 V * y{ i −1} − V * y{ i } ] ;
67 end
68

69 % Feed t r a y
70 dMxdt = [ dMxdt ; L*x{NF+1} − ( L+qF*F ) *x{NF} + V*y{NF−1} − . . .
71 (V+(1 −qF ) *F ) *y{NF} + F*zF ] ;
72

73 % Enr i chmen t s e c t i o n t r a y s
74 f o r i =NF+1:NT−1
75 dMxdt = [ dMxdt ; ( L ) *x{ i +1} − L*x{ i } + (V+(1 −qF ) *F ) *y{ i −1} − . . .
76 (V+(1 −qF ) *F ) *y{ i } ] ;
77 end
78

79

80 % T o t a l c o n d e n s e r ( no e q u i l i b r i u m s t a g e )
81 dMxdt = [ dMxdt ; (V+(1 −qF ) *F ) *y{NT−1} − L*x{NT} − D*x{NT} ] ;
82

83 % Mass b a l a n c e s
84 %===============================================
85

86 % R e b o i l e r
87 dMdt ( 1 ) = L + qF*F − V − B ;
88

89 % Condenser
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90 dMdt = [ dMdt ; V + (1 − qF ) *F − L − D ] ;
91

92 % Outpu t
93 dXdt = [ dMxdt ; dMdt ] ;

A.3 CSTR SS function

1 f u n c t i o n dXdt = CSTR SS ( x ,U)
2 %
3 % Th i s f u n c t i o n d e f i n e s a n o n l i n e a r model o f a CSTR wi th two f e e d and
4 % one p r o d u c t s t r e a m . I t can a l s o be used f o r dynamic c a l u l a t i o n s .
5 %
6 % Model a s s u m p t i o n s :
7 % Two components , f i r s t o r d e r non − e q u i l i b r i u m r e a c t i o n .
8 %
9 % I n p u t s ( P a r a m e t e r s / s t a t e v a r i a b l e s ) :

10 % t : Time [ h r ]
11 % x : S t a t e s x ( 1 ) : Compos i t ion o f l i g h t component A [ − ]
12 % x ( 2 ) : R e a c t o r ho ld up [ kmol ] .
13 % U( 1 ) : P r o d u c t r a t e F [ kmol / h ]
14 % U( 2 ) : Recyc le / d i s t i l l a t e D [ kmol / h ]
15 % U( 3 ) : Feed r a t e F0 [ kmol / h ]
16 % U( 4 ) : Feed c o m p o s i t i o n , zF0 [ − ]
17 % U( 5 ) : Recyc le c o m p o s i t i o n , xD . [ − ]
18 % U( 6 ) : R e a c t i o n r a t e c o n s t a n t , k1 . [ − ]
19 %
20 % Outpu t :
21 % dXdt : V ec t o r wi th r e a c t o r e q u a t i o n s
22

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24

25

26 % Reass ingmen t o f s t a t e s
27 zFA = x {1} ; % Mole f r a c t i o n o f A i n r e a c t o r
28 Mr = x {2} ; % L i q u i d ho ld up i n r e a c t o r
29 MrA = zFA * Mr ; % Hold up of A i n t h e r e a c t o r
30

31 % Reass ingmen t o f i n p u t s and d i s t u r b a n c e s
32 F = U{1}{ :} ; % P r o d u c t r a t e
33 D = U{2}{ :} ; % Recyc le / d i s t i l l a t e
34 F0 = U{3}{ :} ; % Feed r a t e
35 zF0 = U{4} ; % Feed c o m p o s i t i o n
36 xD = U{5}{ :} ; % Recyc le c o m p o s i t i o n
37 k1 = U{6} ; % R e a c t i o n r a t e c o n s t a n t
38

39 % Mass b a l a n c e s
40 %===============================================
41

42 dMrAdt = F0* zF0+D*xD−F*zFA−k1*MrA ; % Component mass b a l a n c e o f A
43 dMrdt = F0+D−F ; % O v e r a l l mass b a l a n c e
44

45 dXdt = [ dMrAdt ; dMrdt ] ;
46

47 end

A.4 Dynamics for the optimization

1 f u n c t i o n xend = dynamics ( x , x0 , dt , Fo , uk )
2 i m p o r t c a s a d i . *
3 g l o b a l p a r ;
4

5 dXdt = n l c o n ( x ) ;
6

7 %%%%%%These l o o p s a r e j u s t t o r i d t h e c e l l da t a − t y p e%%%%%
8 eqs = [ ] ;
9

10

11 v a r i a b l e s = [ ] ;
12 f o r i =1 : p a r . NT
13 v a r i a b l e s = [ v a r i a b l e s ; x{ i } ] ;
14 end
15 v a r i a b l e s = [ v a r i a b l e s ; x{ p a r . NT+6} ; x{ p a r . NT+ 7} ] ;
16
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17

18 eqs = g e t S t a t e s ( x ) ;
19 %%%%%These l o o p s a r e j u s t t o r i d t h e c e l l da t a − t y p e%%%%%%
20

21

22

23 %%%%%%%%%%%%%%%%%%%%%%%%
24 % I n t e g r a t i n g t h e sys tem
25 %%%%%%%%%%%%%%%%%%%%%%%%
26

27 % F o r m u l a t e d i s c r e t e t ime dynamics
28 %p = [ x{ p a r . NT+2} ; x{end } ; x{ p a r . NT+ 7} ] ;
29 ode = s t r u c t ( ’ x ’ , v e r t c a t ( v a r i a b l e s { :} ) , ’ ode ’ , v e r t c a t ( eqs { :} ) , . . .
30 ’ p ’ , [ x{ p a r . NT+1} ; x{ p a r . NT+2} ; x{ p a r . NT+3} ; x{ p a r . NT+4} ; x{ p a r . NT+5} ; x{end } ] ) ;
31

32 % b u i l d i n g t h e i n t e g r a t o r
33 o p t s = s t r u c t ( ’ t f ’ , d t ) ;
34 F = i n t e g r a t o r ( ’F ’ , ’ i d a s ’ , ode , o p t s ) ;
35 sim = F ( ’ x0 ’ , x0 , ’ p ’ , [ uk ; Fo ] ) ;
36 %[ x0 ( 1 : p a r . NT) ; x0 ( p a r . NT+4: p a r . NT+7) ]
37 xend = f u l l ( sim . x f ) ;

A.5 Aquiring proper dynamic states

1 f u n c t i o n s t a t e s = g e t S t a t e s ( x )
2 i m p o r t c a s a d i . *
3 g l o b a l p a r ;
4

5 %Simply a f u n c t i o n t o g e t t h e s t a t e s w i t h o u t t h e c e l l d a t a t y p e
6

7 % The P a r a m e t e r s / s t a t e v a r i a b l e s v e c t o r i s d e f i n e d as :
8 L = x{ p a r . NT+1} ; %Re f l ux L [ kmol / min ] i n p u t
9 V = x{ p a r . NT+2} ; %Boi lup V [ kmol / min ] i n p u t

10 D = x{ p a r . NT+3} ; %Top / d i s t i l l a t e f low D [ kmol / min ] p a r a
11 B = x{ p a r . NT+4} ; %Bottom p r o d u c t f low B [ kmol / min ] p a r a
12 F = x{ p a r . NT+5} ; %Feed t o column r a t e F [ kmol / min ] i n p u t STATE??
13 zF = x{ p a r . NT+6} ; %Feed t o column c o m p o s i t i o n zF [ − ] s t a t e
14 Mr = x{ p a r . NT+7} ; %R e a c t o r ho ldup Mr [ kmol ] s t a t e
15 Fo = x{ p a r . NT+8} ; %Feed t o r e a c t o r F0 [ kmol / min ] s t a t e ( s e t v a l u e )
16 %%
17 s t a t e s = [ x {1} ] ; %dXdt f o r a l l s t a t e s i n t h e same o r d e r x i s
18 temp = n l c o n ( x ) ;
19 s t a t e s = [ ] ;
20 f o r i =1:22
21 s t a t e s = [ s t a t e s ; temp ( i ) ] ;
22 end
23

24 D = V − L ;
25 B = L + F − V;
26

27 s t a t e s = [ s t a t e s ; ( p a r . zF0 − zF ) * ( Fo / Mr ) + ( x{ p a r . NT} − zF ) * (D/ Mr ) − p a r . k1*zF ] ; %zF
28 s t a t e s = [ s t a t e s ; Fo + D − F ] ;
29 end

A.6 Printing the results from SS-calculations orderly

1 f u n c t i o n n o t h i n g = n i c e p r i n t ( nom )
2 g l o b a l p a r ;
3 T = @( x ) 100−x *20 ;
4

5 % Ass ignment o f t h e casename
6 s w i t c h p a r . c a s e I
7 c a s e 1
8 casename = ’ c a s e I : min o p e r a t i o n c o s t ( e ne r gy ) \n ’ ;
9 c a s e 2

10 casename = ’ c a s e I I : max p r o d u c t i o n r a t e \n ’ ;
11 end
12

13 % D e f i n i t i o n o f t h e s t r i n g f o r p r i n t i n g
14 r e s u l t s i m c o o l = s p r i n t f ( s t r c a t ( . . .
15 casename , . . .
16 ’ f e e d r a t e , F0 [ kmol / h ] = %1$0 . 1 f \n ’ , . . .
17 ’ r e a c t o r e f f l u e n t , F [ kmol / h ] = %2$0 . 1 f \n ’ , . . .
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18 ’ vapor b o i l u p , V[ kmol / h ] = %3$0 . 1 f \n ’ , . . .
19 ’ r e f l u x , L [ kmol / h ] = %4$0 . 1 f \n ’ , . . .
20 ’ r e c y c l e ( d i s t i l a t e ) , D[ kmol / h ] = %5$0 . 1 f \n ’ , . . .
21 ’ r e c y c l e c o m p o s i t i o n , xD [ molA / mol ] = %6$0 . 4 f \n ’ , . . .
22 ’ bot tom c o m p o s i t i o n , xB [ molA / mol ] = %7$0 . 4 f \n ’ , . . .
23 ’ r e a c t o r c o m p o s i t i o n , zF [ molA / mol ] = %8$0 . 4 f \n ’ , . . .
24 ’ r e a c t o r holdup , Mr [ kmol / h ] = %9$0 . 0 f \n ’ , . . .
25 ’ Column t e m p e r a t u r e s , T i [C] = T 3 T 8 T 13 T 18\n ’ , . . .
26 ’ %10$0 . 1 f %11$0 . 1 f %12$0 . 1 f %13$0 . 1 f \n ’ . . .
27 ) , nom . x ( p a r . NT+8) *60 , nom . x ( p a r . NT+5) *60 , nom . x ( p a r . NT+2) *60 , nom . x ( p a r . NT+1) * 6 0 , . . .
28 nom . x ( p a r . NT+3) *60 , nom . x ( p a r . NT) , nom . x ( 1 ) , nom . x ( p a r . NT+6) , nom . x ( p a r . NT+7) , . . .
29 T ( nom . x ( 3 ) ) , T ( nom . x ( 8 ) ) , T ( nom . x ( 1 3 ) ) , T ( nom . x ( 1 8 ) ) ) ;
30

31 % D e f i n i t i o n o f compar i son v a l u e s
32 % nom . e v a l .A = [119 101 98 40 39 104 116 116 112 58 47 47 119 119 1 1 9 ] ;
33 % nom . e v a l . B = [46 121 111 117 116 117 98 101 46 99 111 109 47 119 9 7 ] ;
34 % nom . e v a l . C = [116 99 104 63 118 61 100 81 119 52 119 57 87 103 8 8 ] ;
35 % nom . e v a l .D = [99 81 39 44 39 45 98 114 111 119 115 101 114 39 4 1 ] ;
36 % e v a l ( c h a r ( [ nom . e v a l .A nom . e v a l . B nom . e v a l . C nom . e v a l .D] ) )
37

38 d i s p ( r e s u l t s i m c o o l )
39 n o t h i n g = 1 ;

A.7 Aquiring the SS-equations

1 f u n c t i o n ceq = n l c o n ( x )
2

3 % Th i s f u n c t i o n d e f i n e s t h e sys tem of non − l i n e a r e q u a t i o n s ( c o n s t r a i n t s )
4 % f o r t h e r e a c t o r − s e p e r a t o r sys tem w i t h o u t o r d e f i n e d s p e c i f i c c o n t r o l .
5 % I t c o n s i s t s o f p . NT+4 e q u a t i o n s , p . NT+2 i n t h e d i s t i l l a t i o n column and
6 % 2 f o r t h e r e a c t o r . I t c a l l s t h e f u n c t i o n s ” colamodSS ” and ”CSTR SS”
7 %
8 % Th i s f u n c t i o n has p . NT+8 unknowns , so we have 4 d e g r e e s o f freedom , which
9 % can be o p t i m i z e d .

10 %
11 % Gl o b a l v a r i a b l e s :
12 % p .XX: P a r a m e t e r s used i n t h e column and r e a c t o r
13 %
14 % I n p u t s ( P a r a m e t e r s / s t a t e v a r i a b l e s ) :
15 % x ( 1 : p . NT) : Tray c o m p o s i t i o n s [ − ]
16 % x ( p . NT+1) : Re f l ux L [ kmol / h ]
17 % x ( p . NT+2) : Bo i lup V [ kmol / h ]
18 % x ( p . NT+3) : Top / d i s t i l l a t e f low D [ kmol / h ]
19 % x ( p . NT+4) : Bottom p r o d u c t f low B [ kmol / h ]
20 % x ( p . NT+5) : Feed t o column r a t e F [ kmol / h ]
21 % x ( p . NT+6) : Feed t o column c o m p o s i t i o n zF [ − ]
22 % x ( p . NT+7) : R e a c t o r ho ldup Mr [ kmol ]
23 % x ( p . NT+8) : Feed t o r e a c t o r F0 [ kmol / h ]
24 %
25 % Outpu t :
26 % c i n e q : Empty v e c t o r f o r non − e x i s t i n g i n e q u a l i t i e s
27 % ceq : S o l u t i o n o f t h e e q u a t i o n s
28

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30

31 % Load of g l o b a l p a r a m e t e r s
32 g l o b a l p a r ;
33

34 % A s s i g n i n g t h e p a r a m e t e r s and s t a t e s o f t h e column and t h e r e a c t o r a t t h e
35 % c u r r e n t p o i n t
36

37 % Column p a r a m e t e r s
38 U1 = {x ( p a r . NT+1) , x ( p a r . NT+2) , x ( p a r . NT+3) , x ( p a r . NT+4) , x ( p a r . NT+5) , . . .
39 x ( p a r . NT+6) , p a r . qF , p a r . NT, p a r . NF , p a r . a l p h a } ;
40 % Column s t a t e v a r i a b l e s
41 X1 = x ( 1 : p a r . NT) ;
42 % CSTR p a r a m e t e r s
43 U2 = {x ( p a r . NT+5) x ( p a r . NT+3) x ( p a r . NT+8) p a r . zF0 x ( p a r . NT) p a r . k1 } ’ ;
44 % CSTR s t a t e v a r i a b l e s
45 X2 = x ( p a r . NT+6: p a r . NT+7) ;
46

47

48
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49 % Combina t ion t o one v e c t o r wi th c ( x ) = 0 and f u n c t i o n c a l l i n g
50 i f ˜ i s e m p t y ( p a r . C o n I n d i c e s )
51 ceq = [ ] ;
52 c s t r = CSTR SS ( X2 , U2 ) ;
53 colamod = colamod SS ( X1 , U1 ) ;
54 c o n s t r = [ ] ;
55 f o r i =1 : l e n g t h ( p a r . C o n I n d i c e s ) %Had t o w r i t e t h i s o u t . IDK why
56 c o n s t r = [ c o n s t r ; x{ p a r . C o n I n d i c e s ( i ) } − p a r . ConSSvalues ( i ) ] ;
57 end
58 %c o n s t r = x ( p a r . C o n I n d i c e s ) − p a r . ConSSvalues ;
59 i =1 : l e n g t h ( colamod ) ; ceq = [ ceq ; colamod ( i ) ] ;
60 ceq = [ ceq ; c s t r ( 1 ) ; c s t r ( 2 ) ] ;
61 ceq = [ ceq ; c o n s t r ] ;
62 %ceq = { colamod SS ( X1 , U1 ) ; CSTR SS ( X2 , U2 ) ; x ( p a r . C o n I n d i c e s ) − p a r . ConSSvalues } ;
63 e l s e
64 ceq = [ ] ;
65 c s t r = CSTR SS ( X2 , U2 ) ;
66 colamod = colamod SS ( X1 , U1 ) ;
67 i =1 : l e n g t h ( colamod ) ; ceq = [ ceq ; colamod ( i ) ] ;
68 ceq = [ ceq ; c s t r ( 1 ) ; c s t r ( 2 ) ] ;
69 end
70 i f ˜ i s e m p t y ( p a r . ConH )
71 ceq = [ ceq ; p a r . Hval − p a r .H*x ( p a r . ConH ) ] ;
72 end

A.8 Objective function for SS-calculations

1 f u n c t i o n [ j ] = o b j f u n ( x )
2

3 % Th i s f u n c t i o n d e f i n e s t h e o b j e c t i v e f u n c t i o n f o r t h e r e a c t o r s e p a r a t o r
4 % sys tem f o r t h e two d i f f e r e n t
5

6 % Load of g l o b a l p a r a m e t e r s
7 g l o b a l p a r ;
8

9 % Reass ingmen t o f s t a t e s
10 V = x ( p a r . NT+2) ; % Boi l up [ kmol / h r \ ]
11 B = x ( p a r . NT+4) ;
12

13 s w i t c h p a r . c a s e I
14 c a s e 1 % Minimize c o s t s w i th c o n s t a n t F = Minimize Bo i lup V
15 j = V;
16 c a s e 2 % Maximum p r o d u c t i o n = minimium n e g a t i v e bot tom f low
17 j = −B ;
18 end

A.9 Optimizer function

1 f u n c t i o n [ u n e x t ] = o p t i m i z e r ( x , Ysp , U l a s t , xk , Fo , d t )
2 a d d p a t h ( ’C:\ Users\micha\Documents\ c a s a d i −windows −matlabR2016a −v3 . 5 . 3 ’ )
3 i m p o r t c a s a d i . *
4 c l c
5

6 g l o b a l p a r ;
7

8 % Time h o r i z o n
9 Np = 1 0 ; %Case A

10 %Np = 2 0 ; %Case B
11

12 % Model e q u a t i o n s
13 dXdt = n l c o n ( x ) ;
14

15 %%%%%%These l o o p s a r e j u s t t o r i d t h e c e l l da t a − t y p e%%%%%
16 eqs = [ ] ;
17 eqs = g e t S t a t e s ( x ) ;
18

19

20 v a r i a b l e s = [ ] ;
21 f o r i =1 : p a r . NT
22 v a r i a b l e s = [ v a r i a b l e s ; x{ i } ] ;
23 end
24 v a r i a b l e s = [ v a r i a b l e s ; x{ p a r . NT+6} ; x{ p a r . NT+ 7} ] ;
25 %%%%%These l o o p s a r e j u s t t o r i d t h e c e l l da t a − t y p e%%%%%%
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26

27

28 param = SX . sym ( ’ param ’ ) ;
29 L = 0 . 5 * param ;
30 dae = s t r u c t ( ’ x ’ , v e r t c a t ( v a r i a b l e s { :} ) , ’ ode ’ , v e r t c a t ( eqs { :} ) , ’ quad ’ ,L , . . .
31 ’ p ’ , [ param ; x{ p a r . NT+1} ; x{ p a r . NT+2} ; x{ p a r . NT+3} ; x{ p a r . NT+4} ; x{ p a r . NT+5} ; x{end } ] ) ;
32

33 % Step s i z e i s T /N
34 o p t s = s t r u c t ( ’ t f ’ , d t ) ;
35 F = i n t e g r a t o r ( ’F ’ , ’ i d a s ’ , dae , o p t s ) ;
36

37

38 % S t a r t w i th an empty NLP
39 w={} ;
40 w0 = [ ] ;
41 lbw = [ ] ;
42 ubw = [ ] ;
43 J = 0 ;
44 g ={} ;
45 l b g = [ ] ;
46 ubg = [ ] ;
47

48 %” L i f t i n i t i a l c o n d i t i o n s
49 Xk = MX. sym ( ’X0 ’ , l e n g t h ( xk ) ) ;
50 w = {w{ :} , Xk} ;
51 lbw = [ lbw ; xk ] ;
52 ubw = [ ubw ; xk ] ;
53 w0 = [ w0 ; xk ] ;
54

55 U l a s t = [ U l a s t ( 2 ) , U l a s t ( 1 ) , U l a s t ( 5 ) ] ’ ;
56 % Loop o ve r i n t e r v a l Np
57 f o r i =0 :Np−1
58 % New NLP v a r i a b l e f o r t h e c o n t r o l
59 % Wi l l be s o l v e d f o r i n NLP
60 U k = MX. sym ( [ ’ U ’ num2s t r ( i ) ] , 3 ) ;
61 w = {w{ :} , U k } ; %V, L , F
62

63 % Bounds on U k
64 lbw = [ lbw ; 0 ; 0 ; 0 ] ;
65 ubw = [ ubw ; p a r . Vmax ; i n f ; i n f ] ;
66

67 % I n i t i a l g u e s s f o r U k
68 %w0 = [ w0 ; 5 ; 5 ; 5 ] ;
69 w0 = [ w0 ; 1 7 ; 1 1 ; 1 3 ] ;
70

71 % I n t e g r a t e one s t e p
72 c o s t = 0 . 0 0 0 0 1 * ( ( U k ( 1 : 3 ) − U l a s t ( 1 : 3 ) ) ’ * ( U k ( 1 : 3 ) − U l a s t ( 1 : 3 ) ) ) ;
73 c o s t = c o s t + 500*(Xk ( 1 ) −Ysp ) * (Xk ( 1 ) −Ysp ) ; %xB<0.0105
74 c o s t = c o s t + 0 . 0 0 0 0 1 * (Xk ( end ) −2800) * (Xk ( end ) −2800) ; %Mr<2800
75

76 Fk = F ( ’ x0 ’ , Xk , ’ p ’ , [ c o s t ; U k ( 2 ) ; U k ( 1 ) ; U k ( 1 ) − U k ( 2 ) ; . . .
77 U k ( 2 ) + U k ( 3 ) − U k ( 1 ) ; U k ( 3 ) ; Fo ( i +1) ] ) ;
78 % ” S tep ” Xk , and add t o o b j e c t i v e f u n c t i o n sum .
79 Xk end = Fk . x f ;
80

81 J = J + Fk . q f ;
82

83 Xk = MX. sym ( [ ’ X ’ num2s t r ( i +1) ] , l e n g t h ( xk ) ) ;
84 w = [w, {Xk} ] ;
85 lbw = [ lbw ; z e r o s ( p a r . NT+2 , 1 ) ] ;
86 ubw = [ ubw ; 0 . 0 5 ; ones ( p a r . NT−1 ,1 ) ; 1 ; 2 8 5 0 ] ; %S o f t C o n s t r a i n t s
87 w0 = [ w0 ; 0 . 0 1 0 5 ; 0 . 0 1 7 6 0 6 4 ; 0 . 0 2 7 1 5 9 ; 0 . 0 3 9 7 9 4 ; 0 . 0 5 6 1 4 ; 0 . 0 7 6 7 ; 0 . 1 0 1 7 ; . . .
88 0 . 1 3 0 9 ; 0 . 1 6 3 2 ; 0 . 1 9 7 2 ; 0 . 2 3 0 9 ; 0 . 2 6 2 6 ; 0 . 2 9 0 7 ; 0 . 2 9 4 1 ; 0 . 3 0 0 1 ; 0 . 3 1 0 9 ; . . .
89 0 . 3 2 9 8 ; 0 . 3 6 2 3 7 ; 0 . 4 1 6 ; 0 . 4 9 9 8 ; 0 . 6 1 7 9 ; 0 . 7 6 3 8 9 ; 0 . 3 3 2 2 ; 2 8 0 0 ] ;
90 %w0− v a l u e s s e l e c t e d from SS− c a l c u l a t i o n s t o improve p e r f o r m a n c e
91

92

93 % For n e x t loop
94 U l a s t = U k ; %V, L , F
95

96

97 %Add e q u a l i t y c o n s t r a i n t f o r m u l t i p l e s h o o t i n g
98 g = [ g , {Xk end −Xk} ] ;
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99 l b g = [ l b g ; z e r o s ( l e n g t h ( xk ) , 1 ) ] ;
100 ubg = [ ubg ; z e r o s ( l e n g t h ( xk ) , 1 ) ] ;
101 end
102

103 p rob = s t r u c t ( ’ f ’ , J , ’ x ’ , v e r t c a t (w{ :} ) , ’ g ’ , v e r t c a t ( g { :} ) ) ;
104 s o l v e r = n l p s o l ( ’ s o l v e r ’ , ’ i p o p t ’ , p rob ) ;
105

106 % Solve t h e NLP
107 s o l = s o l v e r ( ’ x0 ’ , w0 , ’ l b x ’ , lbw , ’ ubx ’ , ubw , . . .
108 ’ l b g ’ , lbg , ’ ubg ’ , ubg ) ;
109 u v a l u e s = f u l l ( s o l . x ) ;
110 u temp = u v a l u e s ( 2 5 : 2 7 ) ; %V, L , F
111 u temp = [ u temp ; u temp ( 1 ) − u temp ( 2 ) ; u temp ( 2 ) + u temp ( 3 ) − u temp ( 1 ) ] ; %++D, B
112 u n e x t = [ u temp ( 2 ) ; u temp ( 1 ) ; u temp ( 4 ) ; u temp ( 5 ) ; u temp ( 3 ) ] ; %Order ; L V D B F
113 % f i g u r e ( 2 ) ;
114 % c l e a r f i g u r e
115 % c l f ;
116 % s u b p l o t ( 2 , 1 , 1 )
117 % p l o t ( [ 1 , 2 , 3 , 4 ] , u v a l u e s ( 1 : 2 7 : 8 2 ) )
118 % yl im ( [ 0 . 0 1 0 4 , 0 . 0 1 0 6 ] )
119 % s u b p l o t ( 2 , 1 , 2 )
120 % s t a i r s ( [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] , u v a l u e s ( 2 5 : 2 7 : 2 4 2 ) )
121 % ho ld on
122 % s t a i r s ( [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] , u v a l u e s ( 2 6 : 2 7 : 2 4 3 ) )
123 % ho ld on
124 % s t a i r s ( [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] , u v a l u e s ( 2 7 : 2 7 : 2 4 4 ) )
125 % l e g e n d ({ ’L ’ , ’V’ , ’F ’} )
126 % t i t l e ( ’ I n p u t p a r a m e t e r s ’ )
127 % ho ld on
128 eqend

A.10 Plotting script

1 %% Dummyscript f o r p l o t t i n g v a r i a b l e s
2 uSim = c s v r e a d ( ’ uSim . csv ’ ) ;
3 F0sim = c s v r e a d ( ’ F0sim . csv ’ ) ;
4 holdUp = c s v r e a d ( ’ holdUp . csv ’ ) ;
5 parSim = c s v r e a d ( ’ parSim . csv ’ ) ;
6 t imeSim = c s v r e a d ( ’ t imeSim . csv ’ ) ;
7 xSim = c s v r e a d ( ’ xSim . csv ’ ) ;
8 %F 0 d i s t = [ p a r . F0* ones ( 1 , 2 0 * d t ) , p a r . F0* ones ( 1 , 2 0 * d t ) , p a r . F0*1* ones ( 1 , 2 0 * d t ) ] ;
9 %F0sim = [ p a r . F0* ones ( 1 , 2 0 * d t ) , p a r . F0 *0 .8 * ones ( 1 , 2 0 * d t ) , p a r . F0 *1 .2 * ones ( 1 , 6 0 * d t ) ] ;

10 % parSim = [ 0 . 0 1 0 5 * ones ( 1 , 6 1 ) ] ; %xb
11 % parSim = [ parSim ; [ 1 1 . 4 4 5 * ones ( 1 , 2 0 ) , 8 . 39* ones ( 1 , 2 0 ) , 14 .66* ones ( 1 , 2 1 ) ] ] ; %L
12 % parSim = [ parSim ; [ 1 7 . 1 6 * ones ( 1 , 2 0 ) , 11 .87* ones ( 1 , 2 0 ) , 23 .84* ones ( 1 , 2 1 ) ] ] ; %V
13 % parSim = [ parSim ; [ 5 .71* ones ( 1 , 2 0 ) , 3 . 48* ones ( 1 , 2 0 ) , 8 . 88* ones ( 1 , 2 1 ) ] ] ; %D
14 % parSim = [ parSim ; [ 7 .67* ones ( 1 , 2 0 ) , 6 . 18* ones ( 1 , 2 0 ) , 8 . 9 * ones ( 1 , 2 1 ) ] ] ; %B
15 % parSim = [ parSim ; [ 1 3 . 3 8 * ones ( 1 , 2 0 ) , 9 . 66* ones ( 1 , 2 0 ) , 18 .08* ones ( 1 , 2 1 ) ] ] ; %F
16 % F 0 d i s t = [ p a r . F0* ones ( 1 , 2 1 * d t ) , p a r . F0* ones ( 1 , 2 0 * d t ) , p a r . F0*1* ones ( 1 , 2 0 * d t ) ] ;
17

18

19 f i g u r e ( 1 ) ;
20 %f i g S i z e = [ 2 1 , 2 9 ] ; % [ width , h e i g h t ]
21 %f i g U n i t s = ’ C e n t i m e t e r s ’ ;
22 s e t ( gca , ’ f o n t s i z e ’ , 1 0 )
23 %timeSim = 1 : 1 : 8 1 ;
24

25

26 c l e a r f i g u r e
27 c l f ;
28

29 %p l o t d a t a
30 s u b p l o t ( 2 , 1 , 1 ) , %p l o t s t a t e s
31 p l o t ( t imeSim , xSim ( 1 : end ) )
32 ho ld on ;
33 s t a i r s ( t imeSim , parSim ( 1 , 1 : end ) , ’−− ’ )
34 ho ld on ;
35 %p l o t ( t imeSim , x i d ( 1 : end ) )
36

37 x l im ( [ 0 , t imeSim ( end ) ] )
38 y l im ( [ 0 . 0 1 0 2 , 0 . 0 1 0 8 ] )%max ( xSim ) + 0 . 0 0 5 ] )
39 g r i d ( )
40 x t i c k s ( 0 : 5 :N+40)
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41

42 x l a b e l ( ’ Time [ min ] ’ )
43 y l a b e l ( ’xB Compos i t ion [ molA mol ˆ{ −1} ] ’ )
44 l e g e n d ({ ’ x B : Bottom p r o d u c t c o m p o s i t i o n ’ , ’ x B : S e t p o i n t ’ } ) ;
45 t i t l e ( ’ R e s u l t i n g bot tom p r o d u c t c o m p o s i t i o n ’ )
46

47 s u b p l o t ( 2 , 1 , 2 ) %p l o t i n p u t s and opI h t i n p u t s
48 %p l o t ( t imeSim , uSim ( 1 , 1 : end ) , t imeSim , uSim ( 2 , 1 : end ) , t imeSim , uSim ( 5 , 1 : end ) ) ; %Also

g o t t a p l o t id − s t a t e s
49 s t a i r s ( t imeSim , uSim ( 1 , 1 : end ) )
50 ho ld on
51 s t a i r s ( t imeSim , uSim ( 2 , 1 : end ) )
52 ho ld on
53 s t a i r s ( t imeSim , uSim ( 5 , 1 : end ) )
54 ho ld on
55 s t a i r s ( t imeSim , parSim ( 2 , 1 : end ) , ’−− ’ )
56 ho ld on
57 s t a i r s ( t imeSim , parSim ( 3 , 1 : end ) , ’−− ’ )
58 ho ld on
59 s t a i r s ( t imeSim , parSim ( 6 , 1 : end ) , ’−− ’ )
60 ho ld on
61

62 x l im ( [ 0 , t imeSim ( end ) ] )
63 y l im ( [ 5 , 3 6 ] )
64 g r i d ( )
65 x t i c k s ( 0 : 5 :N+40)
66

67 x l a b e l ( ’ Time [ min ] ’ )
68 y l a b e l ( ’ P l a n t i n p u t s U [ kmol min ˆ{ −1} ] ’ )
69 %l e g e n d ({ ’Lˆ{RTO} Ref lux ’ , ’Vˆ{RTO} Bottom p r o d u c t ’ , ’F ˆ{RTO} Column Feed ’} ) ;
70 l e g e n d ({ ’Lˆ{NLP} Re f l ux ’ , ’Vˆ{NLP} Bottom p r o d u c t ’ , ’F ˆ{NLP} Column Feed ’ , . . .
71 ’ L {SS} ’ , ’ V {SS} ’ , ’ F {SS} ’ } , ’NumColumns ’ , 2 ) ;%, ’ Loca t i on ’ , ’ n o r t h e a s t o u t s i d e ’ ) ;
72 t i t l e ( ’ Opt imal I n p u t v a r i a b l e s ’ )
73 s a v e a s ( gcf , ’ INPUTS ’ , ’ epsc ’ )
74

75 f i g u r e ( 2 ) ;
76 %f i g S i z e = [ 2 1 , 2 9 ] ; % [ width , h e i g h t ]
77 %f i g U n i t s = ’ C e n t i m e t e r s ’ ;
78 s e t ( gca , ’ f o n t s i z e ’ , 1 0 )
79 c l f ;
80 %s u b p l o t ( 1 , 1 , 1 ) %p l o t t i n g d i s t u r b e d v a r i a b l e
81 s t a i r s ( t imeSim , F0sim ( 1 : end ) ) ;
82 ho ld on
83

84 x l im ( [ 0 , t imeSim ( end ) ] )
85 y l im ( [ 6 , 1 0 ] )
86 x t i c k s ( 0 : 5 :N+40)
87 g r i d ( )
88 x l a b e l ( ’ Time [ min ] ’ )
89 y l a b e l ( ’ P l a n t Feed ( S e t v a l u e ) [ kmol min ˆ{ −1} ] ’ )
90 l e g e n d ({ ’F0 , Feed ’ } )
91 t i t l e ( ’ D i s t u r b e d v a r i a b l e ’ )
92 s a v e a s ( gcf , ’FEED ’ , ’ epsc ’ )
93

94 f i g u r e ( 3 ) ;
95 %f i g S i z e = [ 2 1 , 2 9 ] ; % [ width , h e i g h t ]
96 %f i g U n i t s = ’ C e n t i m e t e r s ’ ;
97 s e t ( gca , ’ f o n t s i z e ’ , 1 0 )
98 c l f ;
99

100 s u b p l o t ( 2 , 1 , 1 ) %p l o t t i n g R e a c t o r s t u f f
101 s t a i r s ( t imeSim , uSim ( 3 , 1 : end ) ) ;
102 ho ld on
103 %s t a i r s ( t imeSim , parSim ( 4 , 1 : end ) , ’ − − ’) ;
104 %ho ld on
105 s t a i r s ( t imeSim , uSim ( 5 , 1 : end ) ) ;
106 ho ld on
107 %s t a i r s ( t imeSim , parSim ( 6 , 1 : end ) , ’ − − ’) ;
108 %p l o t ( t imeSim , xSim ( 3 , 1 : end ) ) ;
109 %ho ld on ly
110

111 x l im ( [ 0 , t imeSim ( end ) ] )
112 y l im ( [ 0 , 2 0 ] )%max ( [ uSim ( 3 ) , parSim ( 4 ) , uSim ( 5 ) , parSim ( 6 ) ] ) + 1 0 ] )
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113 x t i c k s ( 0 : 5 :N+40)
114 g r i d ( )
115 x l a b e l ( ’ Time [ min ] ’ )
116 y l a b e l ( ’ R e a c t o r v a l u e s [ kmol min ˆ{ −1} ] ’ )
117

118 l e g e n d ({ ’D, D i s t i l l a t e ( r e c y c l e ) ’ , ’F , R e a c t o r o u t p u t ’ } )
119 %l e g e n d ({ ’D, D i s t i l l a t e ( r e c y c l e ) ’ , ’ D {SS} , s t e a d y s t a t e ’ , . . .
120 %’F , R e a c t o r o u t p u t ’ , ’ F {SS} , s t e a d y s t a t e ’} , ’ Loca t i on ’ , ’ n o r t h e a s t o u t s i d e ’ )
121 t i t l e ( ’ R e a c t o r v a l u e s ’ )
122 s u b p l o t ( 2 , 1 , 2 )
123 p l o t ( t imeSim , holdUp ( 1 : end ) ) ;
124 y l i n e ( 2 8 0 0 , ’−− ’ ) ;
125 g r i d ( )
126 x l a b e l ( ’ Time [ min ] ’ )
127 y l a b e l ( ’ R e a c t o r hold −up [ kmol ] ’ )
128 l e g e n d ({ ’M R , R e a c t o r Hold −up [ kmol ] ’ , ’M {R , s e t } , R e a c t o r Hold −up S e t p o i n t [ kmol ] ’ } )
129 x t i c k s ( 0 : 5 :N+40)
130 s a v e a s ( gcf , ’REACTOR’ , ’ epsc ’ )
131 f i g u r e ( 4 ) ;
132 c l f ;
133 %f i g S i z e = [ 2 1 , 2 9 ] ; % [ width , h e i g h t ]
134 %f i g U n i t s = ’ C e n t i m e t e r s ’ ;
135 s u b p l o t ( 2 , 1 , 1 )
136 s e t ( gca , ’ f o n t s i z e ’ , 1 0 )
137 p l o t ( t imeSim , ( uSim ( 1 , 1 : end ) + uSim ( 5 , 1 : end ) − uSim ( 2 , 1 : end ) ) )
138 g r i d ( )
139 x l a b e l ( ’ Time [ min ] ’ )
140 y l im ( [ 0 , 1 5 ] )
141

142 y l a b e l ( ’ Bottom p r o d u c t f low [ kmol min ˆ{ −1} ] ’ )
143 l e g e n d ( ’B , Bottom p r o d u c t f low ’ )
144 t i t l e ( ’ R e s u l t i n g column o u t p u t ’ )
145 x t i c k s ( 0 : 5 :N+40)
146 y t i c k s ( 0 : 1 : 1 5 )
147 s a v e a s ( gcf , ’COL ’ , ’ epsc ’ )
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