
TKP4580 - Specialization project

Implementation of health-aware
MPC-controller in a gas-lifted well

network

Author:
Salmon Yemane Ghebredngl

Supervisor: Co-supervisor:
Johannes jäschke Jose Otavio Assumpcao Matias

December 29, 2020

Contents

Preface

1 Introduction 1
1.1 Background . 1
1.2 Literature review . 1
1.3 Objectives . 2
1.4 Simulation setting . 2

2 Theory 3
2.1 Empirical Modeling . 3
2.2 Data Pre-Processing . 3

2.2.1 Normalization . 3
2.3 Regression Model . 4

2.3.1 Linear - Regression . 4
2.4 Stepwise regression . 4
2.5 Model Predictive Control . 5
2.6 Solving Methods for Algebraic Differential Equation 7

2.6.1 Orthogonal Collocation . 7

3 Process Description 10
3.1 Gas-Lift Model . 10
3.2 Erosion Model . 12

4 Results and Discussion 13
4.1 Data generation for training the data driven models 13
4.2 Modelling Erosion using Linear Model 14
4.3 Performance of the MPC controller . 17

4.3.1 Case study 1: Constant sand production rate 19
4.3.2 Case study 2: Exponentially varying sand production rate 20

5 Conclusion and Recommendation 22

Appendices i

1 Parameters for Erosion modelling i

2 Parameters for Gas-lift ii

3 Well specific parameters in the gas lift model iii

4 List of Symbols iv

5 Code for calculations v

List of Figures

1.1 Simple Illustration of control structure that incorporates diagnostics (Drawn
in drawio) . 2

2.1 Basic concept for model predictive control. [1] 5
2.2 Basic structure of MPC [2] . 6
2.3 Dynamic equations are discretized over a time horizon and solved simul-

taneously. With one internal node for each segment, this example uses a
2nd order polynomial approximation for each step. [3] 7

3.1 Illustration of the gas-lifted network,from the paper by A.Verheyleweghen
and jäschke [4] . 12

4.1 Gas-lift rate and erosion in mm plotted against time in days for 3 wells
with constant sand production-rate . 14

4.2 Gas-lift rate and erosion in mm plotted against time in days for 3 wells
with exponentially varying sand production-rate 14

4.3 Real true erosion vs predicted erosion . 16
4.4 Real true erosion vs predicted erosion 17
4.5 Total oil production and gas-lift rate with constant sand production rate 19
4.6 Total oil production and gas-lift rate with varying sand production rate.(initialized

with a sand production rate of 0.1 at the start) 20
4.7 Result of the MPC with varying sand production rate- (initialized with

sandproduction rate of 0.01 at the start) 21

List of Tables

4.1 The parameters used for the regression, with var 1-9 as predictor variables
and var 10 as response variable . 15

1.1 Parameters used for erosion calculation i
2.1 Parameters used in the gas lift model . ii
3.1 Well specified parameters used in the gas lift model iii
4.1 List of symbols . iv

Abstract

This project presents the development of a model predictive controller (MPC), that in-
corporates health monitoring and diagnostics of choke valves to optimize the production
of oil in a gas-lifted network. Data-driven approach was used to implement diagnostics of
the choke valves. An existing model of the gas-lifted well network with three wells and a
phenomenological erosion model of the choke valves was used in an MPC control frame-
work, to maximize the total oil production while keeping the erosion of the choke valves
on the three wells below 2mm. The erosion was estimated using a simple regression. The
results obtained from the MPC are promising and were able to successfully optimize the
production while keeping the erosion of the choke valves below the set threshold value.
Further research should look in to applying and testing this control structure in an ex-
periment to further validate the possibility of using data-driven models as a diagnostic
tool in the control structure.

Preface

This project was done as part of the completion of the master of science in Chemical
Engineering at the Norwegian University of Science and Technology (NTNU). It presents
the development of a model predictive controller (MPC) to maximize production while
preventing severe degradation of critical components in a gas-lifted network.

It has been a very interesting experience to work with this nascent technology and follow
the current researches and developments of control frameworks. Furthermore, I would like
to express my greatest gratitude to my supervisor Associate Professor Johannes Jäschke
and co-supervisor Jose Otavio Assumpcao Matias for their valuable guidance, assistance
and support during the whole process of this project. Special thanks to Jose Otavio
Assumpcao Matias for always being available for questions and taking the time for me in
his hectic schedule.

1 Introduction

1.1 Background
Companies in the oil and gas industry often have to deal with the intuitive trade-off
between optimizing production and minimizing equipment degradation. In oil wells, for
example, increasing the oil production is often accompanied by the increase of equip-
ment wear. Process engineers are therefore often forced to adopt conservative production
strategies, leading to sub-optimal operation and potential profit loss. In addition, the
oil and gas industry transports oil and gas across continents using high-pressure steel
pipelines that must operate for decades without failure, so that neither the sea waters
nor the air is unnecessarily contaminated [5]. Process control and optimization is at the
core of operating those processes successfully as it enables not only safe operation, but
also maximum performance utilization.

Equipment reliability is even becoming ever more important to the oil and gas indus-
try, due to the liability issues that occurs when reliability is not assured. Unplanned
maintenance interventions are often very expensive and must be minimized at all cost.
Understanding and forecasting the degradation process of an equipment is fundamental
in mitigating these costs. However, the production of oil and gas is a hugely complicated
process with various technical challenges, among them being optimizing plant perfor-
mance to achieve maximum profit. Failure and degradation of equipment’s have been
one of the drawbacks of increasing performance. Specially, erosion due to sand produc-
tion have plagued the oil and gas industry for decades. Modern practices of oil extraction
have made sand production even more prevalent. Although, engineers over the years
have been trying to mitigate equipment erosion using many strategies and innovative ap-
proaches, it has certainly not been good enough to ensure reliability and prevent failures.

1.2 Literature review
Traditionally, most of the modelling in chemical processes is done using first principle
models that are prone to inaccuracy due to the complexity of the problem [6]. The erosion
rate of a subsea choke valves is dependent on uncertain parameters, for example the
stream composition, the impact velocity and the angle of fluid particles in contact with
the equipment’s surface. Empirical data-driven models in contrast do bot depend on
uncertain parameters as they are derived from data, which can be either extracted from
simulation of models or from field measurements.

Currently, control strategies that consider diagnostics and prognostics into the control
structure remain little explored. The first known usage of prognostics in a control struc-
ture is found in paper by T.Escobet, V.Puig and F.Nejjari [7]. This paper tries to integrate
control and prognosis where, a conveyor belt that uses an AC electrical motor to move
a cart from one end to the other end is used as the system. This new method based on
both current and future health state estimates, provided by a prognosis module, takes
into account the systems health information in the control objectives. The objective was
to extend the useful lifetime of the conveyor belt by adjusting set-points to a simple PID
controller.

More case studies that rely on advanced control techniques have also been explored.
A research paper by H. Sanchez, T.Escobet, V.Puig and peter Fogh Odegaard pre-

1

sented the use of an advanced control technique, MPC, integrated with fatigue-based
prognosis approach to minimize the damage of wind. turbines [8]. Another paper by
A.VerheyleweghenJulie, M. Gjøby, J.Jäschke studied the use of a health-aware Robost
MPC for a sub sea compression system subject to degradation. In this paper a hierarchi-
cal approach was used for operating compressors subject to degradation. The degradation
was estimated using Paris Law, one of the most used models to describe crack propagation
in systems subject to stress, with a corrective online parameter estimation [9].

1.3 Objectives
The main scope of this project thesis is to investigate the development of a Health-Aware
Model predictive controller, which incorporates diagnostics in to the control structure,
applied to a real sub-sea oil and gas production network. More precisely, this projects
aims to combine both process control and diagnostics.

For this purpose the following specific objectives were specified:

• Analyze the model of the the sub-sea oil and gas production network

• Identify linear models based on simulated data from the model

• Apply model predictive controller to this process, using the linear model identified

• Study two case studies, one with constant sand production rate and one with ex-
ponentially varying sand production rate

1.4 Simulation setting
The proposed control structure is presented in figure 1.1, illustrating the integration of
health monitoring, diagnostics and control. Instead of the true erosion being fed to the
controller, the estimated erosion through data-driven methods will be fed to the controller.

Figure 1.1: Simple Illustration of control structure that incorporates diagnostics (Drawn in drawio)

2

2 Theory

This chapter introduces the statistical methods that will be used in the modelling and
analysis of simulated data. The first step of this process is pre-processing where nor-
malization will be used. Then multiple linear regression will be applied to the data
to estimate the erosion rate. Thereafter, an advanced control technique MPC, will be
covered along with methods to solve algebraic differential equations.

2.1 Empirical Modeling
Empirical modeling has been a useful tool for the analysis of various problems across a
number of field of study [10].This type of modeling is particularly helpful when parametric
models can not be constructed due to a number of reasons. Based on different methods
and approaches, empirical modeling enables the user to obtain an initial understanding
of the relationships that exists among the different variables belonging to a particular
process. During the process of empirical modeling, it is always desirable to perform
both initial(data cleaning and data screening) and confirmatory analyses (variance and
regression analysis) of the available data at hand. This ensures that the model being
developed is close to the real model. However, it is not always possible to do confirmatory
analyses. This means that oftentimes than not, the user have to make decisions about
which variable to include in the modeling based only on the results from the initial
models. This part of the chapter describes, the mathematical background of developing
such empirical models which is to be used in the estimation of the erosion.

2.2 Data Pre-Processing
Data pre-processing is a widely used technique that involves transforming raw data into
another format before analysis. There exists several methods such as centering and scal-
ing so that no single variable dominates the system due to its large scale and variance.
Furthermore, normalization can also be used when dealing with different scales. Another
method which can be applied is principal component analysis, which is used when the
dimension of the data available is large and reduction of the data without losing infor-
mation is needed to better manage the analysis. In this project, normalization is chosen
due to the varying orders of magnitude and units of measurements in the data.

2.2.1 Normalization

Normalization is used when the data consists of variables with different scales. This
process compensates the variability in the orders of magnitude and units of measurements
in the data by scaling all the data to be centered with unit variance and mean of zero.
This is implemented using the standard score formula:

Z =
X − µ
σ

(2.1)

Where Z is the standard score, X is the original data value, µ is the mean.

3

2.3 Regression Model
The basic idea of regression analysis is to obtain a model for the functional relationship
between a response variable (often referred to as the dependent variable) and one or
more predictor variables (often referred to as the independent variables) [11]. This model
provides both the ability to determine the predictor variables that affects the response
variable and the ability to find out what happens to the response variable for specific
changes in the predictor variables. For example, financial officers must predict future
cash flows based on some values of interest rates, raw material costs, salary increases,
and so on. In designing new training programs for employees, a company may want to
study the relationship between employee efficiency and predictor variables such as the
results from employment tests, educational background, and previous training. [11]

2.3.1 Linear - Regression

In this project thesis, we consider simple linear regression analysis with multiple predictor
variables. Linear regression assumes that there is a linear relationship between a response
variable, Y, and a set of predictor variables X along with some noise ε. In this model,
the error term ε is assumed to be normally distributed, homoscedastic, meaning with the
same variance at every X and has mean of zero.

Y = BX + ε (2.2)

Given a training data we can generate the estimate for B, that is B̂. From these estimated
parameters, the functional relationship between Y and X can be found as follows:

Ŷ = B̂X (2.3)

where Ŷ and B̂ are the estimates of the true values. The least squares estimate for the
regression coefficients in multiple linear regression in matrix form is given by:

B̂ = (XTX)−1XTY (2.4)

2.4 Stepwise regression
Stepwise regression is a statistical method used to build a model by adding or removing
predictor variables, through a series of either F-tests or T-tests. The variables that are
added or removed are selected based on the test statistics of the estimated coefficients.
There are different approaches to this process such as forward selection and backward
elimination. In forward selection method, the model building starts with no variables
and variables whose inclusion gives significant improvement of the model fit are added
accordingly. While, in backward elimination, the model building is initialized with can-
didate variables and variables whose loss gives the most insignificant deterioration of the
model fit are removed. The advantages of using stepwise regression over other automatic
model selection procedures is the ability to manage large amounts of predictor variables
and tune the model by selecting the best predictor variables. Furthermore, its faster than
other automatic model-selection methods [12], and for those reasons this method is chosen
in this project.

4

2.5 Model Predictive Control
Model predictive control (MPC), is an advanced control technique, used widely in many
industrial applications as it offers several advantages. Some of the advantages are its
ability to handle non-linear constraints and disturbances. However, this technique is
highly dependent on the process model. The availability of a very precise system model
is therefore fundamental in using this control technique. [1] The principal idea behind MPC
is to solve an optimization problem with a given constraints at each time interval. The
aim is to determine a sequence of input moves such that the predicted response tracks a
given setpoint. In this method, M control actions are calculated at each time step, and
only the first control action is implemented. Once a new measurement is available, the
initial condition of the model is updated and a new sequence of control action is again
calculated. In this manner, the horizon is displaced towards the future at each instant.
This strategy is known as receding strategy and it enables online trucking of unmeasured
disturbances. [2]

Figure 2.1: Basic concept for model predictive control. [1]

A schematic representation of an MPC controller for SISO system is shown in figure 2.1
with y being the actual output, ŷ being the predicted output and u, the manipulated
input. At the current sampling instant, denoted by k, the MPC calculates a set of M
values of the input {u(k+ i1), i = 1, 2, ...,M}. This set consists of the current input u(k)
and M − 1 future inputs. The input is held constant after the M control moves. The
inputs are then calculated so that a set of P predicted outputs ŷ(k + i), i = 1, 2, ..., P}
reaches the setpoint. The number of predictions P is referred to as the prediction horizon
while the number of calculated control moves M is referred to as the control horizon. [1]

5

The simple structure of MPC strategy is shown in figure 2.2. As illustrated in the figure,
the process model predicts upcoming outputs based on current outputs, previous outputs
and the suggested optimal future control actions by the optimizer. [2]

Figure 2.2: Basic structure of MPC [2]

The control calculations are based on optimizing an objective function. There exists
different types of objectives for the MPC such as economic control and setpoint control.
In this project, an economic objective is considered, where the objective is to minimize
an economic cost function. The type of systems we are dealing with consists of both
algebraic and differential equations, resulting in a differential algebraic equation system.
These equations are used as constraints in the optimization problem. Furthermore, there
are also inequality constraints which specify both the allowed values of the inputs and the
changes in the inputs. The objective function and the model can therefore be simplified
as follows

Ψ =

∫ P

0

(−cost+
1

2
∆u(t)TR∆u∆u(t)) dt (2.5)

ẋ = f(x, z, p, u) (2.6)
0 = g(x, z, p, u) (2.7)
0 ≤ h(x, z, p, u) (2.8)

where P is the prediction horizon, the second term describes a regularization term on
the change in inputs,∆u. This forces the controller to minimize the change of inputs.
R is a tuning parameter that weights the regularization term in the objective function.
ẋ describes the set of differential equations, x describes the differential states, z the
algebraic states, p are the parameters of the system, u is the input of the system. The
model differential equations and the algebraic equations are represented by f and g,
respectively.

6

2.6 Solving Methods for Algebraic Differential Equation
Efficient calculation of large problems requires reliable algorithms. There are two popular
options, a sequential approach and a simultaneous approaches. In the sequential approach
such as single shooting, the model equations are repeatedly solved by a numerical integra-
tor, which provides the states trajectory and their gradients. The optimization algorithm,
then, computes new decision variables and the simulation process is repeated [3]. While,
in the simultaneous approaches such as orthogonal collocation the model equations are
solved simultaneously with the optimization problem.

Even though, sequential methods are easier to implement, they may use unreasonable
time to converge, especially problems with a large numbers of degrees of freedom. The si-
multaneous methods have generally computational advantage over sequential methods [3].
Especially for control problems with many decision variables and a moderate number of
state variables. In this paper, orthogonal collocation has been chosen as the preferred
way of solving the dynamic algebraic equation system for its low computational cost and
its accurate results.

2.6.1 Orthogonal Collocation

Orthogonal collocation on finite elements is based on dividing the prediction horizon in
to finite elements. Each of these elements are then further divided into a given number
of collocation points.

Figure 2.3: Dynamic equations are discretized over a time horizon and solved simultaneously. With one
internal node for each segment, this example uses a 2nd order polynomial approximation
for each step. [3]

7

As shown in figure 2.3 the dynamic equations are discretized over a time horizon and
solved simultaneously. The solid nodes in the figure represents starting and ending point
for local polynomial approximations that are stitched together over the time horizon. [3].
The main idea behind orthogonal collocation is to determine a weighting matrix M that
relates the derivatives to non-derivative values over a time horizon at points 1,...,n as
exhibited in equation 2.9. The initial value, x0, is either a fixed initial condition or equal
to the final point from the last interval.

ẋ1

ẋ2

ẋ3

 = M

x1

x2

x3

−
x0

x0

x0

 (2.9)

The solution of the differential equations at discrete time points is approximated as a
polynomial as follows:

x(t) = A+Bt+ Ct2 +Dt3 (2.10)

where t is the placement of the collocation points on the finite element. The derivative
of x with respect to t is then given by:

ẋ(t) = Bt+ 2Ct+ 3Dt2 (2.11)

The collocation points used in this project is the Gauss-Radaue with numbers (0.1151,
0.6449, 1.0000). The time points are shifted to a reference time of zero and final time of
1. This enables the user to calculate the solutions without interpolation. For initial value
problems, the coefficients A is equal to x0, when the initial time is defined as zero. The
coefficients B, C, and D are calculated by substituting equation 2.11 into 2.9.

M

B + 2Ct1 + 3Dt21
B + 2Ct2 + 3Dt22
B + 2Ct3 + 3Dt23

 =

A+Bt+ Ct21 +Dt31
A+Bt+ Ct22 +Dt32
A+Bt+ Ct23 +Dt33

−
x0

x0

x0

 (2.12)

Rearraging and setting A = x0 gives:

M

1 + 2t1 + 3t21
1 + 2t2 + 3t22
1 + 2t3 + 3t23

BC
D

 =

t1 t21 t31
t2 t22 t32
t3 t23 t33

BC
D

 (2.13)

Finally, rearranging and solving for M gives the solution:

M =

t1 t21 t31
t2 t22 t32
t3 t23 t33

1 + 2t1 + 3t21
1 + 2t2 + 3t22
1 + 2t3 + 3t23

−1

(2.14)

For intervals that are not between 0 and 1, a scaling parameter h is introduced.

M

x1

x2

x3

 =

x0

x0

x0

 + hM

f(x1, z1, p1, u1)
f(x2, z2, p2, u2)
f(x3, z3, p3, u3)

 (2.15)

8

The objective function and constraints given in equations 2.5 - 2.8, becomes a non-linear
optimization problem which can be solved using orthogonal collocation. A constraint on
the differential states are enforced within every collocation point to ensure that the tra-
jectory for the differential states are continuous. The objective function is then evaluated
at the end of every collocation point.

9

3 Process Description

The system studied in this project is a subsea oil and gas production network involving
three wells. The wells are connected to a common manifold. The combined flow from
the three wells goes through a riser to a topside facility. When the reservoir pressure is
no longer high enough to lift the fluids from the reservoir to the top facility, artificial
methods are often needed. Among the artificial lifting methods is gas-lift. Artificial gas-
lift is added into the fluid mix to reduce mixture density. This decreases the hydrostatic
pressure in the bottom, increasing the pressure difference and flow from the reservoir to
the top facility. A more detailed description of the system can be found in the paper by
A.Verheyleweghen. and supervisor J. Jäschke. [4].

However, increased volume flow leads to an increase in degradation of equipment, like the
choke valves in the system. In particular, erosion of choke valves which are used to reduce
well pressure and control production is severe. A well stream typically consists of a mix
between oil, gas, water, sand and other various particles. When all of these elements hit
the internal surface of the choke valves for long periods, it causes erosion which shortens
the useful life of the choke valves. Particularly, high production of sand has been known
to cause considerable erosion damage in critical parts of the choke valves. Illustration of
the gas-lifted subsea oil and gas production system is shown in section 3.1.

3.1 Gas-Lift Model

In this process, the gas is injected at the bottom of the wells through annulus (the void
between the piping), decreasing the mixture density of the fluid mix in the tubing. This
leads to a lower hydrostatic pressure drop in the well and thereby increasing the pressure
difference and flow from the reservoir. The model used to describe this gas-lifted well
system is based on the work by Krishnamoorthy used for real-time optimization applied
to a gas lifted well system. [13]

The mass balance of the different phases, the density models, the pressure models and
the flow models are described as follows.

The mass balance of the wells is given by:

ṁga = wgl − wiv (3.1)
ṁgt = wiv − wpg + wrg (3.2)

ṁot = wro − wpo (3.3)

where the mga is the mass of the gas annulus, mgt is the mass of the gas inside the well
tubing, mot is the mass of oil in the well tubing, wgl is the gas lift injection rate, wiv is
the gas flow from the annulus to the tubing, wpg is the flow rate of produced gas, wrg is
the flow rate of gas from reservoir and wro is the flow rate of oil from the reservoir.

These differential equations were set to be algebraic, due to the large time scale difference
between the erosion rate and the differential equations, i.e, the equation over can be
rewritten as:

10

0 = wgl − wiv (3.4)
0 = wiv − wpg + wrg (3.5)

0 = wro − wpo (3.6)

The density model is given by:

ρa =
Mwpa
TaR

(3.7)

ρw =
mgt +mot − ρ0LrAr

LwAw
(3.8)

where the ρa is the density of the gas in the annulus. ρw is the density if the fluid mixture
in the tubing, Mw is the molecular weight of the gas, R is the gas constant, ρ0 is the
density of the oil in the reservoir, Ta is the annulus temperature, Lr is the length of the
well above the injection point and Lw is the length below the injection point, Ar is the
cross-sectional area above the injection point and Aw is the cross-sectional area below
the injection point.

The pressure model is given by:

pa = (
TaR

VaMw

+
gLa
LaAa

)mga (3.9)

pwh =
TwR

Mw

(
mgt

LwAw + LrAr − mot

ρ0

) (3.10)

pwi = pwh +
g

AwLw
(mot +mgt − ρ0LrAr)HW (3.11)

pbh = pwi + ρwgHr (3.12)

In this equations pa is the annulus pressure, pwh is wellhead pressure. wiv is well injection
point pressure, pbh is the bottom hole pressure, La is the length of the annulus, Aa is the
cross-sectional area of the annulus, Tw is the temperature of the well tubing,Hr is the
vertical height of the well tubing below the injection point, Hw is the height of the well
tubing above the injection point, g is the gravitational acceleration.

The flow model is given by:

wiv = Civ
√
ρamax(0, pai − pwi) (3.13)

wiv = Cpc
√
ρwmax(0.pwh − pm) (3.14)

wpg =
mot

mgt +mot

wpc (3.15)

11

wpo =
mgt

mgt +mot

wpc (3.16)

wro = PI(pr − pbh) (3.17)

wrg = GOR ∗ wro (3.18)

where wiv is the gas lift injection valve, wpc is the total flow through the produciton
choke, wpg is the produced gas flow rate, wpo is the produced oil flow rate, wro is the
reservoir oil flow, wrg is the reservoir gas flow rate, Civ is the injection valve coefficient,
Cpc is the production choke valve coefficient, PI is the reservoir productivity index, pr
is the reservoir pressure, pm is the manifold pressure and GOR is the gas-oil ratio. All
these models are for a single well which can be easily extended to the three wells.

Figure 3.1: Illustration of the gas-lifted network,from the paper by A.Verheyleweghen and jäschke [4]

3.2 Erosion Model
The erosion model used in this project thesis is based on a choke erosion model from
DNVGL. [14] The erosion model presented by Verheyleweghen and Jäschke is given by
equation 3.19. For the rest of this project thesis, this phenomenological model will be
used in the true plant model and the data-driven model will be used to approximate the
erosion behavior.

Ė =
KF (α)Un

p

ρtAt
∗G ∗ C1 ∗GF ∗ ṁsand ∗ Cunit (3.19)

Where E is the erosion rate, while K, n, C1, GF and Cunit are constants. F (α) is the
ductility and Un

p is the particle impact velocity. Furthermore, calculation of parameters
A and G are shown in the paper by Verheyleweghen and Jäschke.

12

4 Results and Discussion

The results of this project will be presented in two separate parts. The first part will be
focusing on the statistical modelling of the erosion. The goal is to develop an empirical
model of erosion to be used for diagnostics in the control structure. While the second part
will focus on the performance of the model predictive controller whose main objective
is to maximize oil production while keeping the erosion of the three chock valves below
2mm.

All simulations developed in this project were carried out in MATLAB. The script for
simulating the process system is based on the equations presented in section 3.1 and the
empirical erosion model that is to be generated from measurements. Furthermore, due
to the scale of the problem CASADI [15] was used for integrating and optimization the
problem. It is an open-source software framework for numerical optimization. It is chosen
due to its ability to model solve optimization problems with a large degree of flexibility.

4.1 Data generation for training the data driven models
The data used for estimation of the erosion was generated for both case studies, one
with constant sand production rate of 0.01 kg/s and one with exponentially varying sand
production rate. This is performed through simulations of the described model in section
1.3. The code that was used for this purpose is shown in appendix 5, listing 2. This
simulation of the model creates data for the three wells. The input variable, gas lift
rate was used with random variation to provide the different time series of data. In this
project, only one time series of data is generated for simplification. The input U , took
values between Umin + 1 · (Umax − Umin) to Umin + 3 · (Umax − Umin). Furthermore, a
noise was also added in addition to random variation to incorporate the uncertainty in
measurements. The gas lift profile is shown in figure 4.1 and 4.2. As shown in the figures
the simulations are run over 500 days iteration, with the gas lift injection changing every
50 days for each time series.

For the second case with varying sand production, an exponential sand production growth
was chosen. However, since in the real industry sand production rate is not a continuously
measured variable; the models are being fed the true rate sampled every 50 days. As
mentioned above in both cases, only one time series is simulated. The measurement data
is therefore generated in this manner for each well. This simulation generated data for
the control input (gas-lift rate), measurement values of parameters (predictors) and the
response (erosion) of each well for 500 days. Since, the models used are trained on the
normalized form of this data , the erosion profile was predicted using this training data.
The results for the two cases is shown in figure 4.1 and 4.2, respectively.

13

Figure 4.1: Gas-lift rate and erosion in mm plotted against time in days for 3 wells with constant sand
production-rate

Figure 4.2: Gas-lift rate and erosion in mm plotted against time in days for 3 wells with exponentially
varying sand production-rate

4.2 Modelling Erosion using Linear Model

The models used in this project have already been trained and tested by another student.
It is therefore important to note that, we are assuming the models are not over-fitting
the training data, and they are capable of predicting the erosion reasonably well.

Prior to modelling, the simulated data consisting of 500 measured data points was pre-

14

processed. The predictor variables shown in table 4.1 were subject to normalization as
described in section 2.2.1, such that all the variables have a standard deviation and mean
of 1 and 0 respectively. This was done due to the differing units of measurements in the
data, as they can give unreasonable results. Furthermore, the models were trained using
the gradient of erosion measurements instead of direct erosion measurements, as such,
erosion rate was used to predict the erosion, before it was transformed to cumulative
erosion.

Table 4.1: The parameters used for the regression, with var 1-9 as predictor variables and var 10 as
response variable

predictor variable Description

var1 Annulus pressure
var2 Well head pressure
var3 Well head oil production rate
var4 Well head gas production rate
var5 Riser head pressure
var6 Manifold pressure
var7 Riser head total oil production rate
var8 Riser head total gas production rate
var9 Gas lift rate
var10 Erosion rate (Response)

A trained linear regression model with interaction terms, which was selected with stepwise
regression, was used to predict erosion. The results of the linear regression can be seen in
figure 4.3. As can be seen in the figure, the erosion is behaving linearly as expected from
the model used to make the simulations with constant sand production rate. During the
analysis, the erosion was observed to highly correlate with gas lift rate and flow rate. In
addition, it can also be shown that the error percentage of the predicted erosion from
the real true erosion was below 1% for the three wells. It can therefore be said that, the
model predicts the erosion reasonably well for the case with constant sand production
rate.

For the case with varying sand production, the same method was implemented with an
additional predictor variable of sand production rate. The difference here is that since the
sand production rate is not constant anymore, it has to be fed to the model as the first
predictor. This model had therefore, 10 predictor variables instead of 9. However, since
in the real world, sand production is not continuously measured variable, the model was
fed the true sand production rate sampled every 50 days. The profile as seen in figure 4.4
is an exponential function and the model does worse job here in predicting the erosion,
as can be seen from the error percentage.

15

Figure 4.3: Real true erosion vs predicted erosion

16

Figure 4.4: Real true erosion vs predicted erosion

4.3 Performance of the MPC controller
The data driven model developed in section 4.2 was used as a model for the MPC. The
main objective of the MPC as mentioned previously, is to maximize the total production
of oil, while keeping the erosion for each well below a threshold value of 2mm. The
differential equations shown in section 3.2 together with the algebraic equations shown in
section 3.1 will set the basis for the feasible region and will therefore be the constraints
for the optimization problem. The problem for the MPC can then be written as follows:

minΨ =

∫ P

0

(
3∑
i=1

−w(t)i,po +
1

2
∆u(t)TR∆u∆u(t) +

3∑
i=1

ρi,ssi(t) dt (4.1)

subject to .

Ė =
KF (α)Un

p

ρtAt
∗G ∗ C1 ∗GF ∗ ṁsand ∗ Cunit t ∈= [0, P] (4.2)

g(x) = 0 t ∈= [0, P] (4.3)
∆u(t) = 0 t ∈= [M,P] (4.4)

−∆umax ≤ ∆u(t) ≤ ∆umax t ∈= [0,M] (4.5)
umin ≤ u(t) ≤ umax t ∈= [0, P] (4.6)

0 ≤ E(t) + s(t) ≤ Emax t ∈= [0, P] (4.7)

In this optimization problem, g(x) is the algebraic equation mentioned in section 3.1.
Furthermore, the term si(t) is introduced to the problem as a slack variable to give the

17

controller flexibility to violate the constraint at high cost for the objective function. The
penalty is given by the weighting parameters ρi,s, which was set to be 999999 for the three
wells. The main objective of the slack variable is to ensure that the controller does not
enter an infeasible region when the controller can no longer satisfy the constraint on the
maximum allowed erosion. In addition, M and P represents the control and prediction
horizon, respectively. ∆u is a regularization term introduced to the problem in case it is
ill-conditioned and therefore might make the controller unstable. The weighting of the
regularization, R∆u, is set to be:

R∆u =

1 0 0
0 1 0
0 0 1

 (4.8)

Orthogonal collocation was used to solve the algebraic equations and was executed at
every collocation point. An input of 0.4kg/s and an upper limit of umax = 2kg/s−1

for the gas lift rate was fed to the system to ensure flow. Furthermore, a conservative
value of ∆umax = 0.01kg/s−1 was used in the simulation. The controller was run over a
prediction horizon of 100 days and control horizon of 70 day, where each time step is a
day. Simulation of the controller for 500 days gave the following results for the two case
studies

18

4.3.1 Case study 1: Constant sand production rate

The simulation results for this case study are shown in figure 4.5. At the beginning of
the simulation, the controller tries to maximizes the total production of oil by shooting
up the gas lift rate as fast as possible. The controller is however, constrained by the
maximum allowed change of input,∆u and therefore reaches a constant region where the
gas lift rate can no longer be increased. In this region of the simulation, it is observed that
the erosion rate and the total oil production is kept at a constant rate. At around day
380, the controller again adjusts the gas lift rate of well 2 by decreasing, as the systems
starts to violate the constraint on the erosion. In addition, the erosion rate of the three
wells in the systems was shown to be different, with well 2 being the one exposed to the
highest erosion. This can be due to the high ratio of oil to gas in well 2 compared with
well 1 and well 3. Furthermore, well 1 was the one with the least erosion due to its low
gas to oil ratio and reservoir pressure, and this can be observed in the figure 4.5 as the
controller decreases the gas lift of well 1 last. We can conclude that the controller was
able to maximize the oil production while keeping the erosion below the threshold which
was set to be 2mm.

Figure 4.5: Total oil production and gas-lift rate with constant sand production rate

19

4.3.2 Case study 2: Exponentially varying sand production rate

The goal here is to analyze how the controller behaves when the plant and the controller
model are different, i.e there is a plant-model mismatch. The erosion was first estimated
using the procedures presented in section 4.2 with a exponentially varying sand production
rate. The simulation results of this case study are shown in figures 4.6 and 4.7 with two
different initialization for the sand production rate. We observe similar behavior at the
beginning of the simulation, where the controller tries to maximize the total production
of oil by increasing the gas lift rate as fast as possible. However, the controller shuts of
the production earlier in the simulation as the controller starts to violate the maximum
allowed erosion, which was set to be 2mm, see 4.6. The sand production gets too high at
the end and forces the controller to shut down production and keep the total production
of oil at a near zero level. The erosion rate of the three wells as expected was also different
here subject to the same arguments in case 1. Well 2 and Well 1 , had the highest and
lowest erosion rate respectively. This makes sense as the gas to oil ration of well 2 was
the highest and the gas to oil ratio of well 1 was the lowest.

Figure 4.6: Total oil production and gas-lift rate with varying sand production rate.(initialized with a
sand production rate of 0.1 at the start)

In the hope of getting a better performance, the sand production rate was initialized
with a lower value of 0.01kg/s. The simulation results are shown in 4.7. The controller
behaves conservatively and tries to keep a constant erosion rate. Furthermore, the total
oil production is also kept at constant in this region. Surprisingly, the erosion rate of the
three wells was shown to be the same. It seems that when the sand production rate is
no longer constant with a low value, the erosion of the three wells is solely dependent on
the sand production rate.

Furthermore, all the controllers were also tested with an increased level of measurement
noise, with a random number that is added to the measurements. This showed a degrada-
tion on the performance of the controller as the noise level increases. This is expected, as
the noise increases, the deviation of the predicted erosion from the true erosion increases
and they will worsen the performance of the controller. In this case study, overshoot of
sand production rate caused the controller to shut down production. Some kind of con-
troller reconfiguration is therefore needed in order to account for the model mismatch.

20

Figure 4.7: Result of the MPC with varying sand production rate- (initialized with sandproduction
rate of 0.01 at the start)

Generally, an increase in levels of erosion was observed with increase in the gas-lift rate
for the three wells. This is due to the increase in the pressure of the annulus and mass
flow rate through the production valve when the gas-lift rate is increased. The greater
the mass flow rate through the production valve, the greater the impact velocity of the
sand particles hitting the surfaces of the choke valves, causing more erosion on the valves.
Moreover, the effect of the well specific parameter GOR, gas-oil ratio on the erosion of
the three wells was observed. The extent of erosion was noticed to increase with increase
in the GOR inside the wells, as such well 2 was the well which was exposed to the most
erosion during the simulation.

21

5 Conclusion and Recommendation

In this project, a combined control structure of diagnostics, prognostics and production
optimization was proposed. The information acquired from the diagnostic module allows
the controller to modify the control objectives such that it includes the system equipment
health. In this manner, the controller generates control actions to satisfy both the control
objectives, which is to maximize the total production and extend the useful life of critical
components in the system. This combined control structure was applied to a gas-lifted
subsea oil and gas production network subject to sand caused choke erosion.

It was showed that by combining a diagnostic prognostic module for the choke erosion
to the control structure, the total production of oil can be maximized, while keeping the
erosion levels of the choke valves under a certain threshold. Furthermore, the results
with the different case studies shows that the controller manages to successfully keep the
erosion of the three wells below the set threshold. However, more work is still needed
to improve the performance of the MPC. Longer prediction horizon may improve the
performance, as it will enable the controller to better adjust the gas-lift rates to keep
the erosion below set threshold. In addition, high quality of measurement data is also
required to provide better results from the trained models.

The objectives of this project was to showcase the performance of a control structure that
incorporates equipment diagnostics. Data-driven models were used for the erosion diag-
nostics instead of the phenomenological erosion model. Regression modelling provided
strong results in predicting the erosion on simulated data. Assuming, the simulations are
a good representation of the erosion of a choke valve, the regression model appears to
show a strong potential. There is, however, still a lot of further work to be done on this
topic. The performance of other data-driven models such as auto-regressive exogenous
input(ARX) and auto-regressive moving average exogenous input(ARMAX) should also
be investigated to further validate that data driven models can be used in MPC.

22

References

[1] Dale E Seborg, Duncan A Mellichamp, Thomas F Edgar, and Francis J Doyle III.
Process dynamics and control. John Wiley & Sons, 2010.

[2] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer-
Verlag London Limited 1999, 1999.

[3] John D Hedengren, Reza Asgharzadeh Shishavan, Kody M Powell, and Thomas F
Edgar. Nonlinear modeling, estimation and predictive control in apmonitor. Com-
puters & Chemical Engineering, 70:133–148, 2014.

[4] A. Verheyleweghen and J. Jäschke. Oil production optimization of several wells
subject to choke degradation. IFAC-PapersOnLine, 51:1–6, 2018.

[5] R Winston Revie. Corrosion and corrosion control: an introduction to corrosion
science and engineering. John Wiley & Sons, 2008.

[6] Constantinos C Pantelides and JG Renfro. The online use of first-principles models in
process operations: Review, current status and future needs. Computers & chemical
engineering, 51:136–148, 2013.

[7] T Escobet, V Puig, and F Nejjari. Health aware control and model-based prognosis.
In 2012 20th Mediterranean Conference on Control & Automation (MED), pages
691–696. IEEE, 2012.

[8] Hector Sanchez, Teresa Escobet, Vicenç Puig, and Peter Fogh Odgaard. Health-
aware model predictive control of wind turbines using fatigue prognosis. IFAC-
PapersOnLine, 48(21):1363–1368, 2015.

[9] Adriaen Verheyleweghen, Julie Marie Gjøby, and Johannes Jäschke. Health-aware
operation of a subsea compression system subject to degradation. In Computer Aided
Chemical Engineering, volume 43, pages 1021–1026. Elsevier, 2018.

[10] Raúl Hernández-Molinar, Roberto Sarmiento-Rebeles, and César F Méndez-Barrios.
Least squares method and empirical modeling: A case study in a mexican manufac-
turing firm. Empirical Modeling and Its Applications, page 43, 2016.

[11] R Lyman Ott and Micheal T Longnecker. An introduction to statistical methods and
data analysis. Nelson Education, 2015.

[12] Stephanie Glen. "Stepwise Regression". https://www.statisticshowto.
com/stepwise-regression/, September 24, 2015. [Online; accessed 23-
December-2020].

[13] Dinesh Krishnamoorthy, Bjarne Foss, and Sigurd Skogestad. Real-time optimization
under uncertainty applied to a gas lifted well network. Processes, 4(4):52, 2016.

[14] GL DNV. Managing sand production and erosion. Recommended Practice DNVGL-
RP-O501. DNV GL Company, Oslo, Norway, 2015.

[15] Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
Casadi: a software framework for nonlinear optimization and optimal control. Math-
ematical Programming Computation, 11(1):1–36, 2019.

23

https://www.statisticshowto.com/stepwise-regression/
https://www.statisticshowto.com/stepwise-regression/

Appendices
:

1 Parameters for Erosion modelling

Table 1.1: Parameters used for erosion calculation

Parameter Unit Description value

ρp kg m3 Density of sand particles 2.5 ·10−3

C1 - Model geometry factor 1.25
Cunit mm m−1 Unit conversion factor 1000
D m Length from cage and choke body 0.1
dp m Sand particle diameter 2.5 ·10−4

GF - Geometry factor 2.0
H m Height of Gallery 0.3
K - Material erosion constant 2 ·10−9

Mmg gmol−1 Molar mass of gas 20
ṁp kgs−1 Sand rate 50 ·10−2

n - Velocity exponent 2.6
r m Radius of curvature 0.2

i

2 Parameters for Gas-lift

Table 2.1: Parameters used in the gas lift model

Parameter Unit Description value

µo Pa s Dynamic viscosity of oil 0.001
ρo kgm−3 Density of oil 8 ·102

ρro kg m−3 Density of oil in riser 8 ·102

Ar m2 Cross-sectional area of riser 0.0115
Cpr - Valve constant for riser valve 0.01
Dr m Diameter of riser 0.121
Hr m Height of riser 500
Lr m Length of riser 500
nw - Number of wells 3
ps bar separator pressure 20
T s Sampling time 86400
Tr K Riser temperature 303

ii

3 Well specific parameters in the gas lift model

Table 3.1: Well specified parameters used in the gas lift model

Parameter Unit Description well 1 well 2 well 3

Abh m2 Cross- sectional area of well below injection point 0.0115 0.0115 0.0115
Aw m2 Cross-sectional area of well above injection point 0.0115 0.0115 0.0115
Civ - Valve constant for injection valve 0.0003 0.0003 0.0003
Cpc - Valve constant for production valve 0.002 0.002 0.002
Da m Diameter of annulus 0.189 0.189 0.189
Dbh m Diameter of well below injection point 0.121 0.121 0.121
Dw m Diameter of well above injection point 0.121 0.121 0.121
GOR - Gas oil ration 0.10 0.12 0.11
Ha m Height of annulus 1000 1000 1000
Hbh m Height of tubing below injection point 500 500 500
Hw m Height of tubing above injection point 1000 1000 1000
La m Length of annulus 1500 1500 1500
Lbh m Length of pipe below injection point 500 500 500
Lw m Length of pipe above injection point 1500 1500 1500
pr bar Reservoir pressure 150 155 160
PI - Reservoir productivity index 5 5 5
Ta K Ammullus temperature 301 301 301
Tw K Well temperature 305 305 305

iii

4 List of Symbols

Table 4.1: List of symbols

Symbol Unit Description

α rad Characteristic impact angle
∆umax kg s−1 Maximum change in input
ṁp kg s−1 Sand rate
γ - Relationship b/n particle diameter and diameter of choke
γc - Relative critical particle diameter
µ kg m−1s−1 Dynamic viscosity
ρ kg m −3 Density
ρa kg m −3 Density of the gas in the annulus
ρo kg m −3 Density of the oil
ρp kg m −3 Density of sand particles
ρs - Weighting for slack variable
ρw kg m −3 Density of the mixture in the tubing
A - Dimensionless constant
Ag m2 Area of the the annulus
Ag m2 Effective gallery area
Ap m2 Area of pipe
Ar m2 Cross-sectional area of piping over the injection point
At m2 Area exposed to erosion
Aw m2 Cross-sectional area of piping under the injection point
C1 - Model geometry factor
Civ - Valve constant for the injection valve
Cpc - Valve constant for the production valve
Cunit mm m−1 Unit conversion factor
D m Length from cage and choke body
dp m Sand particle diameter
E mm Erosion
ER mm yr−1 Erosion rate
G - Particle size correction factor
g m s−2 Gravitational constant

iv

5 Code for calculations
.

Listing 1: Code for calculating the parameters and the erosion using the well plant model

function [xk,zk] = WellPlantModel(dx0,z0,u0,par)

addpath('/Users/SALI/Desktop/MATLAB/casadi-osx-matlabR2015a-v3.5.5')
import casadi.*

%% Parameters
%number of wells
n_w = par.n_w; %[]
%gas constant
R = par.R; %[m3 Pa /K /mol]
%molecular weigth
Mw = par.Mw; %[kg/mol?]

%properties
%density of oil - dim: nwells x 1
rho_o = par.rho_o; %[kg/m3]
%riser oil density
rho_ro = par.rho_ro;%[kg/m3]
%1cP oil viscosity
mu_oil = par.mu_oil;% [Pa s]

%project
%well parameters - dim: nwells x 1
L_w = par.L_w; %[m]
H_w = par.H_w; %[m]
D_w = par.D_w; %[m]
A_w = par.A_w;%[m2]

%well below injection - [m]
L_bh = par.L_bh;
H_bh = par.H_bh;
D_bh = par.D_bh;
A_bh = par.A_bh;%[m2]

%annulus - [m]
H_a = par.H_a;
V_a = par.V_a; %[m3]

%riser - [m]
L_r = par.L_r;
H_r = par.H_r;
D_r = par.D_r;
A_r = par.A_r;%[m2]

%injection valve characteristics - dim: nwells x 1
C_iv = par.C_iv;%[m2]
%production valve characteristics - dim: nwells x 1
C_pc = par.C_pc;%[m2]
%riser valve characteristics

v

C_pr = par.C_pr;%[m2]
% account for differences in the vapor and oil velocity
slip = par.slip_real;

%% For erosion model
% Sand
d_p = par.d_p; %[m] particle diameter
rho_p = par.rho_p; %[kg/m3] particle density
mdot_p = par.mdot_p; %[kg/s] sand rate

% Choke
K = par.K; %[-] material erosion constant
rho_t = par.rho_t; %[kg/m3] sensity CS
r = par.r; %[m] radius of curvature
D = par.D; %[m] Gap between body and cage
H = par.H; %[m] Height of gallery

% Constants
C_unit = par.C_unit; % Unit conversion factor: now in mm/s
C_1 = par.C_1; %[-] Model/geometry factor
n = par.n; %[-] Velocity coefficient
GF = par.GF; %[-] Geometry factor

% Precalculations of erosion in choke:
alpha = par.alpha;
F = par.F;
A_g = par.A_g; %[m2] Effective gallery area
G = 1; % THIS MUST BE CHANGED
ER_constant = par.ER_constant;

gma = d_p./D;

%% Differential states
%symbolic declaration
%gas holdup @ annulus
m_ga = MX.sym('m_ga',n_w); % 1-2 [ton]
%gas holdup @ well
m_gt = MX.sym('m_gt',n_w); % 3-4 [ton]
%oil holdup @ well
m_ot = MX.sym('m_ot',n_w); % 5-6 [ton]
%gas holdup @ riser
m_gr = MX.sym('m_gr',1); % 7 [ton]
%oil holdup @ riser
m_or = MX.sym('m_or',1); % 8 [ton]

%% Algebraic states
%pressure - annulus
p_ai = MX.sym('p_ai',n_w); % 1-2 [bar] (bar to Pa = x10^5)
%pressure - well head
p_wh = MX.sym('p_wh',n_w); % 3-4 [bar]
%pressure - injection point
p_wi = MX.sym('p_wi',n_w); % 5-6 [bar]
%pressure - below injection point (bottom hole)
p_bh = MX.sym('p_bh',n_w); % 7-8 [bar]
%density - annulus
rho_ai = MX.sym('rho_ai',n_w); % 9-10 [100 kg/m3]

vi

%mixture density in tubing
rho_m = MX.sym('rho_m',n_w); % 11-12 [100 kg/m3]
%well injection flow rate
w_iv = MX.sym('w_iv',n_w); % 13-14 [kg/s]
%wellhead total production rate
w_pc = MX.sym('w_pc',n_w); % 15-16 [kg/s]
%wellhead gas production rate
w_pg = MX.sym('w_pg',n_w); % 17-18 [kg/s]
%wellhead oil production rate
w_po = MX.sym('w_po',n_w); % 19-20 [kg/s]
%oil rate from reservoir
w_ro = MX.sym('w_ro',n_w); % 21-22 [kg/s]
%gas rate from reservoir
w_rg = MX.sym('w_rg',n_w); % 23-24 [0.1 kg/s]
%riser head pressure
p_rh = MX.sym('p_rh',1); % 25 [bar]
%mixture density in riser
rho_r = MX.sym('rho_r',1); % 26 [100 kg/s]
%manifold pressure
p_m = MX.sym('p_m',1); % 27 [bar]
%riser head total production rate
w_pr = MX.sym('w_pr',1); % 28 [kg/s]
%riser head total oil production rate
w_to = MX.sym('w_to',1); % 29 [kg/s]
%riser head total gas production rate
w_tg = MX.sym('w_tg',1); % 30 [kg/s]

%control input
%gas lift rate
w_gl = MX.sym('w_gl',n_w); %[kg/s]

%parameters
p_res = MX.sym('p_res',n_w);
%productivity index
PI = MX.sym('PI',n_w); %[kg s^-1 bar-1]
%GasOil ratio
GOR = MX.sym('GOR',n_w); %[kg/kg]
%Annulus temperature
T_a = MX.sym('T_a',n_w); %[oC]
%well temperature
T_w = MX.sym('T_w',n_w); %[oC]
%riser temperature
T_r = MX.sym('T_r',1); %[oC]
%separator pressure
p_s = MX.sym('p_s',1); %[bar]
%time transformation: CASADI integrates always from 0 to 1 and
%the USER does the time
%scaling with T.
T = MX.sym('T',1); %[s]
%erosion rate
ER = MX.sym('ER',n_w); %[s]
%g1
g1 = MX.sym('g1',n_w);
%mixed dynamic viscosity
mu_f = MX.sym('mu_f',n_w);
%particle impact velocity
V_p = MX.sym('V_p',n_w);

vii

%% Modeling
%gas fraction (mass) of the well holdup - avoiding zero division
xGwH = (m_gt.*1e3./max(1e-3,(m_gt.*1e3+m_ot.*1e3)));
%gas fraction (mass) of the riser holdup
xGrH = (m_gr.*1e3./(m_gr.*1e3+m_or.*1e3));
xGw = slip.*xGwH./(1 + (slip-1).*xGwH);
xOw = 1 - xGw;
xGr = slip.*xGrH./(1 + (slip-1).*xGrH);
xOr = 1 - xGr;

% ===================================
% Well model with/withou pressure loss
% ===================================
% algebraic equations (all symbolic)
%annulus pressure - %g = 9.81
f1 = -p_ai.*1e5 + ((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga.*1e3)...
+ (Mw./(R.*T_a).*((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga.*1e3))...

.*9.81.*H_a;
%well head pressure
f2 = -p_wh.*1e5 + ((R.*T_w./Mw).*(m_gt.*1e3./(L_w.*A_w + L_bh.*A_bh...
- m_ot.*1e3./rho_o))) - ((m_gt.*1e3+m_ot.*1e3)./(L_w.*A_w)).*9.81...

.*H_w/2;
%well injection point pressure
f3 = -p_wi.*1e5 + (p_wh.*1e5 + 9.81./(A_w.*L_w).*max(0,(m_ot.*1e3...
+m_gt.*1e3-rho_o.*L_bh.*A_bh)).*H_w) + (128.*mu_oil.*L_w.*w_pc./...

(3.14.*D_w.^4.*((m_gt.*1e3 + m_ot.*1e3).*p_wh.*1e5.*Mw.*rho_o)./...
(m_ot.*1e3.*p_wh.*1e5.*Mw + rho_o.*R.*T_w.*m_gt.*1e3)));

%bottom hole pressure
f4 = -p_bh.*1e5 + (p_wi.*1e5 + rho_o.*9.81.*H_bh + 128.*mu_oil...
.*L_bh.*w_ro./(3.14.*D_bh.^4.*rho_o));
%gas density in annulus
f5 = -rho_ai.*1e2 +(Mw./(R.*T_a).*p_ai.*1e5);
%fluid mixture density in well
f6 = -rho_m.*1e2 + ((m_gt.*1e3 + m_ot.*1e3).*p_wh.*1e5.*Mw.*rho_o)./...
(m_ot.*1e3.*p_wh.*1e5.*Mw + rho_o.*R.*T_w.*m_gt.*1e3);
%well injection flow rate
f7 = -w_iv + C_iv.*sqrt(rho_ai.*1e2.*max(0,(p_ai.*1e5 - p_wi.*1e5)));
%wellhead prodution rate
f8 = -w_pc + 1.*C_pc.*sqrt(rho_m.*1e2.*max(0,(p_wh.*1e5 - p_m.*1e5)));
%wellhead gas production rate
f9 = -w_pg + xGw.*w_pc;
%wellhead oil prodution rate
f10 = -w_po + xOw.*w_pc;
%oil from reservoir flowrate
f11 = -w_ro + PI.*1e-6.*(p_res.*1e5 - p_bh.*1e5);
%gas from reservoir production rate
f12 = -w_rg.*1e-1 + GOR.*w_ro;
%riser head pressure
f13 = -p_rh.*1e5 + ((R.*T_r./Mw).*(m_gr.*1e3./(L_r.*A_r))) - ...
((m_gr.*1e3+m_or.*1e3)./(L_r.*A_r)).*9.81.*H_r/2;
%riser density
f14 = -rho_r.*1e2 + ((m_gr.*1e3 + m_or.*1e3).*p_rh.*1e5.*Mw.*...
rho_ro)./(m_or.*1e3.*p_rh.*1e5.*Mw + rho_ro.*R.*T_r.*m_gr.*1e3);
%manifold pressure
f15 = -p_m.*1e5 + (p_rh.*1e5 + 9.81./(A_r.*L_r).*(m_or.*1e3+m_gr.*...
1e3).*H_r) + (128.*mu_oil.*L_r.*w_pr./(3.14.*D_r.^4.*((m_gr.*1e3 +...

m_or.*1e3).*p_rh.*1e5.*Mw.*rho_ro)./(m_or.*1e3.*p_rh.*1e5.*Mw + ...
rho_ro.*R.*T_r.*m_gr.*1e3)));

viii

%total production rate of well
f16 = -w_pr + 1.*C_pr.*sqrt(rho_r.*1e2.*(p_rh.*1e5 - p_s.*1e5));
%oil total production rate
f17 = -w_to + xOr.*w_pr;
%gas total production rate
f18 = -w_tg + xGr.*w_pr;
% setting differential equations as algebraic equations since the
% dynamics of ER is on a much larger time scale
f19 = (w_gl - w_iv).*1e-3;
f20 = (w_iv + w_rg.*1e-1 - w_pg).*1e-3;
f21 = (w_ro - w_po).*1e-3;
f22 = (sum(w_pg) - w_tg).*1e-3 ;
f23 = (sum(w_po) - w_to).*1e-3 ;
f24 = - V_p + 3/(4*A_g)*(w_po/rho_o + R*T_w.*w_pg./(p_wh.*10^5*Mw));
f25 = - mu_f + mu_oil.*(w_po/rho_o)./(w_po./rho_o + R.*T_w.*w_pg./...
(p_wh.*10^5*Mw));
% Assuming that gamma < 0 (checked in main)
f26 = -g1 + gma/0.1;

% differential equations - (all symbolic) - [ton]
% Erosion rate
df1 = ER_constant.*g1.*(V_p).^n;

% Form the DAE system
diff = vertcat(df1);
alg = vertcat(f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,...
f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25,f26);

% give parameter values
alg = substitute(alg,p_res,par.p_res);
alg = substitute(alg,p_s,par.p_s);
alg = substitute(alg,T_a,par.T_a);
alg = substitute(alg,T_w,par.T_w);
alg = substitute(alg,T_r,par.T_r);

diff = substitute(diff,p_res,par.p_res);
diff = substitute(diff,T_w,par.T_w);

% concatenate the differential and algebraic states
x_var = vertcat(ER);
z_var = vertcat(p_ai,p_wh,p_wi,p_bh,rho_ai,rho_m,w_iv,w_pc,...
w_pg,w_po,w_ro,w_rg,p_rh,rho_r,p_m,...

w_pr,w_to,w_tg,m_ga,m_gt,m_ot,m_gr,m_or,V_p, mu_f,g1);
p_var = vertcat(w_gl,GOR,PI,T);

%end modeling
%% Casadi commands
%declaring function in standard DAE form (scaled time)
dae = struct('x',x_var,'z',z_var,'p',p_var,'ode',T*diff,'alg',alg);

%calling the integrator, the necessary inputs are: label;
%integrator; function with IO scheme of a DAE (formalized); struct
%(options)
F = integrator('F','idas',dae);

%assuming inputs as symbolic in order to obtain the gradients
%symbolically
theta = MX.sym('theta',3);

ix

%integration results
Fend = F('x0',dx0,'z0',z0,'p',[u0;par.GOR;par.PI;par.T]);
%extracting the results (from symbolic to numerical)
xk = full(Fend.xf);
zk = full(Fend.zf);
%xf = Fend.xf;

end

Listing 2: Code for generating training data

clear
close all
clc

%% noise --> For reproducibility
% This is choosing a seed for generating random numbers
rng(1)

%%

%% Initializing the table to store multiple time series:

nTimeseries = 1;
dataSz = [nTimeseries 10];
varNames = {'Num','uArray', 'yMeas','erosionArray', 'H', 'x0', 'xk',...

'yk', 'z0', 'zk'};
varTypes = {'double', 'cell', 'cell', 'cell', 'cell', 'cell', 'cell',...

'cell', 'cell', 'cell'};
Data = table('Size', dataSz, 'VariableNames', varNames, 'VariableTypes',...
varTypes);

%% Model initialization
sandArray = sandproductionrate(0.02,500,'exp',0.005);
%[sandArray,sandArrayNoise,stepSandArray] =
%sandproductionrate(0.01,500,'exp',0.015); will be deactivated all the time
for i_timeseries = 1:nTimeseries

% initial condition (pre-computed)
[x0,z0,u0] = InitialConditionGasLift_5;

% model parameters
%par = ParametersGasLift(1);
par = ParametersGasLift(1,sandArray);

%states to measurement mapping function
H = zeros(16,length(z0));
%pai - annulus pressure, well 1-3
H(1,1) = 1;
H(2,2) = 1;
H(3,3) = 1;
%pwh - well head pressure, well+ 1-3
H(4,4) = 1;
H(5,5) = 1;

x

H(6,6) = 1;
%wro - wellhead gas production rate, well 1-3
H(7,25) = 1;
H(8,26) = 1;
H(9,27) = 1;
%wrg - wellhead oil production rate, well 1-3
H(10,28) = 1;
H(11,29) = 1;
H(12,30) = 1;
%prh - riser head pressure
H(13,37) = 1;
%pm - manifold pressure
H(14,39) = 1;
%wto - riser head total oil production rate
H(15,41) = 1;
%wtg - riser head total gas production rate
H(16,42) = 1;

%% Simulation parameters

% Number of simulation steps
nSim = 500; % time_total = 3600*24*500; %[s]

[dx0,z0,u0] = InitialConditionGasLift_5

%sampling time /control interval /1 simulation iteration time
par.T = 3600*24; % [s]

%% Simulation initialization
xk = x0;
zk = z0;
uk = u0;
yk = H*z0;

%%
fprintf('Time series number: >>> %0.0f \n',i_timeseries)
%creating random array for the inputs
uArray = [];
%bounds on the inputs
uMin = 1.5;
uMax = 2.5;

for t = 0:nSim
if rem(t,50) == 0 %every 50 days we change the inputs

uk = (uMax - uMin).*rand(3,1) + uMin;
end
uArray = [uArray, uk];

end

xi

% measurements (for plotting)
yMeas = yk;
erosionArray = xk;

for u = 1:nSim

%fprintf(' iteration >>> %0.0f \n',t)

% integrating the system
[xk,zk] = WellPlantModel(xk,zk,uArray(:,u),par);
par = ParametersGasLift(u,sandArray);
par.T = 3600*24;
% Adding noise to the measurements
yMeas = [yMeas, H*zk + par.scale.*randn(length(yk),1)];
erosionArray = [erosionArray, xk];

end

Data(i_timeseries, :) = {i_timeseries, uArray, yMeas, erosionArray,...
H, x0, xk, yk, z0, zk};

end

%% saving the data in a mat file
filename = 'datamatrix_'+string(nTimeseries)+'.mat';
save(filename, 'Data')
%% saving the matrix in a mat file
%filename1 = 'hmatrix' + '.mat';
%save(filename1,'H')

%% Plotting
figure(1)

time = 0:1:500; %[days]

% System inputs
subplot(2,1,1)

stairs(time,uArray(1,:),'LineWidth',2);
hold on
stairs(time,uArray(2,:),'LineWidth',2);
stairs(time,uArray(3,:),'LineWidth',2);
legend('Well 1','Well 2','Well 3');

ylim([0,5]);
xlabel('Time [day]');
ylabel('Gas lift rate [kg/s]');

% erosion
subplot(2,1,2);

plot(time,transpose(Data.erosionArray{1,1}(1,:)),'LineWidth',2);
hold on
plot(time,transpose(Data.erosionArray{1,1}(2,:)),'LineWidth',2);
plot(time,transpose(Data.erosionArray{1,1}(3,:)),'LineWidth',2);
%ylim([0,5.2]);
legend('Well 1','Well 2','Well 3');

xii

legend('Location','northwest');
xlabel('Time [day]');
ylabel('Erosion [mm]');

figure(2)

% Pressure
subplot(2,1,1)

plot(time,yMeas(4,:),'LineWidth',1.5);
hold on
plot(time,yMeas(5,:),'LineWidth',1.5);
plot(time,yMeas(6,:),'LineWidth',1.5);
axis([0 500 45 60]);
legend('Well 1','Well 2','Well 3');

%ylim([0,2.2]);
xlabel('Time [day]');
ylabel('Well head pressure [bar]');

% erosion
subplot(2,1,2);

plot(time,yMeas(15,:),'LineWidth',2); %oil
%plot(time,yMeas(14,:)); %gas
axis([0 500 50 100]);

xlabel('Time [day]');
ylabel('Flowrate [kg/s]');

Listing 3: Code for the controller

function [u_,s,w_,exitflag] = NMPC(x_current,ui,z_current,nm,np...
,n,sandArray)

addpath('/Users/SALI/Desktop/MATLAB/casadi-osx-matlabR2015a-v3.5.5')
import casadi.*

nu = 3;
nx = 3;
nz = 62;

%% Parameters
par = ParametersGasLift(n,sandArray); %For varying sand production rate
%par = ParametersGasLift; % For constant sand production
%number of wells
n_w = 3; %[]
%gas constant
R = par.R; %[m3 Pa /K /mol]
%molecular weigth
Mw = par.Mw; %[kg/mol]

%properties
%density of oil - dim: nwells x 1
rho_o = par.rho_o; %[kg/m3]
%riser oil density
rho_ro = par.rho_ro;%[kg/m3]
%1cP oil viscosity
mu_oil = par.mu_oil;% [Pa s]

xiii

%project
%well parameters - dim: nwells x 1
L_w = par.L_w; %[m]
H_w = par.H_w; %[m]
D_w = par.D_w; %[m]
A_w = par.A_w;%[m2]

%well below injection - [m]
L_bh = par.L_bh;
H_bh = par.H_bh;
D_bh = par.D_bh;
A_bh = par.A_bh;%[m2]

%annulus - [m]
H_a = par.H_a;
V_a = par.V_a; %[m3]

%riser - [m]
L_r = par.L_r;
H_r = par.H_r;
D_r = par.D_r;
A_r = par.A_r;%[m2]

%injection valve characteristics - dim: nwells x 1
C_iv = par.C_iv;%[m2]
%production valve characteristics - dim: nwells x 1
C_pc = par.C_pc;%[m2]
%riser valve characteristics
C_pr = par.C_pr;%[m2]
% account for differences in the vapor and oil velocity
slip = par.slip_real;

%% For erosion model
% Sand
d_p = par.d_p; %[m] particle diameter
rho_p = par.rho_p; %[kg/m3] particle density
mdot_p = par.mdot_p; %[kg/s] sand rate

% Choke
K = par.K; %[-] material erosion constant
rho_t = par.rho_t; %[kg/m3] sensity CS
r = par.r; %[m] radius of curvature
D = par.D; %[m] Gap between body and cage
H = par.H; %[m] Height of gallery

% Constants
C_unit = par.C_unit; % Unit conversion factor: now in mm/s
C_1 = par.C_1; %[-] Model/geometry factor
n = par.n; %[-] Velocity coefficient
GF = par.GF; %[-] Geometry factor

% Precalculations of erosion in choke:
alpha = par.alpha;
F = par.F;
A_g = par.A_g; %[m2] Effective gallery area
ER_constant = par.ER_constant;

xiv

gma = d_p./D;

%% Algebraic states
%pressure - annulus
p_ai = MX.sym('p_ai',n_w); % 1-3 [bar] (bar to Pa = x10^5)
%pressure - well head
p_wh = MX.sym('p_wh',n_w); % 4-6 [bar]
%pressure - injection point
p_wi = MX.sym('p_wi',n_w); % 7-9 [bar]
%pressure - below injection point (bottom hole)
p_bh = MX.sym('p_bh',n_w); % 10-12 [bar]
%density - annulus
rho_ai = MX.sym('rho_ai',n_w); % 13-15 [100 kg/m3]
%mixture density in tubing
rho_m = MX.sym('rho_m',n_w); % 16-18 [100 kg/m3]
%well injection flow rate
w_iv = MX.sym('w_iv',n_w); % 19-21 [kg/s]
%wellhead total production rate
w_pc = MX.sym('w_pc',n_w); % 22-24 [kg/s]
%wellhead gas production rate
w_pg = MX.sym('w_pg',n_w); % 25-27 [kg/s]
%wellhead oil production rate
w_po = MX.sym('w_po',n_w); % 28-30 [kg/s]
%oil rate from reservoir
w_ro = MX.sym('w_ro',n_w); % 31-33 [kg/s]
%gas rate from reservoir
w_rg = MX.sym('w_rg',n_w); % 34-36 [0.1 kg/s]
%riser head pressure
p_rh = MX.sym('p_rh',1); % 37 [bar]
%mixture density in riser
rho_r = MX.sym('rho_r',1); % 38 [100 kg/s]
%manifold pressure
p_m = MX.sym('p_m',1); % 39 [bar]
%riser head total production rate
w_pr = MX.sym('w_pr',1); % 40 [kg/s]
%riser head total oil production rate
w_to = MX.sym('w_to',1); % 41 [kg/s]
%riser head total gas production rate
w_tg = MX.sym('w_tg',1); % 42 [kg/s]
%gas holdup @ annulus
m_ga = MX.sym('m_ga',n_w); % 43-45 [ton]
%gas holdup @ well
m_gt = MX.sym('m_gt',n_w); % 46-48 [ton]
%oil holdup @ well
m_ot = MX.sym('m_ot',n_w); % 49-51 [ton]
%gas holdup @ riser
m_gr = MX.sym('m_gr',1); % 52 [ton]
%oil holdup @ riser
m_or = MX.sym('m_or',1); % 53 [ton]
%particle impact velocity
V_p = MX.sym('V_p',n_w); % 54-56
%dynamic viscosity of mixture
mu_f = MX.sym('mu_f',n_w); % 57-59
g1 = MX.sym('g1',n_w); % 60-62

%control input

xv

%gas lift rate
w_gl = MX.sym('w_gl',n_w); %[kg/s]

%parameters
p_res = MX.sym('p_res',n_w);
%productivity index
PI = MX.sym('PI',n_w); %[kg s^-1 bar-1]
%GasOil ratio
GOR = MX.sym('GOR',n_w); %[kg/kg]
%Annulus temperature
T_a = MX.sym('T_a',n_w); %[oC]
%well temperature
T_w = MX.sym('T_w',n_w); %[oC]
%riser temperature
T_r = MX.sym('T_r',1); %[oC]
%separator pressure
p_s = MX.sym('p_s',1); %[bar]
%time transformation: CASADI integrates always from 0 to 1 and the
% USER does the time
%scaling with T.
T = MX.sym('T',1); %[s]
%erosion rate
ER = MX.sym('ER',n_w); %

%% Modeling
%gas fraction (mass) of the well holdup - avoiding zero division
xGwH = (m_gt.*1e3./max(1e-3,(m_gt.*1e3+m_ot.*1e3)));
%gas fraction (mass) of the riser holdup
xGrH = (m_gr.*1e3./(m_gr.*1e3+m_or.*1e3));

xGw = slip.*xGwH./(1 + (slip-1).*xGwH);
xOw = 1 - xGw;
xGr = slip.*xGrH./(1 + (slip-1).*xGrH);
xOr = 1 - xGr;

% ===================================
% Well model with/withou pressure loss
% ===================================
% algebraic equations (all symbolic)
%annulus pressure - %g = 9.81
f1 = -p_ai.*1e5 + ((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga.*1e3) +...
(Mw./(R.*T_a).*((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga.*1e3)).*9.81...
.*H_a;
%well head pressure
f2 = -p_wh.*1e5 + ((R.*T_w./Mw).*(m_gt.*1e3./(L_w.*A_w + L_bh.*A_bh - ...
m_ot.*1e3./rho_o))) - ((m_gt.*1e3+m_ot.*1e3)./(L_w.*A_w)).*9.81.*H_w/2;
%well injection point pressure
f3 = -p_wi.*1e5 + (p_wh.*1e5 + 9.81./(A_w.*L_w).*max(0,(m_ot.*1e3+m_gt.*...
1e3-rho_o.*L_bh.*A_bh)).*H_w) + (128.*mu_oil.*L_w.*w_pc./(3.14.*D_w.^4.*...
((m_gt.*1e3 + m_ot.*1e3).*p_wh.*1e5.*Mw.*rho_o)./(m_ot.*1e3.*p_wh.*1e5.*...
Mw + rho_o.*R.*T_w.*m_gt.*1e3)));
%bottom hole pressure
f4 = -p_bh.*1e5 + (p_wi.*1e5 + rho_o.*9.81.*H_bh + 128.*mu_oil.*L_bh.*...
w_ro./(3.14.*D_bh.^4.*rho_o));
%gas density in annulus
f5 = -rho_ai.*1e2 +(Mw./(R.*T_a).*p_ai.*1e5);
%fluid mixture density in well
f6 = -rho_m.*1e2 + ((m_gt.*1e3 + m_ot.*1e3).*p_wh.*1e5.*Mw.*rho_o)./...

xvi

(m_ot.*1e3.*p_wh.*1e5.*Mw + rho_o.*R.*T_w.*m_gt.*1e3);
%well injection flow rate
f7 = -w_iv + C_iv.*sqrt(rho_ai.*1e2.*max(0,(p_ai.*1e5 - p_wi.*1e5)));
%wellhead prodution rate
f8 = -w_pc + 1.*C_pc.*sqrt(rho_m.*1e2.*max(0,(p_wh.*1e5 - p_m.*1e5)));
%wellhead gas production rate
f9 = -w_pg + xGw.*w_pc;
%wellhead oil prodution rate
f10 = -w_po + xOw.*w_pc;
%oil from reservoir flowrate
f11 = -w_ro + PI.*1e-6.*(p_res.*1e5 - p_bh.*1e5);
%gas from reservoir production rate
f12 = -w_rg.*1e-1 + GOR.*w_ro;
%riser head pressure
f13 = -p_rh.*1e5 + ((R.*T_r./Mw).*(m_gr.*1e3./(L_r.*A_r))) - ((m_gr.*1e3...
+m_or.*1e3)./(L_r.*A_r)).*9.81.*H_r/2;
%riser density
f14 = -rho_r.*1e2 + ((m_gr.*1e3 + m_or.*1e3).*p_rh.*1e5.*Mw.*rho_ro)./...
(m_or.*1e3.*p_rh.*1e5.*Mw + rho_ro.*R.*T_r.*m_gr.*1e3);
%manifold pressure
f15 = -p_m.*1e5 + (p_rh.*1e5 + 9.81./(A_r.*L_r).*(m_or.*1e3+m_gr.*1e3)...
.*H_r) + (128.*mu_oil.*L_r.*w_pr./(3.14.*D_r.^4.*((m_gr.*1e3 + m_or.*1e3)...
.*p_rh.*1e5.*Mw.*rho_ro)./(m_or.*1e3.*p_rh.*1e5.*Mw + rho_ro.*R.*T_r.*...
m_gr.*1e3)));
%total production rate of well
f16 = -w_pr + 1.*C_pr.*sqrt(rho_r.*1e2.*(p_rh.*1e5 - p_s.*1e5));
%oil total production rate
f17 = -w_to + xOr.*w_pr;
%gas total production rate
f18 = -w_tg + xGr.*w_pr;
% setting differential equations as algebraic equations since the
% dynamics of ER is on a much larger time scale
f19 = (w_gl - w_iv).*1e-3;
f20 = (w_iv + w_rg.*1e-1 - w_pg).*1e-3;
f21 = (w_ro - w_po).*1e-3;
f22 = (sum(w_pg) - w_tg).*1e-3 ;
f23 = (sum(w_po) - w_to).*1e-3 ;
f24 = - V_p + 3/(4*A_g).*(w_po./rho_o + R*T_w.*w_pg./(p_wh.*10^5*Mw));
f25 = - mu_f + mu_oil.*(w_po./rho_o)./(w_po./rho_o + R.*T_w.*w_pg./...
(p_wh.*10^5*Mw));
f26 = -g1 + gma/0.1;
% differential equations - (all symbolic) - [ton]
% Erosion rate
df1 = ER_constant.*g1.*(V_p).^n;

% Form the DAE system
diff = vertcat(df1);
alg = vertcat(f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,...
f17,f18,f19,f20,f21,f22,f23,f24,f25,f26);

% give parameter values
alg = substitute(alg,p_res,par.p_res);
alg = substitute(alg,p_s,par.p_s);
alg = substitute(alg,T_a,par.T_a);
alg = substitute(alg,T_w,par.T_w);
alg = substitute(alg,T_r,par.T_r);

diff = substitute(diff,p_res,par.p_res);

xvii

diff = substitute(diff,T_w,par.T_w);

% concatenate the differential and algebraic states
x_var = vertcat(ER);
z_var = vertcat(p_ai,p_wh,p_wi,p_bh,rho_ai,rho_m,w_iv,w_pc,w_pg,w_po...
,w_ro,w_rg,p_rh,rho_r,p_m,...

w_pr,w_to,w_tg,m_ga,m_gt,m_ot,m_gr,m_or,V_p, mu_f,g1);
p_var = vertcat(w_gl,GOR,PI,T);

%% NMPC
umax = 2;
umin = 0.4;
dumax = 0.01;
x_threshold = 2;

%% Defining empty nlp-problem
J = 0;
w = {};
w0 = [];
lbw =[];
ubw = [];
lbg = [];
ubg = [];
g = {};

x_prev = MX.sym('X0',nx);
Z0 = MX.sym('Z0',nz);
w = {w{:},x_prev}; % 1-3
lbw = [lbw,zeros(nx,1)];
ubw = [ubw,inf*ones(nx,1)];
w0 = [w0;x_current];

g = {g{:},x_prev};
lbg = [lbg,x_current];
ubg = [ubg,x_current];

%% Lifting initial conditions
uk = MX.sym('uk_init',nu);
w = {w{:}, uk}; % 4-6
w0 = [w0; 0.3*ones(nu,1)];
lbw = [lbw;ui];
ubw = [ubw;ui];

% uprev= MX.sym('uprev_init',nu);
U0 = MX.sym('U0',nu);
p = MX.sym('p',7);

x = MX.sym('x',nx);
uprev1 = uk;
uk1 = uk;
rho = 999999;
s = MX.sym('s',nx);
R = [1,0,0

0,1,0
0,0,1];

xviii

L = -sum(w_po)+ rho*sum(s) + 1/2 * ((uk1-U0)'*R*(uk1-U0));
f = Function('f',{x_var,z_var,p_var,uk1,U0,s},{diff,alg,L});

%% Using 3 collocation points:

h = par.T;
% Radau
t = [collocation_points(3, 'radau')];

% Finding M
M = [t',0.5*t'.^2,1/3*t'.^3]*inv([[1;1;1],t',t'.^2]);

%% Looping through until timeend
for k = 1:np

uprev = uk;
uk = MX.sym(['uk_' num2str(k)],nu);
w = {w{:}, uk}; % 7-9
w0 = [w0; ui];
lbw = [lbw;umin*ones(nu,1)];
ubw = [ubw;umax*ones(nu,1)];

s = MX.sym(['s_',num2str(k)],nx);
w = {w{:},s}; % 10-12
lbw = [lbw;0*ones(nu,1)];
ubw = [ubw;1*ones(nu,1)];
w0 = [w0;0*ones(nu,1)];

% Adding constraint for delta_u
duk = uk - uprev;
g = {g{:},duk};

if k > nm
lbg = [lbg;zeros(nu,1)];
ubg = [ubg; zeros(nu,1)];

else
lbg = [lbg;-dumax*ones(nu,1)];
ubg = [ubg;dumax*ones(nu,1)];

end

% Collocation points
fk = [];
Xk1 = [];
zk = [];
L1 = [];
for d = 1:3

Xk = MX.sym(['Xk_' num2str(k),'_',num2str(d)],nx);
Zk = MX.sym(['Zk_' num2str(k),'_',num2str(d)],nz);
Xk1 = [Xk1,Xk];
w = {w{:}, Xk, Zk}; % 13-15
w0 = [w0;x_current;z_current];
lbw = [lbw;zeros(nx,1);0*ones(nz,1)];
ubw = [ubw;inf*ones(nx,1);inf*ones(nz,1)];

% Calculating xdot and objective function
[fk1,zk1,L] = f(Xk,Zk,vertcat(uk,p),uk,uprev,s);
L1 = [L1;L];
if k > nm

L1(d) = L - 1/2 * ((uk-uprev)'*R*(uk-uprev));

xix

end
fk = [fk, fk1];
zk = [zk,zk1];

end
ML = M*L1;
J = J + ML(3);

% ML = M(3,1)*sum(zk(28:30,1)) + M(3,2)*sum(zk(28:30,2))
%+ M(3,3)*sum(zk(28:30,3)) +rho*sum(s);

% J = J + ML;
x_next1 = [];
for d = 1:3

% Calculating M*xdot for each collocation point
Mfk = M(d,1)*fk(:,1) + M(d,2)*fk(:,2) + M(d,3)*fk(:,3);
% Calculating x
x_next = x_prev+h*Mfk;
x_next1 = [x_next1,x_next];
% Adding xk and Xk1 as constrains as they must be equal.
g = {g{:},x_next-Xk1(:,d),zk(:,d)};
lbg = [lbg;zeros(nx,1);zeros(nz,1)];
ubg = [ubg;zeros(nx,1);zeros(nz,1)];

end

% New NLP variable for state at end
x_prev = MX.sym(['x_init_' num2str(k)],nx);
w = {w{:}, x_prev};
w0 = [w0;x_current];
lbw = [lbw;zeros(nx,1)];
ubw = [ubw;inf*ones(nx,1)];

% Gap
g = {g{:},x_next-x_prev};
lbg = [lbg;zeros(nx,1)];
ubg = [ubg;zeros(nx,1)];

% Constraint on erosion
g = {g{:},x_prev-s};
lbg = [lbg;zeros(nx,1)];
ubg = [ubg;x_threshold*ones(nx,1)];

end

%% Solving optimization problem

% Formalizing problem
nlp = struct('x',vertcat(w{:}),'g',vertcat(g{:}),'f',J,'p',vertcat(U0,p));

% Assigning solver (IPOPT)
solver = nlpsol('solver','ipopt',nlp);

% Solving the problem
sol = solver('x0',w0,'lbx',lbw,'ubx',ubw,'lbg',lbg,'ubg',ubg,'p',...
[ui;par.GOR;par.PI;par.T]);

%% Extracting solution
w_opt = full(sol.x);
obj_opt = -full(sol.f);
c_opt = full(sol.g);
lag_opt = full(sol.lam_g);

xx

u_ = w_opt(7:9);
s = w_opt(10:12);
w_ = w_opt(43:45);
exitflag = solver.stats.success;
end

Listing 4: Code for initial conditions used in the calculation

function [dx0,z0,u0] = InitialConditionGasLift_5

%% Differential states

%well erosion rate
ER0 = [1,1,1]'/(365*24*3600); %[mm/s] 9-11 seconds in a year

%% Algebraic states
%pressure - annulus
p_ai0 = [61.9230, 62.1454, 62]';%[bar] 1-3 (bar to Pa = x10^5)
%pressure - well head
p_wh0 = [42.5851, 45.3082, 44]';%[bar] 4-6
%pressure - injection point
p_wi0 = [56.8713, 57.1119, 57]';%[bar] 7-9
%pressure - below injection point (bottom hole)
p_bh0 = [96.1433, 98.3867, 96.25]';%[bar] 10-12
%density - annulus
rho_ai0 = [0.4949, 0.4967, 0.4955]';%[100 kg/m3] 13-15
%mixture density in tubing
rho_m0 = [2.3400, 2.2359, 2.3]';%[100 kg/m3] 16-18
%well injection flow rate
w_iv0 = [0.5000, 0.5000,0.5000]';%[kg/s] 19-21
%wellhead total production rate
w_pc0 = [30.1212, 33.3235,32]';%[kg/s] 22-24
%wellhead gas production rate
w_pg0 = [3.1928, 4.0168, 4]';%[kg/s] 25-27
%wellhead oil production rate
w_po0 = [26.9283, 29.3067, 28]';%[kg/s] 28-30
%oil rate from reservoir
w_ro0 = [26.9283, 29.3067, 28]';%[kg/s] 31-33
%gas rate from reservoir
w_rg0 = [26.9283, 35.1680, 28]';%[0.1 kg/s] 34-36
%riser head pressure
p_rh0 = 22.9558;%[bar] 37
%mixture density in riser
rho_r0 = 1.3618;%[100 kg/m3] 38
%manifold pressure
p_m0 = 32.8920;%[bar] 39
%riser head total production rate
w_pr0 = 63.4446;%[kg/s] 40
%riser head total oil production rate
w_to0 = 56.2350;%[kg/s] 41
%riser head total gas production rate
w_tg0 = 7.2096;%[kg/s] 42

%%setting diff states as algebraic
%gas holdup @ annulus
m_ga0 = [1.0568, 1.0606, 1.0644]';%[ton] 43-45 mga(2) +(mga(2)-mga(1))
%gas holdup @ well

xxi

m_gt0 = [0.7470, 0.7956, 0.8442]';%[ton] 46-48 mgt(2) + (mgt(2)-mgt(1))
%oil holdup @ well
m_ot0 = [6.3000, 5.8047, 5.3094]';%[ton] 49-51
%gas holdup @ riser
m_gr0 = 0.1265;%[ton] 52
%oil holdup @ riser
m_or0 = 0.9863;%[ton] 53
%particle impact velocity
V_p0 = [2,2,2]'; % 54-56
%mixed dynamic viscosity
mu_f0 = [0.001,0.001,0.001]'; % 57-59
%g1
g10 = [0.2,0.2,0.2]'; % 60-62

%% Inputs
%gas lift rate
w_gl0 = [0.5,0.5,0.5]'; %[kg/s]

dx0 = vertcat(ER0);
z0 = vertcat(p_ai0,p_wh0,p_wi0,p_bh0,rho_ai0,rho_m0,w_iv0,w_pc0,w_pg0,...
w_po0,w_ro0,w_rg0,p_rh0,rho_r0,p_m0,w_pr0,w_to0,w_tg0,m_ga0,m_gt0,m_ot0,...
m_gr0,m_or0,V_p0,mu_f0,g10);
u0 = w_gl0;

Listing 5: Code for the gas lift parameters

function par = ParametersGasLift(n,sandArray)

%number of wells
par.n_w = 3;
%gas constant
par.R = 8.314; %[m3 Pa/(K mol)]
%molecular weigth
par.Mw = 20e-3; %[kg/mol] -- Attention: this unit is not usual

%% Properties
%density of oil - dim: nwells x 1
par.rho_o = 8*1e2; %[kg/m3]
%riser oil density
par.rho_ro = par.rho_o; %[kg/m3]
%1cP oil viscosity
par.mu_oil = 1*0.001; %[Pa s or kg/(m s)]

%% Project
%well parameters - dim: nwells x 1
%length
par.L_w = [1500;1500;1500]; %[m]
%height
par.H_w = [1000;1000;1000]; %[m]
%diameter
par.D_w = [0.121;0.121;0.121]; %[m]
%well transversal area
par.A_w = pi.*(par.D_w/2).^2;%[m2]

%well below injection - [m]
par.L_bh = [500;500;500];
par.H_bh = [500;500;500];

xxii

par.D_bh = [0.121;0.121;0.121];
par.A_bh = pi.*(par.D_bh/2).^2;%[m2]

%annulus - [m]
par.L_a = par.L_w;
par.H_a = par.H_w;
par.D_a = [0.189;0.189;0.189];
%volume of the annulus
par.V_a = par.L_a.*(pi.*(par.D_a/2).^2 - pi.*(par.D_w/2).^2); %[m3]

%riser - [m]
par.L_r = 500;
par.H_r = 500;
par.D_r = 0.121;
%riser areas
par.A_r = pi.*(par.D_r/2).^2;%[m2]

%injection valve characteristics - dim: nwells x 1
par.C_iv = [0.1e-3;0.1e-3;0.1e-3];%[m2]
%production valve characteristics - dim: nwells x 1
par.C_pc = [2e-3;2e-3;2e-3];%[m2]
%riser valve characteristics
par.C_pr = [10e-3];%[m2]
%parameter to account for differences in gas and liquid pressures
par.slip_real = 1;

%parameters
%reservoir pressure
par.p_res = [150;155;160]; % [bar]
%Annulus temperature
par.T_a = [28+273;28+273;28+273]; %[K]
%well temperature
par.T_w = [32+273;32+273;32+273]; %[K]
%riser temperature
par.T_r = 30+273; %[K]
%separator pressure
par.p_s = 20; %[bar]

%% This one is mine to check

par.T = 86400; % Sampling time in seconds

%% Reservoir parameters
%System parameters for nominal model
par.GOR = [0.10;0.12;0.11];
par.PI = [5;5;5];

%% For scaling the noise
% pressure meters = 1
% flow meters = 0.1
par.scale = [1,1,1,1,1,1,0.1,0.1,0.1,0.1,0.1,0.1,1,1,0.1,0.1]';

%% For erosion model
% Sand
par.d_p = 2.5*10^(-4); %[m] particle diameter
par.rho_p = 2.5*10^3; %[kg/m3] particle density
par.mdot_p = sandArray(n+1); %[kg/s] sand rate

xxiii

% Choke
par.K = 2*10^(-9); %[-] material erosion constant
par.rho_t = 7800; %[kg/m3] sensity CS
par.r = 0.2; %[m] radius of curvature
par.D = 0.05; %[m] Gap between body and cage
par.H = 0.15; %[m] Height of gallery

% Constants
par.C_unit = 1000; % Unit conversion factor: now in mm/s
par.C_1 = 1.25; %[-] Model/geometry factor
par.n = 2.6; %[-] Velocity coefficient
par.GF = 2; %[-] Geometry factor

% Precalculations of erosion in choke:
par.alpha = atan(1/sqrt(2*par.r));
par.F = 0.6*(sin(par.alpha) + 7.2*(sin(par.alpha) - sin(par.alpha)^2))^0.6

* (1-exp(-20*par.alpha));
par.A_g = 2*par.H*par.D; %[m2] Effective gallery area
par.A_t = par.D_w(1)^2*pi/(4*sin(par.alpha)); % Area exposed to erosion
par.ER_constant = par.K*par.F*par.C_1*par.GF*par.mdot_p *par.C_unit/
(par.rho_t*par.A_t);

Listing 6: Code for simulation of the constant sandproduction case study

clear all
close all
load('hmatrix.mat');
% load('zk.mat');
% load('u_array.mat');
% load('y_meas.mat');
load('stepwise1.mat');
load('stepwise2.mat');
load('stepwise3.mat');
load('datamatrix_1.mat');

clc
addpath('/Users/SALI/Desktop/MATLAB/casadi-osx-matlabR2015a-v3.5.5')
import casadi.*

dt = 3600;
time_total = 3600*24*365; % seconds
tot_it = 500;
[x0,z0,u0] = InitialConditionGasLift_5;
x_mes_next = x0;
z_mes_next = z0;
x_next = x0;
z_next = z0;
u_k = u0;
u_opt = [];
par = ParametersGasLift; % Constant sandproduction rate
x_vec = [];
x_vec1 = [];
obj_vec = [];
z_vec = [];
%%%%%%%%%
% ADDED %

xxiv

%%%%%%%%%
y_vec = [];
tic;
nm = 70;
np = 100;
f = waitbar(0,'MPC'); % For visual display of progress
simLength = 500;
s_vec = [];
w_vec = [];
mu = 0;
sigma = 1;

%Intial erosion
e_hat = zeros(3,simLength + 2); % +1 for the initial value and +1 for

%the final value

flag = [];
for t = 0:simLength

waitbar(t/tot_it,f, [num2str(round(t/tot_it*100,2)),'%... Iteration '...
, num2str(t),'... Elapsed time: '...

,datestr(seconds(toc),'HH:MM:SS')]);

%% Erosion DIAGNOSTICS
%%%%%%%%%%%%%%%%%
% preprocessing %
%%%%%%%%%%%%%%%%%
%% Then we compute the current system measurements
%(generated by the wellplantmodel)
%% in the initial value generated by the initialConditionGasLift_5

%y_next = H * z_next; % current measurements without noise 16*1
y_next = H * z_mes_next; % current measurments with noise

y_next_append = [y_next; u_k]; %19 *1 vector
%y_meas_append = [y_meas; u_array]; %19 * 501 matrix
y_meas_append = [Data.yMeas{1,1}; Data.uArray{1,1}];

%% Now we have to scale, normalization <- y_next(without erosion),
% The next step is related to scaling the variables.
%You need to normalize them, because the models were trained in
%normalized data For the normalization, you need the mean and the
%standard deviation
% of the measurement generated by a sensor (e.g. Pbottomhole_mean,
%Pbottomhole_std --> If you have both, you can normalize the current
%Pbottomhole)
% The problem is that in the beginning of the simulation, you don't
% have enough data to properly do that (compute the mean and standard
%deviation).
% You need a fairly large amount of data for that.
% Then, we propose to use the training data for normalization in the
% begining of simulation.
% After time reaches the threshold XXX (still needs to be determined),
% we assume that we have enough data to properly compute the mean and
% standard deviation and we don't need to use the training data
% anymore.

u_opt = [u_opt, u_k];

xxv

y_vec = [y_vec,y_next];
y_next_append_scaled = [];
mu_td = [];
std_td = [];
mu_cs = [];
std_cs = [];
xxx = 150;

if t < xxx
mu_td = [mu_td mean(y_meas_append,2)];
std_td = [std_td std(y_meas_append,0,2)];
for k = 1:19
y_next_append_scaled = [y_next_append_scaled (y_next_append(k) -...
mu_td(k))/std_td(k)]; % scaled here in a 1*19 vector
end

else
y_vec_appended = [y_vec; u_opt];
mu_cs = [mu_cs mean(y_vec_appended,2)];
std_cs = [std_cs std(y_vec_appended,0,2)];
for k1 = 1:19
y_next_append_scaled = [y_next_append_scaled (y_vec_appended(k1) -...
mu_cs(k1))/std_cs(k1)];
end

end

%% 3. sort the scaled vector -> divide it for each well
% for well 1,2,3 -> for 2 and 3, change index!!
y_sc_1 = y_next_append_scaled(:,[1,4,7,10,13,14,15,16,17]);
y_sc_2 = y_next_append_scaled(:,[2,5,8,11,13,14,15,16,18]);
y_sc_3 = y_next_append_scaled(:,[3,6,9,12,13,14,15,16,19]);

%% yhat is the gradient of erosion (de/dt)
yhat1 = stepwise1.predictFcn(y_sc_1);
yhat2 = stepwise2.predictFcn(y_sc_2);
yhat3 = stepwise3.predictFcn(y_sc_3);

erosionRate_hat_scaled = [yhat1; yhat2;yhat3];

%load('errosion_array.mat');
errosion_array = Data.erosionArray{1,1};
% To change an array with erosions to erosion rate, we need to
% calculate the gradient.

errosionRate_array = gradient(errosion_array,1);

mu_er = [mean(errosionRate_array,2)];
std_er = [std(errosionRate_array,0,2)];
erosionRate_hat = [];
for k2 = 1:3
erosionRate_hat = [erosionRate_hat erosionRate_hat_scaled(k2)*...

std_er(k2) + mu_er(k2)];
end

%% Here we transform the de/ dt data --- unto e(t)
% using e_k+1 =e_k + h* de/dt, where h = 1
% We do this for well1, well2 and well3 as follows:
e_hat(1,t+2) = e_hat(1,t+1) + 1* erosionRate_hat(1);

xxvi

e_hat(2,t+2) = e_hat(2,t+1) + 1* erosionRate_hat(2);
e_hat(3,t+2) = e_hat(3,t+1) + 1* erosionRate_hat(3);

% Then we extract the x_hat as follows for each well:
x_hat = e_hat(:,t+1);

%% Calculating input with NMPC
[u_k,s,w_,exitflag]= NMPC(x_hat, u_k, z_next,nm,np);
flag(t+1) = exitflag;

% Adding optimal input to vector
s_vec = [s_vec,s];
w_vec = [w_vec,w_];

%u_opt = [u_opt, u_k];

%% Finding the state after applying input u
[x_next,z_next] = WellPlantModel(x_next,z_next,u_k,par);

%% Adding noice, if active, use these in NMPC
%x_mes_next = x_next + normrnd(mu,sigma,[3,1]).*x0*0.015;
z_mes_next = z_next + normrnd(mu,sigma,[62,1]).*z0*0.15;

x_vec = [x_vec,x_next];
x_vec1 = [x_vec1,x_hat];
obj_vec(t+1) = sum(z_next(28:30));
z_vec = [z_vec,z_next];

end

close(f)

%% Plotting
t = [0:1:simLength];

error1 = [];
error2 = [];
error3 = [];
for er = 1:size(x_vec,2)

error1 = [error1 abs((x_vec(1,:) - x_vec1(1,:))/(x_vec(1,:)))*100];
error2 = [error2 abs((x_vec(2,:) - x_vec1(2,:))/(x_vec(2,:)))*100];
error3 = [error3 abs((x_vec(3,:) - x_vec1(3,:))/(x_vec(3,:)))*100];

end

subplot(2,1,1);
stairs(t,u_opt(1,:),'LineWidth',2);
title('Plot of the gas lift rate in kg/s');
hold on
stairs(t,u_opt(2,:),'LineWidth',2);
stairs(t,u_opt(3,:),'LineWidth',2);
legend('Well 1','Well 2','Well 3');
legend('Location','northwest');
ylim([0,2.2]);
xlabel('Time [day]');
ylabel('Gas lift rate [kg/s]');%%%

subplot(2,1,2);
plot(t,obj_vec,'LineWidth',2);
title('Plot of the total production of oil in kg/s ');
xlabel('Time [day]');
ylabel('Tot production of oil [kg/s]');

xxvii

figure;

subplot(3,1,1);
plot(t,x_vec(1,:),'LineWidth',2);
title('Plot of erosion over time [days] with the real model');
hold on
plot(t,x_vec(2,:),'LineWidth',2);
plot(t,x_vec(3,:),'LineWidth',2);
legend('Well 1','Well 2','Well 3');
legend('Location','northwest');
xlabel('Time [day]');
ylabel('Erosion [mm]');

subplot(3,1,2);
plot(t,x_vec1(1,:),'LineWidth',2);
title('Plot of erosion over time [days] with the predicted model');
hold on
plot(t,x_vec1(2,:),'LineWidth',2);
plot(t,x_vec1(3,:),'LineWidth',2);
legend('Well 1','Well 2','Well 3');
legend('Location','northwest');
xlabel('Time [day]');
ylabel('Erosion [mm]');

subplot(3,1,3)
plot(t,error1,'LineWidth',2,'MarkerSize',20)
title(...
'Plot of the percentage error of the predicted model from the real model');
hold on
plot(t,error2,'LineWidth',2,'MarkerSize',20)
plot(t,error3,'LineWidth',2,'MarkerSize',20)
%axis([0 500 .5 1.5]);
xlabel('Time[day]');
ylabel('Error %');
legend('Well 1','Well 2',' Well 3');
legend('Location','northwest');

Listing 7: Code for simulation of the varying sandproduction case study

clear all
close all
load('hmatrix.mat');
%load('zk.mat');
% load('stepwise1.mat');
% load('stepwise2.mat');
load('trainedModel.mat');
% load('StepwiseExponentialData(1).mat');
% load('EnsembleExponentialData.mat');
load('datamatrix_1.mat');
%load('ExpData200TS.mat')

clc
addpath('/Users/SALI/Desktop/MATLAB/casadi-osx-matlabR2015a-v3.5.5')
import casadi.*

xxviii

dt = 3600;
time_total = 3600*24*365; % seconds
tot_it = 500;
[x0,z0,u0] = InitialConditionGasLift_5;
x_mes_next = x0;
z_mes_next = z0;
x_next = x0;
z_next = z0;
u_k = u0;
u_opt = [];
x_vec = [];
x_vec1 = [];
obj_vec = [];
z_vec = [];
%%%%%%%%%
% ADDED %
%%%%%%%%%
y_vec = [];
tic;
nm = 70;
np = 100;
f = waitbar(0,'MPC'); % For visual display of progress
simLength = 500;
% For varying sand rate %0.01 was the first one
sandArray = sandproductionrate(0.02,500,'exp',0.005);
s_vec = [];
w_vec = [];
mu = 0;
sigma = 1;

%Intial erosion
e_hat = zeros(3,simLength + 2); % +1 for initial value andfinal value

%For the varying sand production rate
% sr_n_1 = [];
% for i = 1:500+1
% sr_n_1 = [sr_n_1 (sandArray(i) - mean(sandArray))/std(sandArray)];
% end

flag = [];
for t = 0:simLength

waitbar(t/tot_it,f, [num2str(round(t/tot_it*100,2)),'%... Iteration ',...
num2str(t),'... Elapsed time: '...

,datestr(seconds(toc),'HH:MM:SS')]);

%% Erosion DIAGNOSTICS

%%%%%%%%%%%%%%%%%
% preprocessing %
%%%%%%%%%%%%%%%%%
%% Then we compute the current system measurements
%%(generated by the wellplantmodel)
%% in the initial value generated by the initialConditionGasLift_5

%y_next = H * z_next; % current measurements without noise 16*1

y_next = H * z_mes_next; % current measurments with noise

xxix

% The gas lift flowrate used as one of the predictors(regressors).
%So here, we have to add it to the "y_next"
% (dim u_k = 3x1)
sarray = sandArray(t+1);

y_next_append = [sarray;y_next; u_k];
y_meas_append = [Data.yMeas{1,1}; Data.uArray{1,1}];
y_meas_append = [sandArray;y_meas_append];

%% Now we have to scale, normalization <- y_next(without erosion)
% The next step is related to scaling the variables. You need to
%normalize because the models were trained in normalized data
% For the normalization, you need the mean and the standard deviation
% of the measurement generated by a sensor (e.g. Pbottomhole_mean,
%Pbottomhole_std --> If you have both, you can normalize the current
%Pbottomhole)
% The problem is that in the beginning of the simulation, you don't
% have enough data to properly do that (compute the mean and standard
%deviation). You need a fairly large amount of data for that.
% Then, we propose to use the training data for normalization in the
% begining of simulation.
% After time reaches the threshold XXX (still needs to be determined),
% we assume that we have enough data to properly compute the mean and
% standard deviation and we don't need to use the training data
% anymore.

u_opt = [u_opt, u_k];
y_vec = [y_vec,y_next];
y_next_append_scaled = [];
mu_td = [];
std_td = [];
mu_cs = [];
std_cs = [];
xxx = 500;
sandr= sandArray(1,1:t+1);
%sandr= 0.01* ones(1,t+1);

if t < xxx
mu_td = [mu_td mean(y_meas_append,2)];
std_td = [std_td std(y_meas_append,0,2)];
for k = 1:20
y_next_append_scaled = [y_next_append_scaled (y_next_append(k)...
- mu_td(k))/std_td(k)]; % scaled here in a 1*20 vector
end

else
y_vec_appended = [sandr;y_vec; u_opt];
mu_cs = [mu_cs mean(y_vec_appended,2)];
std_cs = [std_cs std(y_vec_appended,0,2)];
for k1 = 1:20
y_next_append_scaled = [y_next_append_scaled ...

(y_vec_appended(k1) - mu_cs(k1))/std_cs(k1)];
end

end

%% 3. sort the scaled vector -> divide it for each well
% for well 1,2,3 -> for 2 and 3, change index!!
y_sc_1 = y_next_append_scaled(:,[1,2,5,8,11,14,15,16,17,18]);

xxx

y_sc_2 = y_next_append_scaled(:,[1,3,6,9,12,14,15,16,17,19]);
y_sc_3 = y_next_append_scaled(:,[1,4,7,10,13,14,15,16,17,20]);

%% yhat is the gradient of erosion (de/dt)
%Predicting the erosion using the stepwiseexponential model
yhat1 = trainedModel.predictFcn(y_sc_1);
yhat2 = trainedModel.predictFcn(y_sc_2);
yhat3 = trainedModel.predictFcn(y_sc_3);

erosionRate_hat_scaled = [yhat1; yhat2;yhat3];

%% Now we unormalize
errosion_array = Data.erosionArray{1,1};

% To change an array with erosions to erosion rate, we need to
% calculate the gradient.

errosionRate_array = gradient(errosion_array,1);
% creats 3*1 mean of each row in errosion_array
mu_er = [mean(errosionRate_array,2)];
% creats 3*1 std of each row in eroosion_array
std_er = [std(errosionRate_array,0,2)];
erosionRate_hat = [];
for k2 = 1:3
erosionRate_hat = [erosionRate_hat erosionRate_hat_scaled(k2)...

*std_er(k2) + mu_er(k2)];
end

%% Here we transform the de/ dt data --- unto e(t)
% using e_k+1 =e_k + h* de/dt, where h = 1
% We do this for well1, well2 and well3 as follows:
e_hat(1,t+2) = e_hat(1,t+1) + 1* erosionRate_hat(1);
e_hat(2,t+2) = e_hat(2,t+1) + 1* erosionRate_hat(2);
e_hat(3,t+2) = e_hat(3,t+1) + 1* erosionRate_hat(3);

% Then we extract the x_hat as follows for each well:
x_hat = e_hat(:,t+1);

% %% Calculating input with NMPC
[u_k,s,w_,exitflag]= NMPC(x_hat, u_k, z_next,nm,np,t,sandArray);
flag(t+1) = exitflag;

% % Adding optimal input to vector
s_vec = [s_vec,s];
w_vec = [w_vec,w_];
%u_opt = [u_opt, u_k];

%% Finding the state after applying input u
par = ParametersGasLift(t,sandArray);
[x_next,z_next] = WellPlantModel(x_next,z_next,u_k,par);

%% Adding noice, if active, use these in NMPC
%x_mes_next = x_next + normrnd(mu,sigma,[3,1]).*x0*0.015;
z_mes_next = z_next + normrnd(mu,sigma,[62,1]).*z0*0.015;

x_vec = [x_vec,x_next];
x_vec1 = [x_vec1,x_hat];
obj_vec(t+1) = sum(z_next(28:30));
z_vec = [z_vec,z_next];

end

xxxi

close(f)

% Plotting
t = [0:1:simLength];

error1 = [];
error2 = [];
error3 = [];
for er = 1:size(x_vec,2)

error1 = [error1 abs((x_vec(1,:) - x_vec1(1,:))/(x_vec(1,:)))*100];
error2 = [error2 abs((x_vec(2,:) - x_vec1(2,:))/(x_vec(2,:)))*100];
error3 = [error3 abs((x_vec(3,:) - x_vec1(3,:))/(x_vec(3,:)))*100];

end

subplot(2,1,1);
stairs(t,u_opt(1,:),'LineWidth',2);
title('Plot of the gas lift rate in kg/s');
hold on
stairs(t,u_opt(2,:),'LineWidth',2);
stairs(t,u_opt(3,:),'LineWidth',2);
legend('Well 1','Well 2','Well 3');
legend('Location','northwest');
ylim([0,2.3]);
xlabel('Time [day]');
ylabel('Gas lift rate [kg/s]');%%%

subplot(2,1,2);
plot(t,obj_vec,'LineWidth',2);
title('Plot of the total production of oil in kg/s ');
xlabel('Time [day]');
ylabel('Tot production of oil [kg/s]');
figure;

subplot(3,1,1);
plot(t,x_vec(1,:),'LineWidth',2);
title('Plot of erosion over time [days] with the real model');
hold on
plot(t,x_vec(2,:),'LineWidth',2);
plot(t,x_vec(3,:),'LineWidth',2);
legend('Well 1','Well 2','Well 3');
legend('Location','northwest');
xlabel('Time [day]');
ylabel('Erosion [mm]');

subplot(3,1,2);
plot(t,x_vec1(1,:),'LineWidth',2);
title('Plot of erosion over time [days] with the predicted model');
hold on
plot(t,x_vec1(2,:),'LineWidth',2);
plot(t,x_vec1(3,:),'LineWidth',2);
legend('Well 1','Well 2','Well 3');
legend('Location','northwest');
xlabel('Time [day]');
ylabel('Erosion [mm]');

subplot(3,1,3)
plot(t,error1,'LineWidth',2,'MarkerSize',20)

xxxii

title(...
'Plot of the percentage error of the predicted model from the real model');
hold on
plot(t,error2,'LineWidth',2,'MarkerSize',20)
plot(t,error3,'LineWidth',2,'MarkerSize',20)
%axis([0 500 .5 1.3]);
xlabel('Time[day]');
ylabel('Error %');
legend('Well 1','Well 2',' Well 3');
legend('Location','northwest');

xxxiii

	Preface
	Introduction
	Background
	Literature review
	Objectives
	Simulation setting

	Theory
	Empirical Modeling
	Data Pre-Processing
	Normalization

	Regression Model
	Linear - Regression

	Stepwise regression
	Model Predictive Control
	Solving Methods for Algebraic Differential Equation
	Orthogonal Collocation

	Process Description
	Gas-Lift Model
	Erosion Model

	Results and Discussion
	Data generation for training the data driven models
	Modelling Erosion using Linear Model
	Performance of the MPC controller
	Case study 1: Constant sand production rate
	Case study 2: Exponentially varying sand production rate

	Conclusion and Recommendation
	Appendices
	Parameters for Erosion modelling
	Parameters for Gas-lift
	Well specific parameters in the gas lift model
	List of Symbols
	Code for calculations

