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Abstract

Real time monitoring and control of crystallization processes in process industry producing food,
fine chemicals and pharmaceuticals is of major importance to assess quality and purity of the
product. The lack of available online and in-situ measurement options have been identified as a
bottleneck in this regard. The Focused Beam Reflectance Measurement (FBRM) probe can access
online and in-situ measurements of the chord length distribution (CLD). However, this measurement
only provides information related to the particle size, and thus a conversion to the particle size
distribution (PSD) is needed. This problem has been subject to research in literature. There are
several ways to address this problem, either by mapping PSDs to CLDs called the forward problem
or the mapping of CLDs to PSD called the inverse problem. In this research, a framework to
solve the forward problem is presented. The suggested framework consists of two main structures.
The first part is a convolutional neural network (CNN) which maps PSDs to CLDs. The CNN is
trained with in-silico generated data. This CNN model has already been developed from previous
research efforts by members of the Mesbah research group at University of California, Berkeley.
In this research, a second structure has been developed. It consists of a dimensionality reduction
and correction layer to adapt the framework to an experimental dataset in the low data regime. It
accounts for possible discrepancies between the experimental and simulated dataset and considers
experimental conditions. The dimensionality reduction was performed with an autoencoder by
reducing the dimensionality of the CLDs. The correction layer was modeled with a multi-output
Gaussian process regression model.

The autoencoder was implemented and displayed great ability to compress and reconstruct CLDs
from both the simulated and experimental dataset. With this tool, the CNN model was adapted
and trained with the reduced dimensionality data. The new CNN model exceeded the previous
model with regards to accurately predicting CLDs with the simulated dataset, however it failed to
predict CLDs from the experimental data set. With the implementation of the correction layer,
the final framework was successfully able to map the experimental PSDs to CLDs. This developed
framework demonstrates how both simulated and experimental data can be leveraged to develop
an accurate data-driven model for prediction without requiring substantial amount of experimental
data. This framework also provides a robust model to generate enough data to address the inverse
problem (CLD to PSD) which is of greater interest.
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Chapter 1

Introduction

Crystallization is a widely used separation technique in many process industries producing food,
fine chemicals and pharmaceuticals. The crystallization process has a major impact on important
crystalline properties like purity, polymorphic form, particle size distributions (PSD). Not only do
these properties have substantial effect on the efficiency of downstream processes such as filtra-
tion, drying, granulation, milling, storage, but also on product qualities[51]. Purity, shape and
size of the active pharmaceutical ingredients (API) are especially crucial to in the pharmaceutical
industry. These properties influence the development and design of the dosage forms due to its
effect on formulation, manufacturability, dissolution and bio-performance of the dosage form[62].
Therefore, it is of major importance to pharmaceutical manufacturers to have the capability to
regulate these physical properties to deliver a high quality product and to ensure consistency[62].
Consequently, this need has inspired different methods to control the particle shape and size during
the crystallization process. For example, milling and micronization of particles after crystallization
are frequently used by pharmaceutical manufacturers to achieve small particles that exhibit the
necessary particles size characteristics [24]. Furthermore, the manipulation of operation parame-
ters during crystallization is another way to manipulate crystal shape. This is can for example be
achieved by supersaturation. Another approach is induced crystal breakage which manipulates the
crystal shape by reducing the aspect ratio. This approach is often used for needle like crystals.
Crystal growth rate modifiers have also been shown to significantly impact the shape of crystals
[37].

The lack of sensors providing online and in-situ measurements of crystal shape have been iden-
tified as a restriction to improving design, monitoring and developing control methods in crystal-
lization processes [42]. However, recent progress in image processing techniques have been able
to provide new possible approaches for monitoring and providing in-situ and real time PSD mea-
surements [5]. The PSD is a measurement that provides important information about crystal size.
An illustration of a PSD is given in Figure 1.1. For 2-D crystals, the PSD is typically expressed
as a two dimensional distribution with the crystal length and width on the x- and y-axis and the
probability on the z-axis.
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Figure 1.1: Illustration of a PSD.

The focused beam reflectance measurement (FBRM) is a tool frequently used to collect infor-
mation related to particle shape and size. The main advantage of the FBRM is that it can produce
online and in-situ measurements. The FBRM uses a high focused laser directed at the particles
in a suspension and obtain information related to the PSD by measuring backscattering [8]. It
has been broadly utilized because it is simple to implement and is able to take measurements at
relatively high crystal concentrations [27]. A rotating focused laser beam scans through a suspen-
sion or slurry through a sapphire window mounted on a cylindrical probe. When the laser beam
intersects a crystal, some is backscattered and recorded by a detector in the probe. The sensor in
the probe records how long the backscattered signal lasted [63]. The measurement is produced by
multiplying the signal length with the tangential rotating speed. This calculated quantity is called
a chord length. The recorded chord lengths can then be presented in a histogram referred to as a
chord length distribution (CLD). An example of a CLD is given in Figure 1.2. The x-axis typically
represents the chord lengths or the logarithm of the chord lengths and y-axis represents the chord
length probability.
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Figure 1.2: Example of a chord length distribution.

The drawback of the FBRM is that it generates CLDs. The chord length distribution contain
information related to the particle size distribution, but does not record the actual sizes of the
crystals. This is illustrated in Figure 1.3. In fact, the chord length recorded by the FBRM does not
only depend on the actual size of the crystal but also on the orientation, suspension density, optical
properties and solvent medium. The illustration displays some possible chord lengths recorded
by the FBRM. The thick black line represents the chord length. The two first examples clearly
illustrates how the chord length recorded is affected by the orientation of the crystal. In the bottom
left corner, two crystals are overlapping such that the joined width of the crystals are recorded as
the chord lengths. In the bottom right corner, the chord length coincides with the actual width of
the crystal which would be an ideal case for recording particle size.

Figure 1.3: An illustration of possible chord lengths recorded by a FBRM probe.
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Since the FBRM probe does not record the actual size of the crystal, the CLDs need to be related
to the PSDs in order to extract useful information. Transforming a PSD to a CLD is referred to
as the forward problem and transforming a CLD to a PSD is referred to as the inverse problem.
Several attempts have been made to address both these mappings. Some earlier techniques are
based on least square methods [33], [9]. In [33] an analytical solution is proposed to calculate
PSDs from CLDs from a non-negative least squares method. This model was first validated by
using simulated data. The second part of this paper [34], validated this model with experimental
data. One drawback of this method is that the least square optimization can possibly lead to ill
conditioned optimization problems. In addition, the accuracy of this method heavily depended on
the particle shape since the aspect ratio was an important factor in the analytical model. Thus
this method is not readily applicable to systems where the particle shapes are deviating from the
ones defined in analytical model. Another analytical method was proposed in [59]. This approach
attempts to map PSDs from CLDs by directly inverting the relationship. One major assumption in
this approach is that the CLDs had similar shapes and could be represented by two moments. The
method was able to invert the relationship, but cannot be universally applied as it was shown to
be unstable in some cases. In [41] an iterative process with log-normal distributions was presented.
For this method to be successful, the assumption that the particles are uniform within the system
must hold. Consequently, this method is not applicable to systems with irregular particle shapes.

In more recent years, more attempts on have been made to use data-driven frameworks. [27]
utilizes a data-driven approach to predict PSDs from CLDs. The general framework is separated
into three steps: i. Compressing the CLD to a small set of parameters (average, standard deviation
and slurry concentration), ii. a regression function to correlate this set of parameters with low order
moments or a small number of percentiles of the PSD and iii. a two-layer network consisting of N
node functions to predict the PSD histogram. For this approach to work, it is essential that the
information of the CLD can be reduced to a small set of parameters called CLD descriptors. An
expansion of this framework was presented in [26]. This extension enabled the model to predict
CLDs with bimodal distributions by inclusion of higher order moments and a combination of two
chord-selection modes. The main limitation of these models is that the moments of the CLDs must
be known to perform the compression step. Realistically, there is no guarantee that real CLDs
can be describe with a set of moments. An alternative to using the moments in the compression
step was presented in [45]. In stead of compressing the CLD to a set of moments, the compression
step was performed with a principal component analysis (PCA). In PCA a vector is compressed
into a smaller set of uncorrelated numbers i.e the principal components. This approach did not
result in better predictions. Artificial neural network(ANN) models have also been implemented to
convert CLDs to PSDs for different types of particles [19],[22], [51]. In [51] an ANN model was de-
veloped to solve the forward problem, i.e transforming a 2D PSD to a CLD from 2D needle-shaped
crystals. The data used to train the network was generated by using first principle, geometric-
model based simulations. In [19] an ANN was developed to predict PSDs for sugar crystals from
real-time FBRM data. This ANN model was trained with experimental data, which requires that
sufficient amounts of experimental data is available. This framework successfully proved that an
ANN model can be used as a soft sensor, providing online information about sugar crystalliza-
tion processes. In the reviewed literature, both the forward and the inverse problem have been
addressed. In this research, a data-driven framework has been developed to address the forward
problem. Typically, the forward problem is mathematically well-posed and less computationally
expensive compared to the inverse problem. As already encountered in the literature, the inverse
problem can lead to ill-posed optimization problems, but is typically of greater interest, since it
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will automatically produce a PSD from a CLD measurement. However, there are still significant
advantages of solving the inverse problem first. The forward problem can easily be decomposed
into smaller sub-problems which requires less data overall. Moreover, an effective model for solving
the forward problem can be used to solve parameter optimization and/or control problems. In this
type of problem, the CLD represents the objective function. Lastly, a model solving the forward
problem can be used to simulate data to create a data-driven approach for the inverse problem,
reducing the amounts of experimental data required. The framework developed in this research,
offers a data-driven approach to map experimentally generated PSDs to CLDs without requiring a
substantial amount of experimental data. In the reviewed literature, a few approaches are described
offering data-driven frameworks that are developed either on simulated data or experimental data.
Data-driven approaches typically requires a larger data-set, but in many cases it may not be possible
or too expensive to generate enough experimental data. In this research, the developed framework
demonstrates how both simulated and experimental data can be leveraged to develop an accurate
data-driven model for prediction. This is the main advantage of this research, and together with
the structure of the framework itself- made up of three important machine learning approaches,
a convolutional neural network (CNN), and autoencoder (AE) and a Gaussian process regression
model- it encompasses the novelty of the research. The CNN model in this framework has already
been developed from previous research efforts of members of the Mesbah research group at Universe
of California, Berkeley. This CNN model was trained with a simulated dataset and the aim of the
research presented in thesis, has been to expand the overall framework to be able to make accurate
predictions for experimental data. The expansion of the framework consists of a dimensionality
reduction performed by an autoencoder and the implementation of a correction layer modeled with
a Gaussian process regression model. The remaining part of this thesis is divided into three main
chapters:

Chapter 2: Neural networks and the existing CNN model.
This chapter presents the fundamental theory and building blocks of the CNN model. This

includes a broad description of neural networks in general, convolutional neural networks, Bayesian
optimization and Gaussian process regression, the latter two being integral for the tuning of the
model. This is followed by a description of the simulated dataset and the experimental dataset.
Lastly, the performance of CNN model is presented and evaluated.

Chapter 3: Adaption of the convolutional neural network to experimental data. Chap-
ter 3 presents the two main steps implemented to adapt the original framework to be able to make
accurate predictions with experimental data. The theory underpinning the concepts is provided
along with a thorough evaluation and discussion. With the building blocks of this framework put
together, the final part of the chapter assesses the final framework and its performance.

Chapter 4: Final conclusion. The final conclusion briefly sums up the important findings of
this research and provides suggestions to further work.
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Chapter 2

Machine learning and neural
networks

The use of neural networks is rapidly increasing. Neural networks are powerful tools because of their
flexibility, strong performance and the ease at which they can be applied to a myriad of possible
applications. There are several different types and structures of neural networks that can handle a
variety of tasks like reinforcement learning, regression, image recognition, hyperparameter tuning
and the list goes on. These types of frameworks have a lot of potential, almost only limited by
imagination. The fundamental idea builds on arranging a large number of nodes in a hierarchy
structure. Each node receives some input data and performs a simple mathematical operation
and pass the output of forward to another node. In this way, the nodes in the structure are
connected. The nodes are typically organized in layers stacked on top of each other. After the
process of training, the network learns to recognize the important information in a data set. Once
the network is sufficiently trained, it is able to extract the important information from an unseen
dataset which is similar to the training dataset. In this chapter, a brief introduction to neural
networks and the most important elements of typical architectures are presented. In this research
a convolutional neural network (CNN) was used to map particle size distributions(PSDs) to chord
length distribtuions(CLDs). Therefore, a section of this chapter is dedicated to a more detailed
description of this specific type of neural network. Since there are many choices that can be made
with regards to the design of the neural network which will have major impact on performance,
a systemic approach of deciding these parameters should be considered. A popular method for
tuning the hyperparemeters in a neural network is Bayesian optimization. An introduction to
Bayesian optimization is thus explained in this chapter. The Bayesian optimization algorithms
heavily relies on the use of Gaussian processes. Therefore, the theoretical background of this
powerful non-parametric regression method is provided. With all the important concepts explained,
the architecture of the CNN model is presented. Subsequently, the performance with both the
simualted dataset and the dataset generated from experiments is presented and evaluated. If the
datasets are similar enough, the CNN model should be able to make predictions for the experimental
dataset too. The final evaluation includes some thoughts and limitations of the modeling choices
and performance before moving on to the next chapter.
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2.1 Neural networks

The structure of neural networks are inspired by how the biological neural networks are structured.
Biological neural networks are complex systems whose full extent and capacity still eludes scientists
today. The general workings of a single neuron can be explain as follows: A neuron receives a
number of inputs (from the dendrites), which are processed and result in an output (potential
in the axon). This process in is illustrated in Figure 2.1. Next to the biological neuron is an
illustration of a single neuron in an artificial neural network, clearly inspired by the nature of a
biological neuron. The neuron is one of the fundamental building blocks of an artificial neural
network.

Figure 2.1: A visual comparison of a biological neuron and a neuron in neural networks.

The illustration of a neuron in a neural network in Figure 2.1 depicts the basic mathematical
operation performed by the neuron. Each input of the neuron is assigned a weight, wi, and added
together along with the bias term b which sums up to z. This summation is given in Equation 2.1.

z =

N∑
i=1

wixi + b (2.1)

To produce the final output of the neuron, an activation function is used to transform z to the
output value,

a(z) = σ(z) (2.2)

here a(z) is the output of the neuron and σ is the activation function. An activation function is
necessary because it introduces non-linearity to the network model. Consequently, the network
model is able to approximate non-linear functions. More neurons can be connected in a layer, and
several layers can be stacked on top of each other and seen in Figure 2.2. This stacked structure
introduces a complexity to the model which makes it able to recognize intricate and non-linear
features of the input data.
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Figure 2.2: Illustration of neurons connected in layers.

If all the neurons in the previous layer are connected to the next layer, it is called a dense layer.
Theoretically, a deep enough network with non-linear activation functions could approximate any
non-linear function. Without an activation function between the layers of neurons, a network with
many layers would still be equivalent to one linear layer [16]. Examples of commonly used activation
functions are ReLu, tanh and Sigmoid. The choice of activation function depends on the problem
at hand and the structure of the neural network. Some comments about the choice of activation
function will be mentioned at the end of this sections.

The basic idea of neural network training is to systematically adjust the weights in the network
until the prediction error is minimized. An illustration is provided in Figure 2.3. The network
predicts an output consisting of two blue and three purple cells whereas the true output consists
of three blue and two purple cells. The algorithm will thus adjust the weights and biases in the
network to make a better prediction of the output.
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Figure 2.3: Illustration of prediction error in a neural network.

First, a data set with input data and corresponding output data is prepared. The data set is
the split into a selected number of batches. The batches are then passed to the neural network
consecutively. The input data is passed to the input layer and then to the first hidden layer and so
on until it reaches the output layer. The result of this forward pass is stored and used in the next
step which is a backwards pass. The algorithm will compare the predicted output with the output
in the data and calculate the error between the two. Commonly used error functions are mean
absolute error (MAE) or mean squared error (MSE), but it could also be a custom error function.
The backwards pass calculates the error gradients of the weights and biases in the network by using
the chain rule[16]. The algorithm then analyses how much each output of each node contributed
to the total error. This reverse approach is called backpropagation. The weights and biases will
be updated according to a gradient descent optimization algorithm based on the error gradients
obtained from the backpropagation [52]. These updating algorithms are called optimizers and have
different updating schemes. Some common optimizers are SGD, RMSPROP and ADAM[18]. The
choice of optimizer can affect how fast the training progresses, how computationally expensive the
training is and how well the weights and biases are updated to minimize the training error. A
more in depth description of the individual optimizers is out of the scope of this thesis. The fitting
algorithm will repeat this process for the remaining batches. When all the batches have passed
through the network, the algorithm has completed one epoch. The algorithm will then complete
the same process for the remaining number of epochs. Upon completion, the network will store
the weights and biases of the best epoch and the model can be used to make predictions. One
possible issue that can arise with the backpropagation algorithm is the vanishing gradient problem.
This problem is encountered when the weights and biases are being updated. The chance of this
occurring is affected by the architecture of the neural network for example by the depth of the
network and/or the choice of activation function. Sometimes if the calculated gradient is small, it
gradually vanishes during the backpropagation to the input layer [6]. Consequently, the network
may not be able to update its weights appropriately and in the worst case, it could bring the
training to a complete halt. Therefore, the choice of activation function can significantly influence
the quality of the training. The activation functions Sigmoid, tanh and ReLu are illustrated in
Figure 2.4.
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Figure 2.4: The activation functions Sigmoid, tanh and ReLU.

The Sigmoid function is a common activation function. It is a non-linear function with a
smooth S-shape and will produce an output between 0 and 1. Another function is tanh. Compared
to Sigmoid, tanh is symmetric around zero which means that it produces negative and positive
outputs [48]. Another activation function is ReLu which stands for rectified liner unit. It is widely
used and generally less prone to issues regarding vanishing gradients compared to Sigmoid and
tanh.

The typical flow of neural network training is visualized in the flow chart in Figure 2.5.

Figure 2.5: The flow chart illustrates the typical evolution of training a neural network.

As seen in this flow chart, the data is often processed before training to ensure that the quality
of the data is appropriate for the training. Data-processing is often integral in order to obtain a
model that can successfully make predictions as the quality of a neural network model heavily relies
on the dataset. There are a few steps that can be easily implemented to modify the data set in
order to ensure that it does not make the fitting of the weights harder than it needs to be.

Cleaning up the data

A given data set may not be complete. In a real data set, there will most likely be a few NULL
or NaN values[32]. These are values that the system cannot handle which must be taken care of
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before the training can be initiated. One way to remedy this, is to leave out the rows or columns
of the data that contain the NaN values. This is a very simple approach, however the amount of
data dropped relative to the size of the entire data set must be taken into account, as is could lead
to too much information loss. Another alternative approach is mean imputation. In this approach,
the NaN values are substituted with the mean of the observed data [25].

Scaling the data

A neural network attempts to map input variables to output variables by learning. The different
variables in the datset may be from very different domains and recorded with different units and
thus the data may be of different orders of magnitude. If the data is not scaled, it can prove
difficult to find a model that handles both data of small orders of magnitude and large orders
of magnitude well. For example, very large inputs can lead to very large weights in the system
which is an indicator of an unstable network[13]. Two very common ways of scaling a dataset are
min-max normalization and standardization. In min-max normalization, each value in the dataset
is normalized by fist subtracting the minimum value followed by a division of difference of the
maximum and minimum value of the respective variable. As a result, the datset will only consist
of values ranging from 0 to 1.

xi,normal =
xi −Xmin

Xmax −Xmin
(2.3)

In data standardization, the mean of the respective variable is subtracted from the data followed
by a division of the standard deviation,

xi,standard =
xi − µ

σ
(2.4)

This will transform the data set into having a zero mean and a standard deviation of 1 for each of
the respective variables.

Model development and evaluation

Before the training can start the dataset needs to be split into a training set and a validation set.
This splitting of the dataset is done randomly and a 70-80/30-20 split is common. The appropriate
splitting ratio depends on the dataset, the neural network architecture and how much data is
available. Once the training and validation data is prepared, the training set can be used to train
the neural network and produce a model. When the network is trained sufficiently, that is, the
model error is sufficiently small, the model will be tested on the validation set. The neural network
model will make predictions based on the validation set input. If the prediction error is satisfactory
low, the model is validated.

2.1.1 Finding a good fit

The aim of neural network models is to find a function f which maps inputs x to the output y,

y = f(x) (2.5)

How effective f is depends on how good f is to predict new output values of a dataset unseen by
the model. This leads to the concept of generalization which explains how well a machine learning
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model responds to data which is not already seen by the model during training. If the model cannot
make predictions from another set of data from the same domain, it is not very useful. Overfitting
and underfitting are terms used to describe the generalization ability of a machine learning model
[15]. Neither overfitting and underfitting are desirable as both leads to poor performance. In
Figure 2.6, three models with different levels of fitting are illustrated.

Figure 2.6: Illustration of an overfitted model, a model with a good fit and and underfitted model.

Overfitting occurs when the model is able to learn the statistical noise in the training data
set such that it negatively influences performance. Noise in the data will be interpreted as actual
concepts and will make generalization hard. If a model is overfitted, it will struggle to make good
predictions with a different data set from the same domain. Underfitting occurs when the model
has not been able to learn the important concepts in the data. When this happens the model will
not be able to generalize to a new data set either. Underfitting is easier to detect as the training
error will be large: The model is not able to adjust the weights to fit the training data. Typically,
this can be solved by providing a larger dataset. There are several techniques developed to prevent
overfitting in machine learning algorithms as it is a relatively common problem. This is due to the
a large number of weights and biases in neural networks that can be adjusted to exactly match the
training data. Dropout is a technique that randomly drops a fraction of nodes during the network
training[40]. This is an attempt to reduce co-adaption between nodes. Co-adaption can lead to
units experiencing highly correlated behavior. As a consequence, the nodes work less independently
and may rely too much on other nodes. This phenomenon is illustrated in Figure 2.7.
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Figure 2.7: The network on the left displays nodes exhibiting co-adaption. (yellow circles). The
network on the right tries to counteract this effect by dropping nodes (grey circles).

If dropout is added to a neural network layer, it forces nodes to probabilistically take on more
or less responsibility in the layer [11]. If successful, the correlated behavior will be disbanded and
the model will be more robust and better at making predictions with new data. Another technique
to prevent overfitting is early stopping. This is a simple technique where the network will stop the
training before it learns the noise in the data[64].

Figure 2.8: Illustration of early stopping. The training is stopped as the validation error starts to
increase even if the training error was still decreasing.

The training will stop if the training error does not improve sufficiently or the validation error
starts to increase. There is no point to continue the training after this point as the model will not
be able to make better predictions. In addition, early stopping can make the training more effective
as the training might stop before all the epochs are completed. Another technique is adding ℓ1
and ℓ2 regularization. This technique aims to reduce the size of weights and biases which can be a
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source of instability and consequently cause overfitting[15]. If there are large weights in the system,
the model may have been able to learn the statistical noise in the data. By adding regularization,
the loss function will also take into account the size of the weights, thus preventing large weights
from accumulating in the system. The most common regularizers are ℓ1 and ℓ2 regularization given
in Equation 2.6 and Equation 2.7, respectively[56].

ℓ1 = Error(Y, Ŷ ) + p

M∑
j=0

(| wi |) (2.6)

ℓ2 = Error(Y, Ŷ ) + p

M∑
j=0

(w2
i ) (2.7)

Here Error(Y,Ŷ) is the error between the predicted Ŷ and the Y in the data set, wi is the ith
weight and p decides how much the large weights should be penalized. ℓ1 regularization effectively
shrinks smaller weights to zero, but compared to ℓ2, the larger weights in ℓ1 are not penalized as
much. Therefore, ℓ1 will have more weights that are zero, but also some weights that will possibly
have larger values than ℓ2. Since ℓ1 exhibit these characteristics, ℓ1 often used in feature extraction,
because important features are enhanced and insignificant ones are ignored [29]. The ℓ2 regularizer
attempts to make all weights smaller, but does not force the weights to zero. Therefore, ℓ2 is better
suited for more complex data patterns such as regression problems.

2.2 Convolutional neural networks

CNNs are inspired by how the animal vision works and are frequently used in photo recognition
and classification tasks. It is a deep learning model that can process data with a grid patterns [52].
CNNs consists of a series of several elements and a typical structure is given Figure 2.9.

Figure 2.9: Example CNN

The structure is generally made up of a few important building blocks: convolutional layers,
pooling layers, a flattening layer and fully connected layers. In Figure 2.9 an image is the input to
the stacked architecture. The architecture is made up of a series of convolutional layers and max
pooling layers. The output of the last convolutional layer is flattened before it is passed to a fully
connected layer which produces the output.

Convolutional layers are constructed to extract features from an input image and conse-
quently learn to recognize features. The neurons in a convolutional layer are arranged as feature
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maps [44]. Each neuron in the feature map has a receptive field which is connected to a neighbor-
hood of neurons in a previous convolutional layer via a kernel[55]. This is illustrated in Figure 2.10.
The kernel is an array that moves across every pixel of the input image and performs a mathemat-
ical operation. Typical sizes of the kernel are 3x3, 5x5 and 7x7. By going over the pixels in the
image, the important features can be extracted. The inputs are thus convolved with the learned
weights to compute the convolved feature i.e the new feature map. The convolved feature is then
transformed by a non-linear activation function like Sigmoid, tanh and ReLU.

Figure 2.10: Illustration of a kernel moving across an image performing convolution.

In Figure 2.10, the result of the convolution operation is illustrated: A kernel matrix
( 1 0 1
0 1 0
1 0 1

)
has moved across the all the pixels of the image. The difference between two consecutive kernel
positions is defined as the stride length. In the figure, the kernel has a stride length of 1. The
convolved feature is obtained by the sum of the element-wise product between input tensor and the
kernel. For example, the convolution calculation of the bottom right corner (light green) will be
1x1+1x0+1x1+1x0+1x1+0x0+1x1+0x0+0x0=4. The bottom right cell of the convolved feature
(pink matrix) is thus 4. In this way, the kernel moves across all pixels and is able extract the
important features of the input image.Convolutional layers can be stacked, such that the output
of one, is the input to the next one. As the feature map shrinks after the convolution operation,
padding is often added to counteract this. Zero-padding is typically implemented which adds rows
and columns of zeros to the edges of the input image before the convolution operation occurs. Thus
the input dimensions will be retained after successive convolution operations [52]. Pooling layers
are used to reduce the size of the convolved feature. This helps to reduce the computational power
required, to extract the dominant features and it also works as a noise suppressant[44]. The most
common types of pooling are max and average pooling. The max poling operation works such that
the 2x2 kernel matrix moves across the feature map and determines the larges value within the
kernel and records it. On the left, the kernel has moved across feature map with a stride length of
2. On the right, the average pooling operation calculates the average of all the values in the kernel
and records it. Flattening layers converts the data from the previous convolutional layer into a
1-D vector which will be the input to the fully connected layer. In other words, the output of the
last convolution layer is transformed into one long feature vector [16]. Fully connected layers are
dense layers and the last layers of the network. For categorization problems, the last dense layer
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Figure 2.11: Illustration of max and average pooling.

utilizes a Soft Max activation function. A Soft Max function generates the probability that a given
input ends up in a particular class and has the form [3],

σ(z)i =
ezi∑K
j=1 e

zj
(2.8)

where K is the number of classes and zi is the i-th element of the input vector. The CNN
is trained the same way as described in section 2.1: The weights and biases in the network are
adjusted to reduce the prediction error. The weights and biases will be updated according to the
updating scheme of the optimizer based on the error gradients obtained from the backpropagation
algorithm. When designing a CNN or any other type neural network there are a lot of possibilities
and many choices with regards to the structure that need to be made. How many layers are
appropriate? Which activation function should be used? These are parameters that defines the
network architecture and need to be decided before the training takes place. These parameters are
referred to as hyperparameters and are the variables that describes the architecture of the deep
learning model itself. The hyperparameters will have major impact on the learning process and the
weights and biases that the algorithm eventually ends up learning [39]. Tuning the hyperparameters
is not an easy task: The hyperparameters that are chosen will heavily influence performance and
without a systemic approach, finding the right set would be like finding a needle in a haystack.
Some important hyperparameters are learning rate, activation functions, number of layer, dropout
rate, kernel size and padding. The learning rate is a hyperparameter that affects the optimizer.
The learning rate affects the size of the step length of the gradient descent optimization algorithm.
There are several approaches to tune the hyperparameters. The most common methods are grid
search methods, random search, Bayesian optimization and genetic optimization. In grid search
and random search a search space is defined as a grid of hyperparameter values or as a bounded
domain of hyperparameters values. In grid search, all the points will be tested whereas in random
search, random points will be tested [14]. In genetic algorithms, each hyperparameter is defined as
a gene and each solution is a combination of the different genes. Then the solutions create offspring
and only the best ones survives. Consequently, the final solution will be the solution with the
best set of genes, that is, the model with the most optimal hyperparamters [35]. In this research,
Bayesian optimization was used to tune the parameters in the CNN model. Bayesian optimization
is a black-box estimator which is a popular method for tuning hyperparameters in neural networks.
The next section will give a detailed description of the principles of Bayesian optimization.
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2.3 Bayesian optimization and Gaussian process regression

In this section Bayesian optimization and Gaussian process regression are explained. Bayesian
optimization is a popular approach to hyperparameter tuning. It has gained recognition due to its
flexibility, efficiency and the relative ease at which it can be implemented. Bayesian optimization
often utilizes Gaussian processes regression as a part of its framework. Gaussian process regression
is a non-parametric regression approach and can be used when the nature of the underlying function
is unknown or hard to analytically evaluate [46].

2.3.1 Bayesian optimization

Bayesian optimization has gained popularity over the past years. It is used in many big data
applications where there are a lot of possible design choices that leads to parameters needing tuning.
From a mathematical perspective, Bayesian optimization is concerned about either maximising the
accuracy or minimizing the error an unknown objective function[47],

x∗ = argmax
x∈X

f(x) (2.9)

where f is a black-box function with no simple closed form. x are arbitrary points in the domain
at which f is evaluated. However, evaluating f can be difficult as f might be non-convex, multinodal
and the derivatives with respect to x might not be accessible. For these reasons, the evaluation
of f could prove to be costly. The problem at hand decides the nature of the function f. In this
research, f is a deep neural convolutional network with tunable parameters. Bayesian optimization
is very effective in problems involving neural networks: It takes into consideration the previous
iterations of the optimization when predicting new guesses for the hyperparameters, which makes
the search more efficient. Fundamentally speaking, Bayesian optimization is a method that uses
Bayes theorem to search for a maximum or minimum. Bayes’ theorem is given by

P (A | B) =
P (B | P (A)

P (B)
(2.10)

and is a way to calculate conditional probability. By using the total probability theorem, P(B) can
be written as,

P (B) = Σn
i=1P (B | Ai)P (Ai) (2.11)

and P(B) can be interpreted as a normalizing constant. Therefore, the expression can be simplified
to describe a proportional quantity[12],

P (A | B) ∝ P (B | A)P (A) (2.12)

The expression above can be intuitively interpreted as,

posterior = likelihood · prior (2.13)

The posterior can be thought of as the current theory or hypothesis that about which inference
is desired. In other words, what is the probability to observe A given the knowledge available about
B. The prior, the set of data or observations about A and the likelihood describes the probability
of B given A[10]. This gives a basis to make predictions about the unknown objective function. In
Bayesian optimization, the data and samples observed will be collected in D=D(x1, x2, ..., f(x1),
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f(x2), ...) as the optimization progresses. Thus, D will collect the result of the evaluations and the
points at which the function f was evaluated. If P(f) is set to the prior, then the likelihood function
is then defined as P(D | f). P(D | f) can be interpreted as: How likely is the data D that has been
observed, given what is known about the prior, P(f) [10]? The expression for posterior distribution
P(f | D) is then,

P (f | D) ∝ P (D | f)P (f) (2.14)

The posterior includes all the previous history of the evaluated points and is updated at every
step. Since the nature of the objective function is often unknown, hard or computationally expensive
to analytically evaluate, a surrogate function is often used to approximate the posterior function.
It is used to calculate an output score given a set of input hyperparameters. In other words it
calculates,

P (accuracy | hyperparameters) (2.15)

Probabilistically, the surrogate function represents the conditional probability of the objective
function f given the available information of the data D. Some common surrogate functions serving
this purpose are random forest regression, tree-structured Parzen Estimator and Gaussian pro-
cesses[31]. In this research, the surrogate function was modeled by a Gaussian process(GP). The
theoretical basis of Gaussian processes will be described in the next section.

An indispensable element of the Bayesian optimization algorithm is the ability to effectively
search for new potential points to be sampled i.e new sets of hyperparameters. In order to search
the parameter space smartly, a utility function, often referred to as an acquisition function, is
maximized. It is a function that is relatively cheap to evaluate and will generate samples that
will be used in the next evaluation. The acquisition function will have higher values were the GP
predicts the objective function to be high (i.e high accuracy) and in areas of low exploration (i.e
high uncertainty) [10]. Some typical acquisition functions are LCB, PI and EI and will be described
more in detail below.

The Bayesian optimization algorithm comprises of a sequential solving of Equation 2.9 for a
given set of values, x. The general algorithm can be described in the following way [47],

for n=1,2,3..., do
find xn+1 by optimizing acquisition α function over the GP
xn+1=arg max α(x;Dn)
evaluate the objective function at xn+1 to obtain yn+1

augment data for Dn+1=Dn,(xn+1, yn+1)
update statistical model (GP model)

end
Algorithm 1: Pseudo code for Bayesian optimization

Here, α is the acquisition function, y is the sampled value of the objective function( y=f(x)),
and D is the collection of previous points and evaluations. The algorithm runs for a predetermined
number of iterations and return a set of hyperparamters that provided the highest accuracy. In
this research the package skopt.gp minimize from scikit-optimize was used to perform the Bayesian
optimization. This package provides library functions that performs Bayesian optimization by using
a Gaussian process for approximating the surrogate function. The default acquisition function is set
to gp hedge which for every iteration, chooses between PI, EI and LCB in a probabilistic manner.
Probability of improvement (PI) aims to maximize the probability of improving the current optimal
solution[60]. It searches for points near the current optimal values to find a better optimizer.
Therefore, it is likely that PI converges to a local optimal solution. The expected improvement (EI)
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function, aims to maximize the expected value in the vicinity of the current optimal point. If the
function value is less than the expected value, the algorithm will explore other parts of the domain
instead [58]. Therefore, unlike PI, EI is not likely to converge to the local solution optimum. LCB
(lower confidence bound) is an acquisition function that decides whether the next sampling point
should be close to the current optimum (exploitation) or rather explore another zone of the sample
space with lower confidence (exploration). This trade-off between exploitation and exploration is
determined by a parameter κ[58].

Bayesian optimization is an algorithm that can be used to effectively search through a hyper-
parameter space in order to find an optimal set of hyperparameters for a neural network. The next
section will explain Gaussian processes and Gaussian process regression which are used to model
the surrogate function in the Bayesian optimization algorithm.

2.3.2 Gaussian process regression

The Gaussian process regression model can be interpreted as a distribution of functions given a
set of points, and inference is made in this function space [43]. It has gained popularity due to its
flexibility, but also because it provides uncertainty measurements to its predictions[57]. In addition,
this non-parametric regression method works well in the low data regime [1]. A Gaussian process
is defined as a collection of random variables, which have a joint multivariate Gaussian distribution
that is entirely specified by its mean function and covariance function [46]. The mean function and
covariance function can be thought of as analogous to the mean and covariance matrix in parametric
Gaussian models[21]. A Gaussian process is typically expressed as,

f(x) = GP(m(x), k(xi,xj) (2.16)

m is a function which returns the mean of its input, and k(xi,xj) represents the covariance or
kernel function.

m(x) = E[f(x)] (2.17)

k(xi,xj) = E[(f(xi)−m(xi))(f(xj)−m(xj))] (2.18)

The Gaussian process model is a distribution over functions and determined by its mean and
covariance. The smoothness of the function is defined by the covariance [57]. If xi and xj are
regarded as close in value by the covariance function in Equation 2.18, then the outputs f(xi) and
f(xj) will be similar. There are different forms of covariance functions k(xi,xj) that can be utilized
in the Gaussian process. The radial basis function (RBF) is often used to model the covariance
function and will be described more in detail at the end of this section. The prior m(x) is often set
to zero to make computation cheaper and to only do interference based on the covariance function.
This assumes that the data is normalized to a zero mean. To achieve this empirically, the mean
of the observations is subtracted from the observations[46]. An illustration of a Gaussian process
regression is given in Figure 2.12. The green points represent the observed data X = [x1,..., xn]
and X = [x1,..., xn]. The blue line represents the mean function estimated by the Gaussian process
given the observed points. New predictions can be made at new points X∗ and will lie on the the
blue line f(X∗) =f∗.
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Figure 2.12: The figure illustrates a Gaussian process. The dashed, green line represents the true
function. The green points represents the observed points and the blue line represent ts the

predicted function. The blue shaded area around the blue line represents the uncertainty of the
blue line.

The joint distribution of f and f∗ can be written as,[
f
f∗

]
∼ N (

[
m(X)
m(X∗)

]
,

[
K K∗

K∗
T K∗∗

]
) (2.19)

Here, K = k(X,X),K = k(X,X∗) andK∗∗= k(X∗,X∗) and (m(X), m(X∗)) =(0,0). The probability
density distribution can can be written in a more compressed form,

P (f , f∗ | X,X∗) (2.20)

The next step is to express the conditional distribution. In other words, what is the probability
that f∗ is observed given f?

P (f∗ | f ,X,X∗) (2.21)

The derivation of the conditional distribution of two jointly Gaussian random variables is given
in section A.1 in Appendix A. The conditional distribution can be expressed as follows,

f∗ | f ,X,X∗ ∼ N (f̄∗, σ̄
2
f∗) (2.22)
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where f̄∗ and σ̄2
f∗

are given as,

f̄∗ = m(X∗) +K∗K
−1(f −m(X))

= K∗K
−1f

(2.23)

σ̄2
f∗ = K∗∗ −K∗

TK−1K∗ (2.24)

Note (m(X), m(X∗)) =(0,0). This is assuming there is no noise present in observed data. However,
more realistically, the observed data will most likely be somewhat noisy. Therefore, the observed
value will be y = f i + ϵi where ϵi ∼ N (0,σ2

n). Assuming that ϵi are independent, identically
distributed (i.i.d) Gaussian distributions, the prior of the noisy distributions will be,

y ∼ N (0,K+ Iσ2
n) (2.25)

The joint distribution then becomes,[
y
f∗

]
∼ N (0,

[
K+ Iσ2

n K∗
K∗

T K∗∗

]
) (2.26)

Thus, the conditional distribution can be expressed as,

f∗ | y,X,X∗ ∼ N (f̄∗, σ̄
2
f∗) (2.27)

where f̄∗ and σ̄2
f∗

are given as,

f̄∗
∆
= E[f̄∗ | y,X,X∗]

= K∗(K− Iσ2
n)y

(2.28)

σ̄2
f∗ = K∗∗ −K∗

T (K− Iσ2
n)

−1K∗ (2.29)

There are different functions that can be used to express k(xi,xj). The most common one and
often used in hyper parameter tuning is the radial basis function (RBF) given as,

k(xi,xj) = σ2
fexp(−

1

2
(xi − xj)

TM−1(xi − xj)) (2.30)

where M =

[
l2 0
0 l2

]
. In the RBF function there are two parameters that can take on different

values, σ2
f and l. σ2

f is signal noise and it can be thought of as how much the predicted function
can vary vertically. l is the length scale and it can informally be thought of as quickly the function
can change significantly between two points [43]. This effect can be seen visually: If l is high, then
it will give a smoother function. If l is small, it will give a wigglier function.
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2.4 Existing CNN model and performance

2.4.1 Datasets used in the model development

There are two main dataset used in developing the final framework in this research. The data
set used to create the CNN model is obtained through simulations and is referred to as ether the
simulated dataset. The second data set is obtained from a series of experiments produced in the
laboratory of Bayer AG in Leverkusen. The generation of these datasets is out of the scope of this
research, but a description of both datasets will be provided below.

Simulated dataset

The simulated dataset is based on simulations of needle-like particles that can be approximated as
square-based prisms. An illustration is provided in Figure 2.13.

Figure 2.13: Approximation of a needle-like crystal as a square-based prism.

Since it is assumed that both sides of the base of the crystals are of the same length, the
simulated PSDs are 2D distributions made by generating a large number of 2-D crystals with
width L1 and length L2. The width L1 is drawn from a normal distribution and L2 is obtained by
multiplying L1 by the aspect ratio (AR). The AR is set to greater than 1 to obtain needle shaped
crystal representations. The 2D PSD is then obtained by arranging the crystal representations in
a histogram. The bins on the x-axis represent L1 and the bind on the y-axis represents L2. The
probability density is plotted on the z-axis. The discretization grid is set to 30x300 i.e L1 will be
sorted into 30 bins and L2 will be sorted into 300 bins. L1, L2 and the probability density will
be saved in a tensor in addition to ∆ L1, ∆ L2 which are the difference between the midpoint of
two consecutive bins. The resulting tensor describing the PSD will have a dimension of 30x300x5
for each sample, where 5 represents the five channels L1, L2, the probability density, ∆ L1 and ∆
L2. The corresponding CLDs are approximated with a geometric model. An algorithm creates a
polytope based on the two lengths, L1 and L2 for each crystal representation in the PSD tensor.
Each polytope is subjected to a series of rotations and then the projection of the polytope is
calculated. The projection represents the laser intersecting a crystal to imitate the measurement
of the FBRM probe. The length of a projection will be represent the chord length. When the
algorithm has successfully iterated through all possible combinations of L1 and L2 in the PSD, the
measured chord lengths are combined in a chord length distribution by sorting the chord lengths
in a histogram with 100 bins ranging from 0.1 µm to 1000 µm. A visualisation of a simulated PSD
and the corresponding simulated CLD is presented Figure 2.14.
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(a) PSD (b) CLD

Figure 2.14: The PSD and the corresponding CLD of sample 100.

Experimental dataset

Three different active ingredients were used to generate the dataset of 26 experiments in total.
The active ingredients will be referred to as AI1, AI2 and AI3. AI1 is the most stable form of
D-mannitol produced by Sigma Aldrich. AI2 and AI3 are two active ingredients chosen from the
Bayer AG portfolio and are of interests for the agrochemical and pharmaceutical divisions. AI2
and AI3 were produced in Leverkusen according to the standard recipes of the patented Bayer
processes. All the active ingredients have needle-like and rod-like shapes. A good approximation
to describe these shapes, is as squared-based shapes. The aspect ratio (AR) is defined as the ratio
between the smallest side, L1 to the longest side, L2, of the prism. For needle-like shapes, the aspect
ratio is greater than 1. In these experiments, the aspect ratio was ranging from 1.1 to 18. Two
parameters were varied during each experiment: the stirring rate in revolutions per minute (RPM)
and the mass suspension density. The stirring rate varied from 200 to 600 RPM and the suspension
density varied from 1%wt to 9 %wt. The list of experiments carried out for each active ingredient
and the corresponding experimental conditions is summarized in Table A.1. Two different solvents
were used for the active ingredients, thus the systems had slightly different diffraction indices. AI1
was suspended in acetone, whereas AI2 and AI3 were suspended in water. The experiments were
carried out in constant temperarture (300K) in a 500 mL unbaffeled glass reactor with a 4 blade
impeller. The suspension volume for each experiment was 450 mL. The chord length distribution
associated with each system were measured with a Focused Beam Reflectance Measurement device.
The device was a ParticleTrack G400 from Mettler Toledo[54]. The FBRM probe is inserted directly
into the suspension at an angle which allows the particles to flow past the probe window with ease.
A focused laser beam passes through this sapphire window and the detector in the probe detects
the backscattered light produced by the individual particles sizes and structures[53]. The duration
of each signal detected is multiplied by the scan speed and the resulting measurement is defined as
the chord length. The measured chord lengths can be presented in a histogram ie. a chord length
distribution (CLD). Each CLD measurement of each set of experimental conditions was measured
for 30 minutes with a sampling rate of 10 seconds.

In order to measure the particle size distribution (PSD) of the active ingredient in each system,
a QicPic device was used. The device was QicPic L02 from Sympatec [49]. The device uses an
image analysis technique and operates in a similar way to a modern microscope. It is able to
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capture physical properties of each single particle by capturing with special optics the particles in
the frame. The information about the particles physical properties is interpreted by an evaluation
software which then presents the information in a PSD[50]. Around 500, 000 individual particles
were used to determine each PSD. The minimum resolution of the QicPic device was set to 0.5
µm and the minimum particle size was set to 1.0 µm. The PSDs were measured after each FBRM
measurement to eliminate the possibility of breakage during the measurement. The PSD information
for the 26 experiments were saved with the dimensions 30x300 with five channels i.e in a tensor of
shape 26x30x300x5. The five channels are L1, L, PSD value, ∆ L1, ∆ L2. A visualisation of the
measured PSD of sample 1 and the corresponding measured CLD is presented in Figure 2.15.

(a) PSD (b) CLD

Figure 2.15: The PSD and the corresponding CLD of sample 1.

2.4.2 Network architecture

The CNN model and subsequent models in this research were developed in Python 3.7. The neural
network models were largely constructed with the TensorFlow library, version 2.9.1. The remaining
packages and libraries used in this research are listed Table A.2 in Appendix A. In Table 2.1 the
main components of the CNN architecture are presented. Some hyperparameters are marked as
’Tunable’ which means that the optimal value will be decided from the Bayesian optimization. An
illustration of the structure is given in Figure 2.16.

The input to the CNN model is a PSD tensor with dimensions 30x300x5. As illustrated in
Figure 2.16, the CNN model architecture consist three main blocks consisting of a stack of con-
volutional layers, a max pooling layer and a dropout layer. The number of convolutional layers
stacked in each block and the dropout rate in the dropout layers are tunable hyperparameters. The
dimensions of the kernel performing the convolutional operation and the kernel performing the max
pooling operation are given in Table 2.1. The padding in the convolutional operation and in the
max pooling operation are both set to zero-padding to avoid shrinkage of the feature map. Between
the convolutional layers and the max pooling layer there is an activation function which is also a
tunable hyperparameter. After passing through these three main blocks, the feature map tensor
is flattened to a 1-D vector and passed to a dense layer consisting of 100 nodes. There is a linear
activation function after the dense layer which produces the output of 100 bins representing the
CLD. The loss function used in the training is the mean squared error and the optimizer is set to
Adam. The learning rate for this optimizer is a tunable hyperparameter. The next step is to tune
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Table 2.1: The table list the main components of the CNN model.

Element in network Number Kernel dimension/rate

Input image 1 -
Convolutional layers Tunable 5x5
Max pooling layer 1 2x2
Dropout layer 1 Tunable
Convolutional layers Tunable 3x3
Max pooling layer 1 2x2
Dropout layer 1 Tunable
Convolutional layers Tunable 3x3
Max pooling layer 1 2x2
Dropout layer 1 Tunable
Flattening layer 1 -
Dense layer 1 100

the unknown hyperparamters to obtain the final architecture of the CNN model. The Bayesian
optimization was run with 25 iterations and the number of epochs in the CNN model was set to
200. Each hyperparameter to be tuned in the optimization was assigned a given range of possible
values or belonging to a specific category. The parameters tuned in the optimization and their
individual bounds or categories are given in Table 2.2,

Table 2.2: The table shows the possible ranges or categories for the different hyperparameters
tuned in the Bayesian optimization.

Hyperparameter Possible values/category Initial values/category

Learning rate 0.0005-0.01 0.001
Drop out rate 0.0-0.3 0.0

Activation function ReLu, tanh tanh
Number of layers block 1 10-18 16
Number of layers block 2 24-40 32
Number of layers block 3 48-68 64

The progress of the Baysian optimization throughout the iterations is given in Figure A.1 in Ap-
pendix A. The hyperparamters with the best score in the Bayesian optimization after 25 iterations
are given in Table 2.3.
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Figure 2.16: Simple schematic illustration of the existing CNN architecture.

Table 2.3: The table shows the optimal hyperparamters after the optimization.

Hyperparameter Value/category

Learning rate 0.001
Drop out rate 0.0

Activation function tanh
Number of layers block 1 16
Number of layers block 2 32
Number of layers block 3 64

With the optimal hyperparameters found, the next step is to train the CNN model with this
final architecture. The network was trained and the number of epochs was set to 400.

2.4.3 Performance of network

The training and the validation loss of the best epoch is given in Table 2.4,

Table 2.4: The training and validation mean absolute error of the best epoch.

Error Value

Training 4.8859e-05
Validation 4.6222e-05

The training loss and the validation loss across all the epochs are given in Appendix A in
Figure A.2. To assess the performance of the CNN model, some samples from the simulated and
experimental dataset are plotted next.
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Performance with simulated data

In Figure 2.17 some samples of the validation dataset are plotted. Two lines are plotted: The blue
line shows the untouched CLD and the purple line shows the prediction of the CLD by the CNN
model. It is labeled GCLD because the CLDs in the simulated dataset used to train the CNN
model are modeled with a geometric model. For the remaining part of this thesis, the prediction of
the CNN will be referred to as a GCLD.

(a) Sample 100 (b) Sample 500

(c) Sample 900 (d) Sample 1300
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(e) Sample 1700 (f) Sample 2200

Figure 2.17: The subfigures display the untouched simulated CLD and the predicted GCLD for a
selection of samples.

Performance with experimental data

In Figure 2.18 the some samples of the experimental dataset are plotted. Two lines are plotted: The
blue line shows the untouched experimental CLD and the purple line shows the predicted GCLD.

(a) Sample 0: RPM is 200
and suspension density is 1%wt.

(b) Sample 5: RPM is 600
and suspension density is 3%wt.

28



(c) Sample 10: RPM is 400
and suspension density is 1%wt.

(d) Sample 15: RPM is 200
and suspension density is 9%wt.

(e) Sample 20: RPM is 200
and suspension density is 3%wt.

(f) Sample 25: RPM is 600
and suspension density is 9%wt.

Figure 2.18: The subfigures display the untouched experimental CLD and the predicted GCLD
for a selection of samples.

2.4.4 Model evaluation and discussion

In Figure 2.17 some samples of the validation set of the simulated data are plotted. The CNN
model is largely able to predict the general shape of the CLDs, however all the predicted GCLDs
display some non-smooth behavior: The GCLDs seem to exhibit spurious tails where the distribu-
tions should be close to zero. This indicates that the convolutional operations through the layers
ultimately activates some of the nodes in the dense layer due to prediction error, thus produc-
ing somewhat noisy predictions. In addition, all the GCLDs except for sample 900 show negative
predicted values. The y-axis represents the chord length probability and thus negative values are
theoretically not feasible. The Bayesian optimization found that a drop out rate of 0.0 was optimal,
which is an indication that the model is not overfitted. If it was, the drop out rate would probably
be higher as it is a tool implemented to combat overfitting. Furthermore, in table Table 2.4 the
training and validation error are given. The table shows that the validation error is lower than
the training error. This difference in error is true for all epochs after around 50 epochs and can
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be seen in Figure A.2 in Appendix A. This is an indication that the network may be underfitted
as the validation set performs better than the training set. One way to remedy this could be to
expand the dataset or to change the network architecture to a deeper structure. Another option is
to perform a dimensionality reduction such that the mapping of the input data to the output data
is simpler.

In Figure 2.18 some samples of the experimental data set are plotted. By inspection of these
samples, it is clear that the CNN model fails to predict the GCLDs and thus fails to provide
any useful information from the experimental data. This indicates that the assumption about the
datasets being relatively similar may not hold. Consequently, the CNN model is not able to extract
the important features of the input data and map them to the right output. Furthermore,there
seem be no correlation between the prediction and the respective experimental conditions for each
sample. Higher or lower values of the stirring rate or mass suspension data yield neither better
nor worse predictions. Although, this may change if the CNN mapping is improved, as not much
can be interpreted from these samples. However, there seem to be a correlation between the active
ingredient of each sample and the CNN prediction. There are three similar patterns of the predicted
GCLDs. The CNN model produce similar predictions for the pairs made up of Sample 0 and 5,
10 and 15, and 20 and 25. The samples in these three pairs have the same active ingredients AI1,
AI2 and AI3 respectively. A summary of the experiments is given Table A.1 in Appendix A. This
indicates the samples with the same active ingredients have similar PSDs and are mapped to the
same shape by the CNN model.

Moreover, the final structure of the CNN model is defined by its hyperparameters. The hy-
perparameters are tuned with the Bayesian optimization. The Bayesian optimization is a efficient
approach to search through a myriad of possible combinations of hyperparameters. Although the
tuning will return an optimal set of hyperparameters, it cannot not guarantee that this is the uni-
versally best set possible. This is one limitation of the Baysian optimization, because the final result
will invariably be a product of the available dataset, the possible ranges set for each hyperparamters
and the number of iterations of the tuning.

2.4.5 Conclusion and the next steps

The CNN model was developed to map PSDs to CLDs and was trained with a simulated dataset.
The model was able to predict CLDs reasonably well with the simulated dataset, that is, it was able
to predict the general shape of the CLDs. However, there is still much room for improvement of
the model: The predicted CLDs were not smooth and had negative values which are theoretically
impossible. Overall, the model is somewhat successful in the overarching objective, however it
needs some refinement to accurately do this mapping with simulated data. When the model was
tested with experimental data, it failed to predict the CLDs. The CNN model is also not able to
distinguish between samples of different experimental conditions and maps the ones with the same
active ingredient to the same shape.

The next step in the development of this model is to be able to adapt it to make good predictions
with experimental data. One approach would be to generate more experimental or simulated
datasets with which to train the model. Generating more experimental and simulated data can be
time consuming and expensive, in addition to possibly being difficult to generate simulated data
that imitates experimental data accurately enough. The next chapter will present an alternative
approach to create a model framework that can make good predictions even if the experimental
dataset is sparse.
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Chapter 3

Adapting to experimental data

In the previous chapter, it was seen that the CNN model performs satisfactory with simulated data,
but fails to make predictions for the experimental dataset. This implies that the datset may be
too different for the CNN model to be able to accurately interpret the important features in the
experimental dataset. A simple solution would be to train the CNN model with a larger experi-
mental dataset or attempt generate more simulated data which is more similar to the experimental
data. However, this may be time consuming or financially or computationally expensive. Also,
there is no guarantee that the experimental data can be imitated by simulations accurately enough.
The following approach attempts to adapt the developed framework to make good predictions with
experimental data. In order to do this, a correction layer is implemented which also takes in ex-
perimental conditions which may be affecting the measured distributions. Since the experimental
data is in the low data regime, a dimensional reduction of the CLDs is performed. This provides
a simpler mapping for the correction layer but also a simpler mapping for the CNN model and
a faster training. A Gaussian process regression model is implemented to serve as the correction
layer and an autoencoder is implemented to perform the dimensionality reduction. In this chapter,
these concepts are be explained, however most of the essential element are based on theory intro-
duced in chapter 2. The implementation and the performance of the dimensionality reduction are
assessed first, then the results and evaluation of the correction layer and the resulting framework
are assessed.
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3.1 Dimensionality reduction

A dimensionality reduction of the CLDs was implemented for two main reasons. The experimental
data available is the low data regime, therefore if the regression is performed in a space with lower
dimensionality it will provide a simpler mapping: Trying to fit a well performing regression model
with 100 parameters is much harder (if even possible with 26 datasets) than fitting a model with 10
or 5 parameters. It also requires less computational power. Secondly, reducing the dimensionality
of the problem also allows for a faster training and simpler mapping for the convolutional neural
network. The ideal dimensionality reduction is able to compress and reconstruct the original input
with minimal loss of information. There are several approaches typically found in literature. For
example, in the reviewed literature in the introduction, one approach to dimensionality reduction
was to reduce the CLD to its moments. However, the ability to do this heavily depends on the nature
of the distribution, and the is no guarantee, in fact, highly unlikely that all CLDs can be reduced
to their moments. Another approach is principal component analysis (PCA), which reduces a high
dimensional input space into a space where the maximal variance is displayed[4]. PCA has been
frequently used in literature for dimensionality reduction tasks, but since it is essentially a linear
transformation it will most likely struggle to reconstruct data with more complex features. In order
to ensure that most CLDs regardless of its shape and possible complex features could be compressed
and reconstructed, an autoencoder(AE) was implemented to perform the dimensionlity reduction in
this research. An AE is a type of neural network with several possible applications. AE are typically
used reduce dimentionality, noise reduction, feature extraction and image compression[7]. Since
most of the terminology regarding neural networks has already been defined in section 2.1 and it will
not be repeated here. In the next section, the general idea behind the autoencoder is be explained.
The autoencoder is then added to the existing framework. With this new addition, the performance
of the convolutional neural network is be evaluated before moving on to the implementation of the
correction layer.

3.1.1 Autoencoder

An autoencoder(AE) is a type of neural network that consist of two main parts: an encoder and a
decoder. The encoder takes in an input, reduces it to what is called a latent space (latent means
hidden). The decoder takes in the output of the encoder, ie. the input reduced to the latent space,
and attempts to reconstruct the original input. Structurally, an AE is a feed forward neural network
that is made up of an input layer, hidden layers and an output layer. If an AE has more hidden
layers, it is called a deep AE. With this stacked structure, the AE is able to capture more complex
and non-linearity of features in the input data[30].
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Figure 3.1: Illustration of a deep autoencoder showing the encoder, latent space and the decoder.

In Figure 3.1 an illustration of a deep AE is given. The pink part of the structure makes up
the encoder and the green part makes up the decoder. The structure consists of one input layer,
three hidden layers on each side of the latent space, and one output layer. An AE can also be
build using convolutional layers as hidden layers. In this case, a flattening layer is needed after
the last convolutional layer. The latent space in the middle of the encoder and decoder, holds the
input data encoded in the reduced space. Mathematically, the output of the autoencoder can be
expressed as

x̂ = g(f(x)) (3.1)

where f(x) represents the encoder function and g(f(x)) represents the decoder function [2]. Between
the layers, there is an activation function to introduce non-linearity to the structure. When the
autoencoder is trained, the input data and the output data are the same dataset since the AE is
trying to reconstruct the original input. The objective of the training of the AE is to reduce the
reconstruction error. The ideal AE exhibits two ideal characteristics: the training error is low such
that it is able to reconstruct the input data accurately and it is not be too overfitted such that it
simply memorizes the data [28]. In order to avoid overfitting, regularization or drop out layers can
be added to introduce some noise in the data.

3.1.2 Structure

The autoencoder was build with the structure given in Table 3.1 and illustration is given in Fig-
ure 3.2. The dimension of the latent space must be chosen such that it is a trade-off between low
dimensionlity such that it is an effective dimensionality reduction tool, but not too low such that
too much information is lost to be able to accurately reconstruct the original input. The chosen
dimension of the latent space was 5. The structure of the encoder is made up of an input layer
with 100 nodes and then two dense layers, which first reduces the dimensionality to 25 nodes, then
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to 5. The decoder consist of a dense layer of 5 nodes, then another dense layer of 25 and lastly an
output layer of 100 nodes. Between each dense layer a tanh activation function was used except
for the last layer. The last layer has a sigmoid activation function which maps the input to a real
number between 0 to 1. This is done such that the output of the AE can be interpreted as pixels.

Table 3.1: The table shows the network architecture of the autoencoder.

Typer of layer Nodes Activation function

Input layer 100 -
Dense layer 25 tanh
Dense layer 5 tanh

Latent space
Dense layer 5 tanh
Dense layer 25 sigmoid
Output layer 100 -

In addition, ℓ2 regularization layer was added after the first and the second dense layer. ℓ2 was
chosen over ℓ1 since ℓ2 is more suited for complex data patters as found in distributions. ADAM
was chosen as the optimizer and the loss function was set to mean squared error.

Figure 3.2: Illustration of the final structure of the autoencoder.

In addition, more simulated CLDs were generated to train the autoencoder. The simulated
CLDs were generated from gamma distributions resembling the experimental CLDs. This was
accomplished by generating 6400 different gamma distributions. Some samples of the gamma
distributions and the experimental CLDs are given in Figure 3.3.
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(a) Some samples of the experimental CLDs
(b) Some samples of the gamma distributions

imitating the experimental CLDs.

Figure 3.3: The decoded predictions, the decoded original data and the original data plotted

An augmented data set was constructed from the gamma distributions and CLDs from the
simulated dataset. The autoencoder was trained with the augmented dataset with a 80-20 data
split. The number of epochs were set to 1500.

3.1.3 Autoencoder performance

The final training and validation loss in training of the autoencoder are given in Table 3.2.

Table 3.2: The final training and validation loss

Training loss Validation loss
1.4966e-6 1.5723e-6

The training loss and the validation loss across all the epochs are given in Appendix B in Fig-
ure B.1. To assess the performance of the autoencoder with both simulated data and experimental
data, some samples from each dataset are plotted below.

Simulated data

In Figure 3.5 the reconstruction ability of the autoencoder with simulated data is displayed. The
simulated CLD and its encoded and decoded version is presented in each subfigure.
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(a) Sample 200 (b) Sample 700

(c) Sample 1500 (d) Sample 2000

(e) Sample 3000 (f) Sample 4000

Figure 3.4: The figure shows samples of the simulated CLDs and simulated CLDs that have been
encoded and decoded.

Experimental data

In Figure 3.4 the reconstruction ability of the autoencoder with experimental data is displayed.
The experimental CLD and its encoded and decoded version is presented in each subfigure.
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(a) Sample 0: RPM is 200
and suspension density is 1%wt.

(b) Sample 10: RPM is 600
and suspension density is 3%wt.

(c) Sample 10: RPM is 400
and suspension density is 1%wt.

(d) Sample 15: RPM is 200
and suspension density is 9%wt.

(e) Sample 20: RPM is 200
and suspension density is 3%wt.

(f) Sample 25: RPM is 600
and suspension density is 9%wt.

Figure 3.5: The figure shows samples of the experimental CLDs and experimental CLDs that have
been encoded and decoded.
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3.1.4 CNN model with CLDs in the latent space

After the training, the autoencoder was obtained consisting of an encoder and decoder part. Sub-
sequently, the CLDs from the simulated dataset were encoded by passing the data to the encoder.
The simulated dataset now consist of the PSD as input and the latent space CLDs as output.
Consequently, the last dense layer in the CNN model, needs to be changed from 100 nodes to 5.
Since the dataset and the CNN structure are now different, the hyperparameters of CNN needs to
be re-tuned. The Bayesian optimization was therefore performed to obtain the new set of hyper-
parameters of the CNN model. The tuning was done with a 80-20 training split. The Bayesian
optimization was run with 25 iterations and the number of epochs in the CNN model was set to
200. As before, each hyperparameter to be tuned in the optimization, was assigned a given range of
possible values or belonging to a specific category. The bounds on the individual hyperparameter
are given in Table 3.3

Table 3.3: The table shows the possible ranges or categories for the different hyperparameters
tuned in the Bayesian optimization.

Hyperparameter Possible values/category Initial values/category

Learning rate 0.0005-0.01 0.001
Drop out rate 0.0-0.3 0.0

Activation function ReLu, tanh tanh
Number of layers block 1 10-18 16
Number of layers block 2 24-40 32
Number of layers block 3 48-68 64

The set of hyperparameters yielding the best score in the Bayesian optimization is given in
Table 3.4. The scores of all the iterations of the tuning are given in Appendix B in Figure B.2.

Table 3.4: The table shows the optimal hyperparamters after the optimization.

Hyperparameter Value/category

Learning rate 0.001
Drop out rate 0.0

Activation function tanh
Number of layers block 1 16
Number of layers block 2 32
Number of layers block 3 64

When the optimal hyperparametrs were found, the CNN was trained with these hyperparame-
ters. The simulated dataset was randomly split into a training set and a validation set with a 80/20
split. The model was trained with 200 epochs.
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3.1.5 Performance of final CNN model

Table 3.5: CNN training loss

Training loss Validation loss
3.5018e-5 3.5492e-5

The training loss and the validation loss across all the epochs are given in Appendix B in Figure B.3.
The performance of the CNN model will be presented in the figures below, both with the simulated
data and then with the experimental data.

Simulated data

In Figure 3.6 the some samples of the validation dataset are plotted. Three lines are plotted: The
blue line shows the untouched CLD, the green line shows the encoded and decoded CLD and the
purple line shows the decoded GCLD. As before, output of the CNN prediction is denoted GCLD
as the CLDs in the dataset used to train the CNN model are generated from a geometric model.
The experimental CLD and its encoded and decoded version is presented in each subfigure.

(a) Sample 0 (b) Sample 500

(c) Sample 800 (d) Sample 1500
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(e) Sample 1700 (f) Sample 2000

Figure 3.6: The decoded predictions, the decoded original data and the original data plotted

Experimental data

In Figure 3.7 the some samples of the experimental dataset are plotted. Three lines are plotted:
The blue line shows the untouched experimental CLD, the green line represents the encoded and
decoded experimental CLD and the purple line shows the decoded GCLD.

(a) Sample 0: RPM is 200
and suspension density is 1 % wt

(b) Sample 5: RPM is 600
and suspension density is 3% wt
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(c) Sample 10: RPM is 400
and suspension density is 1% wt

(d) Sample 15: RPM is 200
and suspension density is 9% wt

(e) Sample 20: RPM is 200
and suspension density is 3% wt

(f) Sample 25: RPM is 600
and suspension density is 9% wt

Figure 3.7: The untouched experimental CLD and the decoded GCLD.

3.1.6 Discussion

The performance of the autoencoder was presented in subsection 3.1.3 and the performance of the
subsequent reduced space CNN model was presented in subsection 3.1.4. The first part of this
discussion will evaluate the performance of the autoencoder and the second part will evaluate the
impact of the dimensionality reduction on the performance of the CNN model.

The performance of the autoencoder is displayed by plotting a selection of samples in Figure 3.4
and Figure 3.5. In Figure 3.4 the reconstruction ability of the AE with a selection of validation
samples from the simulated data is shown. The blue line is the untouched CLD and the green line is
the result of encoding the CLD and subsequently decoding the output of the encoder. The autoen-
coder is able to perform the reconstruction well without significant loss of information. Moving on
to Figure 3.5, in which the performance with of experimental data is presented. The autoencoder
is able to reconstruct the experimental CLDs without much information loss. This result demon-
strates the robustness of the autoencoder: It is able to produce strong results even if it has never
seen CLDs from the experimental dataset. Also, this illustrates that enriching the dataset with
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simulated data similar to the experimental dataset can be an effective way to boost performance if
the data can be readily generated.

Since the AE proves to perform satisfactory as a dimensionality reduction tool, it could be
applied to reduce the dimensionality of the problem. The CLDs in the simulated dataset were
reduced to the latent space and the model was trained again with the hyperparameters obtained
from the Bayesian optimization. The performance of the CNN model with some validation samples
from the simulated dataset is given in Figure 3.6. There are three lines are plotted in each subplot:
The blue line is the untouched CLD, the green line is the encoded and decoded CLD and the red
line is the decoded GCLD i.e the decoded prediction of the CNN model. These plots show a major
improvement in performance compared to the previous model without the dimensional reduction
shown in Figure 2.17. Strikingly, the decoded GCLDs are able to almost perfectly capture the shape
of the untouched simulated CLD. Furthermore, the turbulent nature of the previous GCLDs is gone
and the model does not predict negative values. This suggests that implementing the autoencoder
aided in two aspects: Model accuracy and noise reduction. Evidently, a simpler mapping of a
PSD to a latent space CLD results in a better fitted model. Furthermore, the optimal drop out
rate from the Bayesian optimization was 0.0. Again, this is an indication that the model was
not overfitted. The dropout rate would probably be higher if the CNN was prone to overfitting.
In addition, the training in Table 3.5 is slightly lower than the validation error and is persistent
across epochs as shown in Figure B.3 in Appendix B. Thus there is no indication that the model
was underfitted, in fact, the CNN model seems to be very well fitted to the data. Furthermore,
a common application of autoencoders is as noise reduction tools. After the implementation of
the autoencoder, the turbulent nature present in the previous model seems to have disappeared.
Since the predicted GCLD is in the latent space, possible noise in the prediction is more likely to
disappear as the prediction is forced into five possible outputs instead of a 100. Therefore, only
the most important features will be extracted and smaller signals will be neglected. If there was
no error present in Figure 3.6, all the plotted lines would be the same. The discrepancy between
the lines stems from two possible sources: Error due to information loss from the dimensionality
reduction and prediction error from the CNN model. If the decoded GCLD (purple line) and the
encoded and decoded CLD (green line) are similar, but differ from the untouched CLD (blue line),
the error is from the encoding/decoding operation. In other words, the CNN model is able to make
a good prediction, but the decoder is not able to perfectly reconstruct the CLD. This can be seen
in sample 1700 in Figure 3.6. If the discrepancy is caused by prediction error however, then the
green and the blue line will coincide and the purple line will differ from the two. In this situation,
the autoencoder is able to perfectly reconstruct the CLD: the encoded and decoded CLD (green
line) is the same as the untouched CLD (blue line). The error of the decoded GCLD (purple line)
must thus be introduced from the prediction. Error due to prediction is present in sample 1500 in
Figure 3.6. Lastly, the discrepancy between the untouched CLD (blue line) and decoded GCLD
(purple line) can be due to error introduced from both sources. In this case, the decoded GCLD
(purple line) and the encoded and decoded CLD (green line) will be different from each other, in
addition to both being different from the untouched CLD (blue line). Error from both sources is
seen in sample 500 in Figure 3.6.

The performance of the CNN model with a selection of experimental data is given in Figure 3.7.
Three lines are plotted: The untouched experimental CLD (blue line), the encoded and decoded
experimental CLD (green line) and the decoded GCLD (purple line). These plots indicate that the
model largely fails to predict the CLDs from the experimental data. The same pattern as found in
the performance of the previous model is observed here too: There are three pairs, sample 0 and 5,
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10 and 15, and 20 and 25 that have almost indistinguishable distribution shapes. The samples in
these pairs are made with the same active ingredients. This is an indication that the experimental
data differs too much from the simulated data used to train the model. Thus, the samples with the
same active ingredient and similar PSD, are mapped to the same, wrong shape. The discrepancy
between the untouched CLD (blue line) and the decoded GCLD (purple line) is almost solely due
to prediction error of the CNN. This can be seen from the figure as the encoded and decoded CLD
(green line) is almost identical to the untouched experimental CLD (blue line). Even though the
CNN model largely fails to predict the CLD from the experimental data, it still performs better
than the previous model. The previous model was not able to predict any coherent patters as seen
in Figure 2.18. This model however, is somewhat able to capture the general shape of the samples
with the active ingredient AI2 that, is sample 10 and 15. This may indicate that the data with AI2
samples is more similar to the stimulated data used to train the CNN model. To investigate this,
the performance of the network with the samples with AI2 are plotted in Figure B.4, Figure B.5 and
Figure B.6 in Appendix B. As seen in these figures, the CNNmodel is able to produce relatively good
predictions for the GCLDs in Figure B.4 for the samples with 1 wt% suspension density. A possible
explanation for this behavior may be assigned to the observation that high suspension densities
have been identified as a possible limiting factor of the FBRM probe[23]. However, given the data
available there is not enough evidence to establish this connection. This can only be interpreted as
an indication for possible instrument limitation and is something that can be investigated further.

3.1.7 Conclusion

An autoencoder was implemented as a dimensionality reduction tool. The AE was successful in
serving this purpose and was able to reconstruct CLDs from the both the simulated and experi-
mental dataset with relative ease. As a result, this allowed the dimensionality of the problem to be
reduced. Consequently, this lead a simpler mapping for the CNN model and it was able to make
better predictions for both the simulated and experimental data set. For the experimental data set
however, the predictions are still far from satisfactory and the overall framework needs to be al-
tered to support the experimental data. The CNN model performance can most likely be improved
with an augmented dataset, simulated or experimental, to make better predictions. However, as
generating more data, stimulated or experimental, may be time consuming or financially/compu-
tationally expensive, another approach is discussed in the next section for the implementation of
the correction layer.
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3.2 Correction layer

The CNN model was trained with the simulated data. The aim of adding a correction layer was
to achieve a framework that is able to predict CLDs from experimental data. The underlying
hypothesis was that the simulated datset and the experimental dataset may not be not similar
enough or influenced by experimental conditions such that the CNN would not be able to make
accurate predictions on it own. As seen in the previous section, this hypothesis proved to be true.
The CNN was not able to readily predict the CLD from the experimental data. Thus in order
to correct for this for this, a correction layer was added. The correction layer also takes in two
experimental parameters, the stirring rate and the mass suspension density, to account for different
experimental conditions that may influence the final measurements. High suspension density is
known to affect the readings of the FBRM probe [23]. At higher suspension densities, there will
be many particles in the laser path. This can affect the readings as it creates multiple deviations
to the light beam before it reaches the detector in the FBRM probe[22]. The effect of stirring
rate have shown to have effect on particle count by the FBRM probe. Low stir speed increases the
probability of settling of crystals in the system, thus reducing the particle count[61]. An illustration
of the desired mapping by the correction layer is given in Figure 3.8. The correction layer model
will be calibrated with a selection of samples of the experimental dataset. First, the PSDs will be
the input to the CNN model to obtain a predicted CLD representation. This prediction, {X1, X2,
X3, X4, X5}, will serve as the input to the correction later in addition to the stirring rate (RPM)
and suspension density in the given experiment. The output {Y1, Y2, Y3, Y4, Y5} represents the
encoded experimental CLD of the respective experiment. By fitting this correction layer with a
selection of the experimental samples, the ideal model is able to make accurate predictions with
the validation set. Subsequently, the output can be decoded to the full space CLD predictions.

Figure 3.8: An illustration of the correction layer mapping.

A correction layer can be build with a regression model. There is a main divide between
parametric and non-parametric regression models. Parametric regression models have an assumed
form. In other words, the model has a set of fixed parameters that need to be fitted to the data [36].
Therefore, performance of such models heavily depends on the chosen function form and if the data
exhibit this assumed relationship. Typical parametric regression models are linear, non-linear and
logarithmic regression models. However, since the underlying relationship of the data is unknown,
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an efficient parametric regression models may be hard to find. Moreover, the experimental data is
in the low data regime, which can prove the fitting challenging (if even possible) as a larger data
set is usually required. Therefore, a non-parametric regression model might be the better option.
Non-parametric models do not require a fixed form to be specified a priori, but is determined by
the dataset [36]. Neural networks and Gaussian processes fall into this category. As it is hard to
determine the relationship of the mapping of the correction layer, a non-parametric regression model
was chosen for this research. One possible option would involve building a second neural network to
do the mapping. However, due to the lack of data available this option will probably lead to poor
performance. Thus, to serve as the correction layer, a Gaussian process regression(GPR) model
was selected. GPR does not require knowledge about the underlying relationship and works well
in the low data regime. The fundamental idea behind a Gaussian process regression was explained
in subsection 2.3.2. The next section will therefore not repeat the theory presented in the previous
section, but briefly explain how the GPR model described in subsection 2.3.2 can also be extended
to multi-output models.

3.2.1 Multi-output Gaussian process regression

In subsection 2.3.2, the fundamental principles of a Gaussian process regression for a single output
vector was presented. The simplest way to use a GPR for multi-output is to construct a GPR
model for each output. This approach assumes that the outputs are independent. If the outputs
are correlated the Gaussian process regression model can be expanded by an additional covariance
matrix to describe this dependency. In this research, the outputs were assumed to be independent
due to the random sampling of chord lengths by the FBRM probe. In other words, it is assumed
that crystals in the suspension are randomly oriented such that the chord lengths recorded by
the FBRM probe are independent. Furthermore, it is also assumed that the independency is
maintained through the transformation to the latent space due to the independent and identically
distributed (iid) assumption central in machine learning algorithms[20]. This assumption states
that the samples in the datasets are assumed to be iid. Effectively, it simplifies machine learning
algorithms by assuming that the data distributions do not change over time or space and that each
sample is independent of one another [17]. If these assumptions holds, then the resulting model
will be simpler, easier to implement and less computational expensive.

The lantent space dimension was set to five points. Therefore, the same number of GPR models
is needed such that there will be one model for each output. Each of the GPR models will performing
the mapping,

f : x 7→ y, x ∈ R7 and y ∈ R1 (3.2)

one for each output. Each x vector has a dimension of 7 made up of 5 numbers representing the
latent space prediction from the CNN model and 2 numbers describing experimental conditions
(stirring rate and suspension density). This vector, will be mapped to each of the five outputs with
five different GPR models.

3.2.2 Final model

The Gaussian regression process was implemented in python with the scikit-learn library. The
covariance matrix function was set to the RBF function described in subsection 2.3.2. Before the
fitting of Gaussian process models, the data was standardized such that each input and output had
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a mean of 0 and a standard deviation of 1. This prepossessing of the data was implemented to
achieve a better fit to the data as all the datapoints will be of the same order of magnitude. If the
datapoints are of different orders of magnitude, it can be hard to find a regression model that is able
to accommodate larger and smaller input values at the same time. The noise was set to 0.1 to take
into account that there may be some noise in the observed data. Since Gaussian process regression
is a flexible regression model, it can be prone to overfitting. To decide how many samples should
be kept in the validation set, the fitting was run several times with different number of validation
points. The result is given in Figure 3.9 The figure was generated by running the fitting process
100 times for each number of validation samples. For each fitting, the relative error between the
encoded experimental CLD and the prediction of the correction layer was calculated. The relative
error was calculated using equation Equation C.2 in Appendix C using the vector 2-norm given in
Equation C.1. The average of the relative errors of the validation samples was calculated. Each
point in the figure represents the average relative error for one fitting. Note that this average
relative error is calculated before decoding and represents the error in the latent space.

Figure 3.9: Each point represent the relative error between the encoded experimental CLD and
prediction of the correction layer in the latent space for each fitting.

By inspecting the figure, the number of validation points in the range 5-17 proved to produce
good fittings with regards to low relative error and low variance. In Figure 3.10, the average
relative error of the 100 fittings between the decoded prediction of correction layer and the full
space experimental CLD is shown. This relative average error will also take into account the error
contribution from the autoencoder.
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Figure 3.10: Each point represent the average relative error between the experimental CLD and
the decoded prediction of the correction layer for each fitting.

The mean and the standard deviation of the average relative error of the 100 fittings for each
of the different number of validation points are plotted in Figure 3.11. By inspection, 8 validation
points yield a low mean error and low standard deviation. Thus, 8 experiments were left out during
the fitting of model and used for validation.

Figure 3.11: The figure shows the mean and the standard deviation of the error of the 100 fittings
for the given number of validation points.

To get a final overview of the framework, a simple illustration is presented in Figure 3.12. It
displays all the steps of the mapping of an experimentally generated PSD to a CLD. A PSD is the
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input to the convolutional neural network. The CNN model makes a prediction of the CLD in the
latent space. This prediciton along with two experimental conditions, is the input to the correction
layer i.e the Gaussian process regression model. The prediction made by the correction layer is then
decoded to a full space CLD by the decoder. The next section will present the performance of this
final framework.

Figure 3.12: Simple illustration of final framework

3.2.3 Performance of the final framework

In this section, the performance of the final framework is presented. The fist section illustrates the
performance of the validation samples with and without the correction layer. The second section
presents the performance of the correction later and the autoencoder with the validation samples.

Performance of the correction layer

In Table 3.6 the relative error of the CLD prediction with and without the correction layer of each
validation sample is presented. In Figure 3.13 the validation samples are plotted. Three lines are
plotted. The untouched experimental CLD (blue line), the decoded prediction by the correction
layer (red line) and the decoded prediction without the correction layer(purple line).

Table 3.6: Relative errors between the decoded prediction of the correction layer and the
untouched experimental CLD for each validation sample. The active ingredient(AI) for each

sample is also provided.

Sample Without correction layer [%] With correction layer [%] AI

5 96.7 20.7 1
8 97.5 58.4 1
12 47.3 16.6 2
16 62.5 11.2 2
17 63.1 15.2 2
18 93.5 21.6 3
23 93.4 37.0 3
25 95.3 16.7 3
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(a) Sample 5: RPM is 400
and suspension density is 3 % wt

(b) Sample 8: RPM is 600
and suspension density is 9 % wt

(c) Sample 12: RPM is 200
and suspension density is 3 % wt

(d)
Sample 16: RPM is 400

and suspension density is 9 % wt

(e) Sample 17: RPM is 600
and suspension density is 9 % wt

(f) Sample 18: RPM is 400
and suspension density is 1 % wt
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(g) Sample 23: RPM is 200
and suspension density is 9 % wt

(h) Sample 25: RPM is 200
and suspension density is 9 % wt

Figure 3.13: The untouched experimental CLD, the decoded GPR prediction and the decoded
GCLD for each of the validation samples are plotted.
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The correction layer performance and the autoencoder

In Figure 3.14 the validation samples are plotted. Three lines are plotted. The untouched experi-
mental CLD (blue line), the decoded prediction by the correction layer (red line) and the encoded
and decoded experimental CLD(green line).

(a) Sample 5: RPM is 600
and suspension density is 3 % wt

(b) Sample 8: RPM is 600
and suspension density is 9 % wt

(c) Sample 12: RPM is 200
and suspension density is 3 % wt

(d) Sample 16: RPM is 400
and suspension density is 9 % wt
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(e) Sample 17: RPM is 600
and suspension density is 9 % wt

(f) Sample 18: RPM is 400
and suspension density is 1 % wt

(g) Sample 23: RPM is 200
and suspension density is 9 % wt

(h) Sample 25: RPM is 600
and suspension density is 9 % wt

Figure 3.14: The untouched experimental CLD, the decoded GPR prediction and the encoded and
decoded CLD for each of the validation samples are plotted.

3.2.4 Discussion

The performance of the final model with the eight randomly selected validation samples are pre-
sented in Figure 3.13. There are three lines plotted in each subfigure: The blue line represents the
untouched experimental CLD, the red line represents decoded prediction by correction layer and
the purple line represents the decoded GCLD ie. the prediction without the correction layer. By
inspecting the subfigures, it is clear that the correction layer does a remarkable job correcting the
predictions made by the convolutional neural network. The CNN model fails to predict the CLD
for all samples except for sample 12, 16 and 17 which all are made with the active ingredient AI2.
Though the performance of the CNN model is far from satisfactory for the samples with AI1 and
AI3, the erroneous prediction is corrected by the Gaussian process regression model. The relative
errors between the untouched experimental CLD (blue line) and the predictions with and without
the correction layer are given in Table 3.6. The relative error with the correction layer for samples
with AI2 are the lowest. Naturally, this is in line with what is expected as these samples already
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had the smallest relative error without the correction layer as listed in the table. Despite the high
relative error for the samples with AI1 and AI3 before the correction layer as seen in Figure 3.13
and Table 3.6, the correction layer is able to successfully correct the GCLDs to a satisfactory result.
With the efficiency and ease of the performance of the correction layer, it seems that the indepen-
dence assumption made in the modelling step, holds. Therefore, building a GPR model with the
assumption that the there is no correlation between the output is sufficient in this case.

For each validation sample in Figure 3.14, the encoded and decoded experimental CLD is plotted
(green line) along with the untouched experimental CLD (blue line) and the predicted CLD with the
correction layer (red line). The predicted CLD with the correction layer will have three main sources
of error: the CNN model prediction, the Gaussian process regression and from the dimensional
reduction. In Figure 3.13 the error from the CNN model is clearly visible from the discrepancy
between the untouched experimental CLD (blue line) and the decoded GCDL (purple line). Almost
all the samples plotted in this figure display major deviation from the untouched experimental
CLD. In Figure 3.14, the error due to the autoencoder and the grouped error of the CNN model
and the correction layer are visualized. For example, in sample 8, the blue and the green line
coincides relatively well and the red line deviates. This indicates that the error present is introduced
from the CNN model/and or the correction layer. In sample 18 however, the green line and the
red line coincides but differ from the blue line, which signifies that the error present stems the
compression/reconstruction operation by the autoencoder. In sample 23, all the plotted curves
differ slightly from each other which means that all three sources of error contributed to the total
prediction error.

As seen in Figure 3.13 the CNN largely fails to make accurate predictions with the experimental
data. To improve the CNN, one can attempt to generate more simulated data more similar to the
experimental data. Moreover, the performance of CNN, GPR model and AE is directly related
to the chosen structure of these machine learning models. Therefore, improved performance could
possibly be attainable by changing these structures. Due to this fact, Bayesian optimization was
introduced in order to find the optimal hyperparameters to define the optimal structure of the
CNN. Although the Bayesian optimization is an effective way to tune the hyperparameters, it does
not guarantee that the optimal hyperparameters are the universally the best hyperparameters. The
obtained hyperparameters are ultimately still dependent on the available data, bounds on the range
of the hyperparameters, the number of epochs and iterations. If the generation of more simulated
data or structural changes could lead to more accurate predictions by the CNN, the framework can
be used as a tool to asses the effect of experimental conditions on the measured experimental data.
With the results presented, there is no way establish any solid connections between measurement
and experimental conditions. Despite this limitation, the framework as whole is able to predict
accurate CLDs from experimental PSD data, and can thus serve as a robust model to generate
more data to develop a data-driven model tackling the inverse problem.
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Chapter 4

Final evaluation and future work

While the monitoring and control of crystallization processes are important for the production
of many products in the process industry, the lack of good in-situ and online measurements has
proven to be a bottleneck in the advancement of such methods. Therefore, several attempts have
been made to resolve this issue as product purity and quality are important for the performance
and characteristics of the final crystalline product. The use of the FBRM probe is widely applied
as it provides online and in-situ measurements. However, as the FBRM probe measures chord
lengths instead of the actual particle size, various attempts have been made to relate the PSD to
the CLD or vice versa. In this research, a CNN-based framework was developed to perform the
mapping of the forward problem. The main objective of the research presented in this thesis was
to adapt an existing CNN model trained with simulated data to be able to make predictions with
experimental data. The existing CNN model was shown to be able to make satisfactory predictions
with the simulated data, but failed to make predictions for the experimental data. This is not
too surprising as the CNN model was only trained with simulated data. This indicates that the
experimental dataset was too different for the model to be able to recognize the important features
in the data. One possible solution to this issue is to enrich the dataset with either experimental data
or more similar simulated data if possible. However, as the generation of new data may be time
consuming and financially and/or computationally expensive another approach was suggested that
does not require more data generation. Instead, a correction layer was implemented after the CNN
prediction along with a dimensonality reduction of the problem. An autoencoder was implemented
to perform the dimensionality reduction. The autoencoder was able to compress and reconstruct
the CLDs from the simualted dataset and the experiemntal data set with relative ease. With this
effective tool for dimensionality reduction, the CNN model structure was altered to accommodate
the dimensionality reduction. The dimensionality reduction proved to enhance the performance
of the adjusted CNN due to a simpler mapping. A multi-output Gaussian process regression was
implemented to serve as the correction layer. The GPR model also used two experimental conditions
as additional input data. The GPR model proved to be a powerful model to serve as a correction
layer. Thus with the implementation of the correction layer and the dimensionality reduction, the
final framework was able to accurately predict experimental PSDs to CLDs with as little as 26
datasets. This developed framework demonstrates how both simulated and experimental data can
be leveraged to develop an accurate data-driven model for prediction without requiring substantial
amount of experimental data. In addition, it also provides a robust model to generate enough data
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to address the inverse problem (CLD to PSD) which is of greater interest.
Several possible improvements and directions for further research can be undertaken given these

findings. With regards to improving the current framework there are several things that can be
changed like enriching the simulated dataset such that the CNN is able to make better predictions.
This can be interesting with regards to investigating which experimental conditions may or may
not have greater influence on the measurements. Moreover, it would also be interesting to see if the
framework could be adjusted to interpret crystal populations consisting of different shapes other
than needle-like crystals like platelets or mixed shapes. In this research, the forward problem was
addressed i.e mapping a PSD to a CLD. With this tool for generating PSD and CLD data, the next
step further could be to develop a data-driven model for the inverse problem in a similar manner.

55



Bibliography

[1] Idan Achituve et al. “Personalized Federated Learning with Gaussian Processes”. In: arXiv
(2021). url: https://doi.org/10.48550/arXiv.2106.15482.

[2] Abdulaziz Almalaq and George Edwards. “A Review of Deep Learning Methods Applied on
Load Forecasting”. In: IEEE (2017). url: 10.1109/ICMLA.2017.0-110.

[3] Arc. Convolutional Neural Network, An Introduction to Convolutional Neural Networks. 2018.
url: https://towardsdatascience.com/convolutional-neural-network-17fb77e76c05
(visited on 10/25/2021).

[4] Shereena V. B. and Julie M. David. “SIGNIFICANCE OF DIMENSIONALITY REDUC-
TION IN IMAGE PROCESSING”. In: Signal Image Processing 6 (2015). url: 10.5121/
sipij.2015.6303.

[5] Naim Bajcinca et al. “Optimal control solutions for crystal shape manipulation”. In: Computer
Aided Chemical Engineering (2010). url: https://doi.org/10.1016/S1570-7946(10)
28126-9.

[6] Sunitha Basodi et al. “Gradient Amplification: An Efficient Way to Train Deep Neural Net-
works”. In: BIG DATA MINING AND ANALYTICS (2020). url: https://doi.org/10.
48550/arXiv.2006.10560.

[7] D. Binu and B.R. Rajakumar. Artificial Intelligence in Data Mining. Deep learning methods
for data classification. Academic Press, 2021. url: https://doi.org/10.1016/C2019-0-
01255-1.

[8] A. Blanco et al. “Flocculation Monitoring: Focused Beam Reflectance Measurement as a
Measurement Tool”. In: The Canadian Journal of Chemical Engineering 80 (2002). url:
https://doi.org/10.1002/cjce.5450800403.

[9] H. H. J. Bloemen and M. G. M. De Kroon. “Transformation of Chord Length Distributions
into Particle Size Distributions Using Least Squares Techniques”. In: Particulate Science and
Technology (2007). url: https://doi.org/10.1080/02726350500212996.

[10] Eric Brochu, Vlad M. Cora, and Nando de Freitas. “A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning”. In: ArXiv (2010). url: https://doi.org/10.48550/arXiv.
1012.2599.

[11] Jason Brownlee. A Gentle Introduction to Dropout for Regularizing Deep Neural Networks.
2018. url: https://machinelearningmastery.com/dropout-for-regularizing-deep-
neural-networks/.

56

https://doi.org/10.48550/arXiv.2106.15482
10.1109/ICMLA.2017.0-110
https://towardsdatascience.com/convolutional-neural-network-17fb77e76c05
10.5121/sipij.2015.6303
10.5121/sipij.2015.6303
https://doi.org/10.1016/S1570-7946(10)28126-9
https://doi.org/10.1016/S1570-7946(10)28126-9
https://doi.org/10.48550/arXiv.2006.10560
https://doi.org/10.48550/arXiv.2006.10560
https://doi.org/10.1016/C2019-0-01255-1
https://doi.org/10.1016/C2019-0-01255-1
https://doi.org/10.1002/cjce.5450800403
https://doi.org/10.1080/02726350500212996
https://doi.org/10.48550/arXiv.1012.2599
https://doi.org/10.48550/arXiv.1012.2599
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/


[12] Jason Brownlee. How to Implement Bayesian Optimization from Scratch in Python. 2019.
url: https://machinelearningmastery.com/what-is-bayesian-optimization/ (visited
on 11/29/2021).

[13] Jason Brownlee. How to use Data Scaling Improve Deep Learning Model Stability and Perfor-
mance. 2020. url: https://machinelearningmastery.com/how- to- improve- neural-
network - stability - and - modeling - performance - with - data - scaling/ (visited on
11/14/2021).

[14] Jason Brownlee. Hyperparameter Optimization With Random Search and Grid Search. 2020.
url: https : / / machinelearningmastery . com / hyperparameter - optimization - with -
random-search-and-grid-search/.

[15] Jason Brownlee. Overfitting and Underfitting With Machine Learning Algorithms. 2016. url:
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-

learning-algorithms/.

[16] Van P. CAREY. “Lecture notes week 3, ME249-4F21”. In: (2021).

[17] Sundaresh Chandran. Significance of I.I.D in Machine Learning. url: https://medium.
datadriveninvestor.com/significance-of-i-i-d-in-machine-learning-281da0d0cbef.
(accessed: 16.06.2022).

[18] Dami Choi et al. “On Empirical Comparisons of Optimizers for Deep Learning”. In: arXiv
(2020).

[19] C.E. Crestani et al. “An artificial neural network model applied to convert sucrose chord length
distributions into particle size distributions”. In: Powder Technology (2021). url: https:
//doi.org/10.1016/j.powtec.2021.01.075.

[20] Trevor Darrell et al. “Machine Learning with Interdependent and Non-identically Distributed
Data”. In: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2015). url: 10.4230/DagRep.
5.4.18.

[21] Samuel J. Gershman and David M. Blei. “A tutorial on Bayesian nonparametric models”. In:
Journal of Mathematical Psychology (2012). url: https://doi.org/10.1016/j.jmp.2011.
08.004.

[22] R. Guardani, R.S. Onimaru, and F.C.A. Crespo. “Neural network model for the on-line mon-
itoring of a crystallization process”. In: Brazilian Journal of Chemical Engineering (2001).
url: https://doi.org/10.1590/S0104-66322001000300006.

[23] Jörg Heinrich and Joachim Ulrich. “Application of Laser-BackscatteringInstruments for In
Situ Monitoring ofCrystallization Processes – A Review”. In: Chemical Engineering Technol-
ogy (2012). url: 10.1002/ceat.20110034.

[24] Raimundo Ho et al. “Effect of Milling on Particle Shape and Surface Energy Heterogeneity
of Needle-Shaped Crystals”. In: Pharmaceutical research (2012). url: https://doi.org/10.
1007/s11095-012-0842-.

[25] Jianglin Huang, Yan-Fu Li, and Min Xie. “An empirical analysis of data preprocessing for
machine learning-basedsoftware cost estimation”. In: Information and Software Technology
(2015). url: 10.1016/j.infsof.2015.07.004.

[26] Roberto Irizarry, Akshaya Nataraj, and Jochen Schoell. “CLD-to-PSD model to predict bi-
modal distributions and changes in modality and particle morphology”. In: Elsevier (2020).

57

https://machinelearningmastery.com/what-is-bayesian-optimization/
https://machinelearningmastery.com/how-to-improve-neural-network-stability-and-modeling-performance-with-data-scaling/
https://machinelearningmastery.com/how-to-improve-neural-network-stability-and-modeling-performance-with-data-scaling/
https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search/
https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://medium.datadriveninvestor.com/significance-of-i-i-d-in-machine-learning-281da0d0cbef
https://medium.datadriveninvestor.com/significance-of-i-i-d-in-machine-learning-281da0d0cbef
https://doi.org/10.1016/j.powtec.2021.01.075
https://doi.org/10.1016/j.powtec.2021.01.075
10.4230/DagRep.5.4.18
10.4230/DagRep.5.4.18
https://doi.org/10.1016/j.jmp.2011.08.004
https://doi.org/10.1016/j.jmp.2011.08.004
https://doi.org/10.1590/S0104-66322001000300006
10.1002/ceat.20110034
https://doi.org/10.1007/s11095-012-0842-
https://doi.org/10.1007/s11095-012-0842-
10.1016/j.infsof.2015.07.004


[27] Roberto Irizarry et al. “Data-driven model and model paradigm to predict 1D and 2D particle
size distribution from measured chord-length distribution”. In: Chemical Engineering Science
(2017). url: https://doi.org/10.1016/j.ces.2017.01.042.

[28] JEREMY JORDAN. Introduction to autoencoders. 2018. url: https://www.jeremyjordan.
me/autoencoders/ (visited on 05/11/2022).

[29] Ozgur Demir Kavuk et al. “Prediction using step-wise L1, L2 regularization and feature
selection for small data sets with large number of features”. In: BMC Bioinformatics (2011).

[30] Minjeong Kim et al. Biomedical Information Technology, second edition. Deep learning in
biomedical image analysis. Academic Press, 2020. url: https://doi.org/10.1016/B978-0-
12-816034-3.00008-0.

[31] Will Koehrsen. A Conceptual Explanation of Bayesian Hyperparameter Optimization for Ma-
chine Learning. 2018. url: https://towardsdatascience.com/a-conceptual-explanation-
of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-

b8172278050f.

[32] Dhairya Kumar. Introduction to Data Preprocessing in Machine Learning. 2018. url: https:
/ / towardsdatascience . com / introduction - to - data - preprocessing - in - machine -

learning-a9fa83a5dc9d (visited on 11/14/2021).

[33] Mingzhong Li and Derek Wilkinson. “Determination of non-spherical particle size distribution
from chord length measurements. Part 1: Theoretical analysis”. In: Chemical Engineering
Science (2005). url: https://doi.org/10.1016/j.ces.2005.01.008.

[34] Mingzhong Li, Derek Wilkinson, and Kumar Patchigolla. “Determination of non-spherical
particle size distribution from chord length measurements. Part 2: Experimental validation”.
In: Chemical Engineering Science (2005). url: https://doi.org/10.1016/j.ces.2005.
04.019.

[35] Sehla Loussaief and Afef Abdelkrim. “Convolutional Neural Network Hyper-Parameters Op-
timization based on Genetic Algorithms”. In: International Journal of Advanced Computer
Science and Applications (2018).

[36] Hamdy F. F. Mahmoud. “Parametric versus Semi and Nonparametric Regression Models”.
In: arXiv (2019). url: https://doi.org/10.48550/arXiv.1906.10221.

[37] Aniruddha Majumder and Zoltan K. Nagy. “Prediction and control of crystal shape distribu-
tion in the presence of crystal growth modifiers”. In: Computer Aided Chemical Engineering
(2013).

[38] Mark Meuller. Lecture notes in MECENG 231B: Chapter 7, the optimal state estimator.
(accessed: 15.06.2022).

[39] Kizito Nyuytiymbiy. Parameters and Hyperparameters in Machine Learning and Deep Learn-
ing. 2020. url: https://towardsdatascience.com/parameters-and-hyperparameters-
aa609601a9ac (visited on 11/20/2021).

[40] Adam P.Piotrowski, Jaroslaw J. Napiorkowski, and Agnieszka E.Piotrowskab. “Impact of deep
learning-based dropout on shallow neural networks applied to stream temperature modelling”.
In: Earth-Science Reviews (2020). url: https://doi.org/10.1016/j.earscirev.2019.
103076.

58

https://doi.org/10.1016/j.ces.2017.01.042
https://www.jeremyjordan.me/autoencoders/
https://www.jeremyjordan.me/autoencoders/
https://doi.org/10.1016/B978-0-12-816034-3.00008-0
https://doi.org/10.1016/B978-0-12-816034-3.00008-0
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/introduction-to-data-preprocessing-in-machine-learning-a9fa83a5dc9d
https://towardsdatascience.com/introduction-to-data-preprocessing-in-machine-learning-a9fa83a5dc9d
https://towardsdatascience.com/introduction-to-data-preprocessing-in-machine-learning-a9fa83a5dc9d
https://doi.org/10.1016/j.ces.2005.01.008
https://doi.org/10.1016/j.ces.2005.04.019
https://doi.org/10.1016/j.ces.2005.04.019
https://doi.org/10.48550/arXiv.1906.10221
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://doi.org/10.1016/j.earscirev.2019.103076
https://doi.org/10.1016/j.earscirev.2019.103076


[41] Ajinkya V. Pandit and Vivek V. Ranade. “Chord Length Distribution to Particle Size Distri-
bution”. In: AIChE Journal (2016). url: https://doi.org/10.1002/aic.15338.

[42] Daniel B. Patience and James B. Rawlings. “Particle-Shape Monitoring and Control in Crys-
tallization Processes”. In: AIChE Journal (2001). url: h10.1002/aic.690470922.

[43] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. Chapter 2: Regression. The MIT Press, 2005. url: https://doi.org/10.7551/
mitpress/3206.001.0001.

[44] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way.
2018. url: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53 (visited on 10/24/2021).

[45] Jochen Schoell et al. “Determining particle-size distributions from chord length measurements
for different particle morphologies”. In: AIChE Journal (2019). url: https://doi.org/10.
1002/aic.16560.

[46] Eric Schulz, Maarten Speekenbrink, and Andreas Krause. “A tutorial on Gaussian process
regression: Modelling, exploring, and exploiting functions”. In: Journal of Mathematical Psy-
chology (2018). url: https://doi.org/10.1016/j.jmp.2018.03.001.

[47] Bobak Shahriar et al. “Taking the Human Out of the Loop: A Review of Bayesian Optimiza-
tion”. In: IEEE 104 (2016). url: 10.1109/JPROC.2015.2494218.

[48] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. “Activation functions in neural net-
works”. In: towards data science 6.12 (2017), pp. 310–316.

[49] SympaTec. The universal shapefinder for particle characterisation ranging from below 1 µm
to 34,000 µm. url: https://www.sympatec.com/en/particle-measurement/sensors/
dynamic-image-analysis/qicpic/.

[50] Sympatec. Dynamic Image Analysis. url: https://www.sympatec.com/en/particle-
measurement/sensors/dynamic-image-analysis/.
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Appendix A

Existing model

A.1 Derivation of the conditional distribution of multivari-
ate normal distributions

The derivation of conditional distributions of multivariate normal distributions is provided according
to the derivation in [38]. Let x ∈ RNx and y ∈ RNy be two jointly Gaussian random variable such
that ζ =(x,y) ∈ RNx+Ny is a Gaussian random variable with ζ ∼ N (µζ ,Σζζ) and

µζ =

[
µx

µy

]
and Σζζ =

[
Σxx Σxy

ΣT
xy Σyy

]
(A.1)

The next step is to show that x is conditionally Gaussian, that is f(x|y) is a Gaussian distribution

fx|y(x | ȳ) =fx,y(x, ȳ)

fy(ȳ)
=

fζ((x, ȳ))

fy(ȳ)

=
1

(2π)(Nx+Ny)/2 det
(
Σζζ

)1/2 exp

−1

2

([
x
ȳ

]
− µζ

)T

Σ−1
ζζ

([
x
ȳ

]
− µζ

)
 1

(2π)Ny/2 det
(
Σyy

)1/2 exp

(
−1

2

(
ȳ − µy

)T
Σ−1

yy

(
ȳ − µy

))−1

∝ exp

−1

2

([
x
ȳ

]
− µζ

)T

Σ−1
ζζ

([
x
ȳ

]
− µζ

)
=exp

−1

2

[
x− µx

ȳ − µy

]T [
Σxx Σxy

ΣT
xy Σyy

]−1 [
x− µx

ȳ − µy

]

(A.2)

here ȳ is treated as a known constant. The result is quadratic in x and has a functional form
of the Gaussian. x conditioned on y is thus a Gaussian random variable. In this expression, the

I



proportionality constant is ignored, but it will be whatever value needed for the integrated PDF to
sum to 1. Now the mean and the variance of f(x|y) can be found such that,

fx|y(x | ȳ) ∝ exp

(
−1

2
(x− µ̄)T Σ̄−1(x− µ̄)

)
(A.3)

The inverse of the matrix Σζζ is given below,

[
Σxx Σxy

ΣT
xy Σyy

]−1

=


(
Σxx − ΣxyΣ

−1
yy Σ

T
xy

)−1

−Σ−1
xxΣxy

(
Σyy − ΣT

xyΣ
−1
xxΣxy

)−1

−
(
Σyy − ΣT

xyΣ
−1
xxΣxy

)−1

ΣT
xyΣ

−1
xx

(
Σyy − ΣT

xyΣ
−1
xxΣxy

)−1


The variance Σ̄ can be determined from inspection by comparing Equation A.2 and Equa-

tion A.3. µ̄ and Σ̄ are computed such that the first and second order terms in x are equal. Note
that the terms that do not contain x are ignored as these are simply constants. This yields,

Σ̄ = Σxx − ΣxyΣ
−1
yy Σ

T
xx (A.4)

Comparing first-order terms in x gives,

xT Σ̄−1µ̄ = xT Σ̄−1µx + xTΣ−1
xxΣxy

(
Σyy − ΣT

xyΣ
−1
xxΣxy

)−1 (
ȳ − µy

)
(A.5)

which must hold for all x. With some manipulation,

µ̄ = µx +ΣxyΣ
−1
yy

(
ȳ − µy

)
(A.6)
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A.2 Experimental data summary

Table A.1: Summary of experiments

Sample Active ingredient RPM Mass suspension density [% wt]

0 AI1 200 1
1 AI1 400 1
2 AI1 600 1
3 AI1 200 3
4 AI1 400 3
5 AI1 600 3
6 AI1 200 9
7 AI1 400 9
8 AI1 600 9
9 AI2 200 1
10 AI2 400 1
11 AI2 600 1
12 AI2 200 3
13 AI2 400 3
14 AI2 600 3
15 AI2 200 9
16 AI2 400 9
17 AI2 600 9
18 AI3 400 1
19 AI3 600 1
20 AI3 200 3
21 AI3 400 3
22 AI3 600 3
23 AI3 200 9
24 AI3 400 9
25 AI3 600 9
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A.3 List of software

Table A.2: The table displays the software and python libraries used in this research along with
the respective version.

Software Version

Python 3.7.11
Scipy 1.7.3

Tensorflow 2.9.1
Keras 2.9.0
Pandas 1.3.4

Matplotlib 3.5.1
Scipy 1.7.3

Seaborn 0.11.2
Plotly 5.8.0
Pyny3d 0.1.1

Scikit-learn 1.0.2
Scikit-optimize 0.9.0

A.4 Plots from the Bayesian optimization

Figure A.1 shows the score of each iteration in the Bayesian optimization.

Figure A.1: Displays the mean absolute error for each iteration in the Bayesian optimization for
the model without regularization.
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The Figure A.2 displays the training and validation loss for each epoch of the training of the
CNN model.

Figure A.2: The figure illustrates the training and validation loss of the CNN across epochs.
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Appendix B

Dimensionality reduction

B.1 Training of the autoencoder

The Figure B.1 displays the training and validation loss in each epoch of the training of the au-
toencoder.

Figure B.1: The figure illustrates the training and validation loss of the autoencoder across epochs.
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B.2 Training of the CNN with the CLDs in the dataset in
the reduced space

The Figure B.2 shows the score of each iteration in the Bayesian optimization.

Figure B.2: The score of each iteration of the Gaussian process regression.

The Figure B.3 shows the training error and validation error in each epoch of the training of
the CNN model with the CLDs in dataset in the reduced space.
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Figure B.3: The figure illustrates the training and validation loss of the CNN across epochs.

B.3 Samples with the active ingredient AI2

Figure B.4, Figure B.5 and Figure B.6 the untouched experimental CLD, the encoded and decoded
CLD and the decoded GCLD of all the samples with active ingredient AI2.
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(a) Sample 9: RPM is 200
and suspension density is 1

(b) Sample 10: RPM is 400
and suspension density is 1

(c) Sample 11: RPM is 600
and suspension density is 1

Figure B.4: The untouched experimental CLD, the encoded and decoded CLD and the decoded
GCLD of all the sample 9, 10 and 11.
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(a) Sample 12: RPM is 200
and suspension density is 3

(b) Sample 13: RPM is 400
and suspension density is 3

(c) Sample 14: RPM is 600
and suspension density is 3

Figure B.5: The untouched experimental CLD, the encoded and decoded CLD and the decoded
GCLD of all the sample 12, 13 and 14.
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(a) Sample 15: RPM is 200
and suspension density is 9

(b) Sample 16: RPM is 400
and suspension density is 9

(c) Sample 17: RPM is 600
and suspension density is 9

Figure B.6: The untouched experimental CLD, the encoded and decoded CLD and the decoded
GCLD of all the sample 15, 16 and 17.
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Appendix C

Correction layer

C.1 Error calculations

The equation for the 2-norm is given in Equation C.1.

∥x∥2 = (Σn
i=1|xi|2)

1
2 (C.1)

The expression for the relative error calcualtion is given in Equation C.2

relative error =
∥α− α̂∥2
∥α∥2

(C.2)

Here, α is the true value and α̂ is the predicted value.
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Appendix D

Python code
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D.1 Code for the implementation of the autoencoder, CNN
model and tuning of hyperparameters with Bayesian
optimization

[ ]: """

This code implements the autoencoder, CNN model and the Bayesian tuning of

↪→hyperparameters. The structure of\

the code is as follows:

0. Import the simulated data and generate gamma distributions to augment the

↪→data set used in the training\

of the autoencoder

1. Define and train Autoencoder + plots illustration performance

2. Define CNN model

3. Define Bayesian optimization model and perform the optimization to find the

↪→optimal hyperparameters

4. Train CNN

5. Make predictions and plot performance

6. Save CNN model and autoencoder

Contributors: Solveig Sannes and George Makrygiorgos. Spring 2022

"""

[ ]: #import packages

from __future__ import print_function

import warnings

warnings.filterwarnings(’ignore’)

import numpy as np

import scipy

import sys

import copy

from scipy.integrate import quad

from sklearn import preprocessing

from sklearn.utils import shuffle

from sklearn.model_selection import train_test_split

#For plotting

import matplotlib.pyplot as plt

%matplotlib inline

import sklearn

# suppress tensorflow compilation warnings

import os

import tensorflow as tf

from tensorflow.keras import backend as K
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from tensorflow.python.framework import ops

os.environ[’TF_CPP_MIN_LOG_LEVEL’] = ’2’

seed=0

np.random.seed(seed) # fix random seed

import skopt

import pandas as pd

from skopt import gbrt_minimize, gp_minimize

from skopt.utils import use_named_args

from skopt.space import Real, Categorical, Integer

from tensorflow.keras.utils import plot_model

from tensorflow.keras.models import Sequential

from tensorflow.keras import optimizers

from tensorflow.keras import losses

from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D,

↪→MaxPool2D, Activation, LeakyReLU

from tensorflow.keras import utils

from tensorflow.python.keras.models import load_model

from tensorflow.keras.wrappers.scikit_learn import KerasRegressor

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

Data Preprocess

Load the initial data from simulated dataset experiments

[ ]: Needle_Data = np.load(’GM_combined_needle_train.npz’)

[ ]: Xraw= Needle_Data[’Xtrain’]

Yraw = Needle_Data[’Ytrain’] #Yraw is before the dimensionality reduction

[ ]: X = Xraw.copy()

[ ]: #plotting simulated data to check if the data scaled correctly

sample = 110

l1 =X[sample,:,0,0]#yaxis

l2 = X[sample,0,:,1] #xaxis

Z = X[sample,:,:,2].T #frequency

x, y =np.meshgrid(l1, l2)

XV



plt.figure(dpi=200)

plt.contourf(x, y, Z)

plt.colorbar()

plt.xlabel(’L1’, fontsize=15)

plt.ylabel(’L2’, fontsize=15)

plt.show()

Create Gamma Distributions similar to the experimental ones

[ ]: #import chord lenthgs

ch_lengths = np.loadtxt(’ch_len.csv’)

[ ]: from scipy import stats

def gamma_sample(x,a,b):

y = stats.gamma.pdf(x, a, scale = 1/b)

return y

[ ]: gvals = gamma_sample(ch_lengths,3, 0.03)

plt.plot(ch_lengths, gvals)

plt.xlim([0,150])

[ ]: #create and arry with N*N number of gamma distributions

N = 100

#creating values for the parameters a and beta

a_val = np.linspace(1.5,3.2, N)

scale_val = np.linspace(0.03,0.14,N)

sample_dist = np.zeros((N,N,len(ch_lengths))) #creating vector to store gamma

↪→distributions

#generating gamma distribtuions with different values for a and beta within the

↪→set ranges

for i in range(N):

a = a_val[i]

for j in range(N):

scale = scale_val[j]

x = ch_lengths

sample_dist[i][j] = gamma_sample(x,a,scale)

#reshaping

simulated_dist = sample_dist.reshape(N*N,100)

[ ]: #plot some samples

plt.figure(dpi=300)

indices = [0,100,1000,2000,3000]

for j in range(5):
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plt.plot(ch_lengths, simulated_dist[indices[j]])

plt.xlabel(’x’, fontsize=15)

plt.ylabel(’f(x)’,fontsize=15)

plt.savefig(’gammadist’)

[ ]: #add simualted gamma distributions to simualted CLDs

YrawAugmented = np.concatenate((Yraw,simulated_dist), axis=0)

Implementing the autoencoder

[ ]: #defining the autoencoder model

def autoencoder_model(Yraw,ldim):

"""

The NN-based autoencoder of this

section* is hardocoded in the function

Input: Data (Nsamples*Features)

Output: Encoder, Decoder, Autoencoder

"""

#defining the training and validation set

X_train,X_test,Y_train,Y_test =

↪→train_test_split(Yraw,Yraw,shuffle=True,train_size=0.8,random_state=42)

odim = Yraw.shape[1]

nbins = odim

encoding_dim = ldim

#defining the structure

actf = ’tanh’

input_cld = tf.keras.layers.Input(shape=(nbins,))

encoded0 = tf.keras.layers.Dense(25, activation=actf,

activity_regularizer=tf.keras.regularizers.

↪→l2(10e-5))(input_cld)

encoded = tf.keras.layers.Dense(encoding_dim, activation=actf,

activity_regularizer=tf.keras.regularizers.

↪→l2(10e-5))(encoded0)

encoder = tf.keras.models.Model(input_cld, encoded, name="encoder_model")

decoder_input = tf.keras.layers.Input(shape=(ldim), name="decoder_input")

decoded = tf.keras.layers.Dense(25, activation=actf)(decoder_input)

decoded = tf.keras.layers.Dense(nbins, activation=’sigmoid’)(decoded)
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decoder = tf.keras.models.Model(decoder_input, decoded,

↪→name="decoder_model")

ae_input = tf.keras.layers.Input(shape=(nbins,), name="AE_input")

ae_encoder_output = encoder(ae_input)

ae_decoder_output = decoder(ae_encoder_output)

autoencoder = tf.keras.models.Model(ae_input, ae_decoder_output, name="AE")

autoencoder.compile(optimizer=’adam’, loss=’mean_squared_error’)

autoencoder.summary()

autoencoder.fit(X_train, X_train,

epochs=1500,

batch_size=30,

shuffle=True,

validation_data=(X_test, X_test))

return autoencoder,encoder,decoder,X_test

Define Encoding Dimension and Train AE

[ ]: #defining encoding dim

encoding_dimension = 5;

#obtain autoencoder

autoencoder, encoder, decoder, testSet=

↪→autoencoder_model(YrawAugmented,encoding_dimension)

#save autoencoder

autoencoder.save(’autoencoder.h5’)

[ ]: #plotting training and validation loss across epochs

plt.figure(3,dpi=200)

plt.semilogy(autoencoder.history.history[’val_loss’])

plt.semilogy(autoencoder.history.history[’loss’])

plt.xlabel(’Epochs’)

plt.ylabel(’Loss (MSE)’)

plt.legend([’Validation Loss’,’Train Loss’])

plt.xlim([0,1500])

plt.savefig(’training_loss_AE’)
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Encode simulated CLDs

[ ]: #load model and encode CLDs

autoencoder = load_model(’autoencoder.h5’)

encoder = autoencoder.layers[1]

decoder = autoencoder.layers[2]

encoder.summary()

Y=encoder(Yraw).numpy()

Plot some samples to show performance of autoencoder

[ ]: #samples of simualted data

x=np.linspace(-1,3,100)

x=10**x

sample = [200,700,1500,2000,3000,4000]

enDeSim = np.zeros((6,100))

for i in range(len(sample)):

encoded= encoder(testSet[sample[i]].reshape(1,100)).numpy()

enDeSim[i] = decoder(encoded).numpy()

[ ]: for i in range(len(sample)):

plt.figure(figsize=[8,5],dpi=200)

l= ’Sample ’+ str(sample[i])

xrange=[800,200,200,700,150,75]

plt.title(l)

plt.plot(x,testSet[sample[i]], color=’royalblue’, label =’Untouched

↪→simulated CLD’, linewidth=4)

plt.plot(x,enDeSim[i], color=’seagreen’,label=’Encoded and decoded

↪→simulated CLD’,linewidth=3)

plt.xlim([0,xrange[i]])

plt.xlabel(’Chord length [$\mu$m]’,fontsize=15)

plt.ylabel(’Chord length probability’, fontsize=15)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.yticks(fontsize=12)

plt.legend(fontsize=15)

plt.savefig(’resultsAE/Sample’+ str(sample[i]))

[ ]: #samples of experimental data

expCLD = np.load(’experimental_CLD.npy’)

enDe = np.zeros((26,100))

for i in range(26):

encoded= encoder(expCLD[i].reshape(1,100)).numpy()

enDe[i] = decoder(encoded).numpy()
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[ ]: for i in range(0,26,5):

plt.figure(figsize=[8,5],dpi=200)

l= ’Sample ’+ str(i)

plt.title(l)

plt.plot(ch_lengths,expCLD[i], color=’royalblue’, label =’Untoucheced

↪→experimental CLD’,linewidth=4)

plt.plot(ch_lengths,enDe[i], color=’seagreen’,label=’Encoded and decoded

↪→exerimental CLD’, linewidth=3)

plt.xlim([0,350])

plt.xlabel(’Chord length [$\mu$m]’,fontsize=15)

plt.ylabel(’Chord length probability’, fontsize=15)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.legend(fontsize=14)

plt.savefig(’resultsAE/ExpSample’+ str(i))

Define CNN Model

[ ]: #Define DNN model structure

from tensorflow.python.keras.layers import advanced_activations #Needed to add

↪→our custom activation

def get_model(latent_dim, qval,activation,learning_rate,

dropout_rate,filters1, filters2, filters3,trainable,training):

"""

Inputs: latent_dim (latent dimensionality of CLD)

activation (activation function)

learning_rate

dropout rate

filters(1-3)

trainable (True: the layers are trained - has to do with Transfer

↪→Learning)

training (Has to do with whether I am passing a previous model’s

↪→parameters)

Output: CNN Model

"""

trainable=True

model = Sequential()

model.add(Conv2D(filters1, (5, 5), strides=( 2, 2), padding=’same’,

↪→input_shape=(30, 300, 5) ,trainable=trainable))

model.add(Activation(activation))

model.add(MaxPool2D((2, 2), padding=’same’))

model.add(Dropout(dropout_rate))
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model.add(Conv2D(filters2, (3, 3), strides=( 2, 2 ),

↪→padding=’same’,trainable=trainable))

model.add(Activation(activation))

model.add(MaxPool2D((2, 2), padding=’same’))

model.add(Dropout(dropout_rate))

model.add(Conv2D(filters3, (3, 3), strides=( 2, 2 ),

↪→padding=’same’,trainable=trainable))

model.add(Activation(activation))

model.add(MaxPool2D((2, 2), padding=’same’))

model.add(Dropout(dropout_rate))

model.add(Flatten())

model.add(Dense(latent_dim, activation= ’linear’ ,trainable=True))

optimizer = optimizers.Adam(lr=learning_rate,amsgrad=True)

model.compile(optimizer=optimizer,

loss = ’mean_squared_error’)

return model

[ ]: def train_model(tuning,x0,latent_dim,batch_size,epochs,X,Y):

indices = X.shape[0] #Number of total samples

indices=np.arange(indices)

#defines validation and training samples and save the indices

X_train,X_test,Y_train,Y_test,indices_train,indices_test = \

train_test_split(X,Y,indices,shuffle=True,train_size=0.8,random_state=42)

data_splits = [X_train,X_test,Y_train,Y_test,indices_train,indices_test]

#Retrive encoding dim

ldim = Y.shape[1]

# Assign values to hyperparemters

if tuning =="False":

qval = x0[0]

activation = x0[1]

learning_rate = x0[2]

dropout_rate = x0[3]

filters1 = x0[4]

filters2 = x0[5]

filters3 = x0[6]

#Compile Model

CNNModel = get_model(ldim,qval,activation,learning_rate,dropout_rate,
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filters1, filters2, filters3, True,None)

CNNModel.summary()

CNNModel.fit(X_train,Y_train,

batch_size = batch_size,

epochs= epochs,

validation_data = (X_test, Y_test),

verbose = 1)

else:

print("No Training...")

return CNNModel, data_splits

Bayesian optimization

[ ]: #Defining bounds on hyperparameters to be tuned

dim_penalty_value = Real(low=1e-3, high=1e-2, name=’penalty_value’)

dim_learning_rate = Real(low=5e-4, high=1e-2, name=’learning_rate’)

dim_dropout_rate = Real(low=0.0, high=0.3, name=’dropout_rate’)

dim_activation = Categorical(categories=[’relu’,’tanh’],

name=’activation’)

dim_filters1 = Integer(low = 10, high = 18, name = ’filters1’)

dim_filters2 = Integer(low = 24, high = 40, name = ’filters2’)

dim_filters3 = Integer(low = 48, high = 68, name = ’filters3’)

dimensions = [dim_penalty_value,

dim_learning_rate,

dim_dropout_rate,

dim_activation,

dim_filters1,

dim_filters2,

dim_filters3

]

latent_dim =5

#defining intial condition

default_parameters = [0.01, 1e-3, 0,’tanh’, 16, 32, 64]

[ ]: #defining the loss function in the Byaesian optimization

@use_named_args(dimensions=dimensions) #Important for the hyperopt to work

def loss_obj(penalty_value,learning_rate,dropout_rate,activation,filters1,

filters2,filters3):

#size of latent space

latent_dim=5
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CNNModel =

↪→get_model(latent_dim,penalty_value,activation,learning_rate,dropout_rate,

filters1,filters2, filters3,trainable=True,training=False) #True-activates

↪→dropout during prediction

CNNModel.summary()

epochs = 200

batch_size =128

CNNModel.fit(X_trainBO,Y_trainBO,

batch_size = batch_size,

epochs = epochs,

validation_data = (X_testBO, Y_testBO),

verbose = 1)

score = CNNModel.evaluate(X_testBO, Y_testBO, verbose=0)

print(’New GP iteration with score : ’, score)

# Delete currencyy CNN model with these hyper-parameters from memory.

del CNNModel

# Clear the Keras session, otherwise it will keep adding new

# models to the same TensorFlow graph each time we create

# a model with a different set of hyper-parameters.

K.clear_session()

ops.reset_default_graph()

return score

[ ]: #Defining training set for BO

X_trainBO,X_testBO,Y_trainBO,Y_testBO =

↪→train_test_split(X,Y,shuffle=True,train_size=0.8,random_state=42)

#running the Bayesian optimization

gp_result = gp_minimize(func=loss_obj,

dimensions=dimensions,

n_calls=25,

noise= 1e-8,

n_jobs=1,

acq_func="EI",

x0=default_parameters)

#plot the score for each iteration

plt.figure(dpi=300)

plt.plot(np.arange(0,25),gp_result.func_vals,’o’)

plt.xticks(range(0,25,5))
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plt.axhline(y=np.min(gp_result.func_vals), color=’orange’, alpha=0.8,

↪→linewidth=3)

plt.xlabel("Iterations")

plt.ylabel("Mean Absolute Error (Validation)")

plt.savefig(’reg_l2’)

[ ]: #setting the hyperparameters to the optimal hyperparameters obtained from the

↪→Bayesian optimization

opt_params= gp_result.x

latent_dim =5

qval = opt_params[0]

learning_rate = opt_params[1]

activation = opt_params[3]

dropout_rate = opt_params[2]

filters1 = opt_params[4]

filters2 = opt_params[5]

filters3 = opt_params[6]

Complining model with new hyperparameters

[ ]: #Compile Model

cnn_model =

↪→get_model(latent_dim,qval,activation,learning_rate,dropout_rate,filters1,

↪→filters2, filters3,trainable=True,training=False) #True-activates dropout

↪→during prediction

cnn_model.summary()

Training model with new hyperparametes

[ ]: x0 = [qval,activation,learning_rate,dropout_rate,filters1,filters2,filters3]

cnn_model, data_splits = train_model(’False’,x0,Y.shape[1], 20, 200, X,Y)

Save CNN model and plot convergence

[ ]: cnn_model.save(’cnn_model.h5’)

cnn_weights = load_model(’cnn_model.h5’)

plt.figure(2,dpi=200)

plt.semilogy(cnn_model.history.history[’val_loss’])

plt.semilogy(cnn_model.history.history[’loss’])

plt.xlabel(’Epochs’)
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plt.ylabel(’Loss (MSE)’)

plt.legend([’Validation Loss’,’Train Loss’])

plt.xlim([0,200])

plt.savefig(’training_loss_CNN’)

Test Predictions

[ ]: def geometric_cnn_predictions(cnn_model,decoder,dataset,Yraw):

"""

The function uses the CNN model to predict CLDs which are subsequently

↪→deocded

"""

X_train,X_test,Y_train,Y_test,ind_train,ind_test = data_splits

predicted_latent = cnn_model.predict(X_test)

true_latent = Y_test

#decode the predicted CLD and the encoded simualted CLD

decoded_prediction =decoder(predicted_latent).numpy()

decoded_true = decoder(true_latent).numpy()

return decoded_prediction,decoded_true

[ ]: #load CNN model

cnn_model = load_model(’cnn_model.h5’)

#make predicitons

dec_prediction,dec_true=

geometric_cnn_predictions(cnn_model,decoder,data_splits,Yraw)

ind_train = data_splits[4]

ind_test = data_splits[5]

#list to select samples

klist=[0,500,800,1500,1700,2000]

#define range of xaxis

xrange=[100,500,300,200,500,150]

#make x-axis for plot

x=np.linspace(-1,3,100)

x=10**x

#plot a selection of samples

for k in range(len(klist)):

# original_index=ind_test[klist[k]]

original_index = ind_test[klist[k]] #to find same CLD in Yraw

plt.figure(figsize=[8,5],dpi=300)

plt.title(’Sample ’+ str(klist[k]),fontsize=15)
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plt.plot(x,dec_prediction[klist[k]],color=’darkorchid’,label=’Decoded

↪→GCLD’,linewidth=3)

plt.plot(x,dec_true[klist[k]].reshape(100,),color=’seagreen’,label=’Encoded

↪→and decoded CLD’,linewidth=3)

plt.plot(x,Yraw[original_index],color=’royalblue’,label=’Untouched

↪→simulated CLD’,linewidth=3)

plt.ylabel(’Chord length probability’,fontsize=15)

plt.xlabel(’Chord length [$\mu$m]’,fontsize=15)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.xlim([0,xrange[k]])

plt.legend(fontsize=15)

plt.savefig(’resultsCNN/predAE’+ str(k)

[ ]: #load experimental data to make predicitons

expPSD = np.load(’experimentalPSSD.npy’)

expCLD=np.load(’experimental_CLD.npy’)

enDeGCLD = np.zeros((26,100))

#make predicitons for the experimental PSDs and decode the prediciton

for i in range(26):

predict= cnn_model.predict(expPSD[i].reshape(1,30,300,5))

enDeGCLD[i] = decoder(predict).numpy()

[ ]: #select samples to be plotted

sample= np.arange(0,26,1)

for i in range(len(sample)):

plt.figure(figsize=[8,5], dpi=200)

plt.title(’Sample ’+str(sample[i]),fontsize=15)

plt.plot(ch_lengths,enDeGCLD[sample[i]],color=’darkorchid’,

↪→linewidth=3,label=’Decoded GCLD’)

plt.plot(ch_lengths, expCLD[sample[i]], color=’royalblue’, linewidth=3,

↪→label=’Untouched experimental CLD’)

plt.plot(ch_lengths,enDe[sample[i]], color=’seagreen’,label=’Encoded and

↪→decoded exerimental CLD’, linewidth=3)

plt.ylabel(’Chord length probability’,fontsize=15)

plt.xlabel(’Chord length [$\mu$m]’,fontsize=15)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.xlim([0,300])

plt.legend(fontsize=15)

plt.savefig(’population2/2PopPredEXP’+ str(sample[i]))
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Save CNN, Encoder, Autoencoder

[ ]: #Save CNN, Encoder, Autoencoder and decoder as .h5 files

cnn_model.save(’cnn_model.h5’)

autoencoder.save(’autoencoder.h5’)

D.2 Code for the implementation of the correction layer i.e
the Gaussian process regression model

[ ]: """

This code implments the Gaussian prcoess regression model. First, the dataset

↪→is imported with \

the experimental conditions. Note that the data is alread in the latent space.

↪→The input vector is then\

augmented to include the expeiremntal conditions. The imported data is then

↪→standardized. The AE and the \

experimental data is then imported. The GPR model is created. First some error

↪→clulations are made.\

The GPR model is fitted 100 times for each number of validation points and the

↪→averge error of \

the relative errors for each sample for each fitting is calculated and plotted.

↪→This examines \

what number of vaidation points provides the best fitting. When the appropriate

↪→number of vlaidation points\

is found, the final GPR model is implemented. After the prediciton, the

↪→prediciton is reverted back from\

the stanardized space. The last part of the code plots the prdictions and

↪→calcualtes the relative error.

Contributors: Solveig Sannes and George Makrygiorgos. Spring 2022

"""

[73]: #import the necessary packages

import numpy as np

import pandas as pd

import os, pdb

from pylab import *

# Plotting tool

import matplotlib.pyplot as plt

#modules for GPR

from sklearn.gaussian_process import GaussianProcessRegressor
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from sklearn.gaussian_process.kernels import ConstantKernel, RBF

# tensorflow and sklearn library

import os

import tensorflow as tf

from tensorflow.keras import backend as K

from tensorflow.python.framework import ops

os.environ[’TF_CPP_MIN_LOG_LEVEL’] = ’2’

from tensorflow.python.keras.models import load_model

from tensorflow.keras.models import Sequential

from tensorflow.keras import optimizers

from tensorflow.keras import losses

from tensorflow.keras.layers import Dense, Dropout, \

Flatten, Conv2D, MaxPool2D, Activation, LeakyReLU

from tensorflow.keras import utils

from tensorflow.python.keras.models import load_model

from sklearn.model_selection import train_test_split

[2]: #import the summary of experiments with experimental conditions

data_summary_df = pd.read_excel (r’Data_Summary.xlsx’)

print (data_summary_df)

exp_names = []

num_exp = len(data_summary_df["Experiment"])

Loading the GCLD, RCLD and experimental conditions

[3]: #loading experimental parameters

rpms=[]

ww=[]

for k in range(num_exp):

rpms.append(data_summary_df["RPM"][k])

ww.append(data_summary_df["Susp % w/w"][k])

[4]: #Defining dimensions

encoding_dim = 5

exp_params = 2

[5]: #loading the predicted CLD and experimental CLDs in latent space

Xdata=np.load(’latent_GCLD_pred.npy’)

Ydata=np.load(’latent_RCLD.npy’)

[6]: # Adding the experimental conditions to the GCLD vector

X_sample=np.zeros((Xdata.shape[0],encoding_dim+exp_params))

X_sample[:,0:encoding_dim]=Xdata

X_sample[:,encoding_dim]=rpms[:-1]
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X_sample[:,encoding_dim+1]=ww[:-1]

[7]: #Creating a vector to contain the predicitons

test_mean_cov=np.zeros((X_sample.shape[0],Ydata.shape[1],2))

Standardizing the data before Gaussian Process Regression

[8]: #function which standardizes the input

def standardize(sample):

mu = np.mean(sample,axis=0)

sig = np.std(sample, axis =0)

standard = sample

for i in range(len(sample[0])):

standard[:,i] = (sample[:,i]-mu[i])/sig[i]

return standard, mu, sig

[9]: #function which reverts the input back to the original space

def revertStandardize(sample, mu,sig):

revStand= sample

for i in range(5):

revStand[i] = (sample[i])*sig[i] + mu[i]

return revStand

[10]: #Storing the origina vectors before stadardization

YdataOriginal = np.array(Ydata.shape)

X_sampleOriginal = np.array(X_sample.shape)

YdataOriginal = Ydata.copy()

X_sampleOriginal = X_sample.copy()

[12]: #Standardizing the data and saving the means and the standard deviations

Ydata, muY, sigY = standardize(Ydata)

X_sample, muX, sigX = standardize(X_sample)

Loading the autoencoder and the untouched experimental CLDs

[14]: #loading autoencoder

autoencoder = load_model(’autoencoder.h5’)

#extracting the encoder from the autoencoder

decoder = autoencoder.layers[2]

decoder.summary()

[15]: #load experimental data in full space

experimental_CLD=np.load(’experimental_CLD.npy’)
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Gaussian Process Regression

Error calculations given the number of validation samples

[16]: def gp_train(X,Y,Nval,edim):

#edim := encoding dimension

exp_params = 2;

#saving test indices in order to compare to the experimental data later

indices = X.shape[0] #Number of total samples

indices=np.arange(indices)

#defining taining and validation set

if Nval>0:

X_train, X_val, Y_train, Y_val, indices_train,indices_test =

↪→train_test_split(X, Y, indices ,test_size=Nval,random_state=None)

else:

X_train = X

Y_train = Y

X_val= X

Y_val= Y

indices_train= indices

indices_test= indices

#Define GP parameters

noise = 0.0001

rbf = ConstantKernel(1.0) * RBF(1, (1e-6,1e4))

gpr = GaussianProcessRegressor(kernel=rbf, alpha=noise**2)

if Nval>0:

test_mean = np.zeros((Nval,edim,1))

error = np.zeros((Nval,edim,1))

iter_range = Nval

else:

test_mean = np.zeros((1,edim,1))

error = np.zeros((1,edim,1))

iter_range = 1

#iter_range is the same as number of validation points

for i in range(iter_range):

predicted=np.zeros((1,Ydata.shape[1]))

truth=np.zeros((1,Ydata.shape[1]))

#For given validation point, find all labels and compare to true value
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for j in range(Ydata.shape[1]):

current_gp = gpr.fit(X_train[:,:], Y_train[:,j])

#make prediction with the current model

mean,covar=current_gp.predict(X_val[i,:].

↪→reshape(1,edim+exp_params), return_cov=True)

predicted[0][j] = mean[0]

truth[0][j]=Y_val[i][j]

#Reverting the predictions back from the standardized space

revertCLD = np.zeros((1,edim))

decodedPredicted =np.zeros((1,edim))

revertCLD = revertStandardize(predicted[0].copy(), muY, sigY)

decodedPredicted =decoder(revertCLD.reshape(1,edim)).numpy()

#Selecting the correct CLD from the experimental data

UntoucedExperimental = experimental_CLD[indices_test[i]]

#calcuating the relative error between the prediction and the

↪→experimental CLD in the latent space

samp_error = np.linalg.norm(truth - predicted)/np.linalg.norm(truth)

#calcuating the relative error between the decoded prediction and the

↪→experimental CLD

sampleErrorDecoded = \

np.linalg.norm(UntoucedExperimental - decodedPredicted)/np.linalg.

↪→norm(UntoucedExperimental)

#save it

errorsDecoded.append(sampleErrorDecoded)

errors.append(samp_error)

#return the mean of the error based on validation points (scalar)

return np.mean(errors), np.mean(errorsDecoded)

[17]: #this function returns the average error of all the N fittings of the GPR

def error_converge(N, Nval, X, Y,edim):

av_error = np.zeros(N)

av_errorDecoded = np.zeros(N)

for j in range(N):

#returns avearge mean and error given the data and number of validation

↪→sets

av_error[j], av_errorDecoded[j] = gp_train(X,Y, Nval,edim)

return av_error, av_errorDecoded #np.mean(av_error)

[35]:
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#setting the number of validations samples and number of fittings of the GPR

↪→model

MaxNval = 24

N = 100 #number of evaluations

edim = 5

error_nval = np.zeros((MaxNval,N))

error_nvalDecoded = np.zeros((MaxNval,N))

for i in range(0,MaxNval):

error_nval[i,:], error_nvalDecoded[i,:] = error_converge(N, i, X_sample,

↪→Ydata,edim)

Plotting the average relative error in latent space

[38]: colorlist=’royalblue’

plt.figure(figsize=[7,5],dpi=200)

for k in range(error_nval.shape[1]):

#x = np.linspace(0, MaxNval-1, MaxNval)

plt.plot(range(0,MaxNval),error_nval[:,k],’o’, markersize=4,color=colorlist)

plt.xticks(range(0,MaxNval,2),fontsize=16)

plt.yticks(fontsize=16)

plt.xlabel(’Number of validation Points’,fontsize=18)

plt.ylabel(’Relative error’,fontsize=18)

plt.savefig(’Relative error’)

Plotting the average relative error of the decoded CLDs

[39]: #Decoded error plot

colorlist=’royalblue’

plt.figure(figsize=[7,5],dpi=200)

for k in range(error_nval.shape[1]):

x = np.linspace(0, MaxNval-1, MaxNval)

plt.plot(range(0,MaxNval),error_nvalDecoded[:,k],’o’,

↪→markersize=4,color=colorlist)

plt.xticks(range(0,MaxNval,2),fontsize=16)

plt.yticks(fontsize=16)

plt.xlabel(’Number of validation Points’,fontsize=18)

plt.ylabel(’ Decoded relative error’,fontsize=18)

plt.savefig(’Relative decoded error’)
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[45]: #calculating the mean and the standard deviation of the average relative error

↪→of the decoded CLDs

means=np.mean(error_nvalDecoded,axis=1)

var=np.std(error_nvalDecoded,axis=1)

plt.figure(figsize=[8,5], dpi=300)

plt.plot(np.arange(1,24,1),means[1:],’o’,label=’Mean’)

plt.plot(np.arange(1,24,1),var[1:],’o’,label=’Standard deviation’)

plt.xticks(np.arange(1,24,2), fontsize=12)

plt.yticks(fontsize=12)

plt.xlabel(’Number of validation points’,fontsize=15)

plt.ylabel(’Value’, fontsize=15)

plt.legend()

plt.savefig(’SampleSelect’)

Code to leave out a number of validation samples

[59]: a=np.arange(1,26)

ValidationN = 8

sample=np.random.choice(a, ValidationN, replace=False)

[61]: #Implementing the GPR model

noise = 0.0001

rbf = ConstantKernel(1) *RBF(1, (1e-3,1e3))

gpr = GaussianProcessRegressor(kernel=rbf, alpha=noise**2)

#vector for saving the calculated means and covariances

test_mean_cov=np.zeros((2,Ydata.shape[1]))

#creating the validation and test set

validation_sample =np.zeros((ValidationN,7))

for i in range(ValidationN):

validation_sample[i] = X_sample[sample[i]]

Xtest=X_sample.copy()

Ytest=Ydata.copy()

Xtest=np.delete(Xtest,sample,0) #leaving out samples

Ytest=np.delete(Ytest,sample,0)
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#creating vector to save GP predicitons

GP_result=np.zeros((ValidationN,Ydata.shape[1]))

#fitting the model to the data and make predicitons

for i in range(len(sample)):

for j in range(Ydata.shape[1]):

#print(Ydata[:,j])

current_gp = []

current_gp = gpr.fit(Xtest, Ytest[:,j].reshape(X_sample.

↪→shape[0]-ValidationN,1))

mean,covar=current_gp.predict(validation_sample[i].

↪→reshape(1,encoding_dim+exp_params), \

return_cov=True)

print("======================")

print(’The mean is’)

print(mean[0][0])

print(’The covariance’)

print(covar[0][0])

print(’The true latent value is’)

print(Ydata[sample[i],j])

print("======================")

test_mean_cov[0,j]= mean[0][0]

test_mean_cov[1,j]= covar[0][0]

GP_result[i]=test_mean_cov[0,:]

Revert back samples after standardization

[62]: #Reverting back to non-stndardized form

for i in range(len(GP_result)):

GP_result[i] = revertStandardize(GP_result[i], muY, sigY)

Decode the predictions from the Gaussian Process Regression

[64]: decoded_CLD=np.zeros((ValidationN,100)) #vector for storing decoded GP

↪→predicitons

decoded_true_CLD =np.zeros((ValidationN,100)) #vector for storing decoded CLD

↪→predicitons

for i in range(len(GP_result)):

decoded_CLD[i] =decoder(GP_result[i].reshape(1,encoding_dim)).numpy()

↪→#test_mean_cov grabs only 1 value
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decoded_true_CLD[i] =decoder(YdataOriginal[sample[i],:].

↪→reshape(1,encoding_dim)).numpy()

Plot the results

[65]: #Loading real chord length bins

ch_lenghts = np.loadtxt(’ch_len.csv’)

Plot the performance of the Gaussian Process Regression in the validation samples

[71]: for i in range(ValidationN):

plt.figure(figsize=[8,5],dpi=200)

label=’sample’+ str(sample[i])

plt.title(’Sample ’+ str(sample[i]), fontsize=15)

plt.plot(ch_lenghts.reshape(100,),decoded_CLD[i], color=’indianred’,\

label=’Decoded GPR predicted CLD’,linewidth=3)

plt.plot(ch_lenghts.reshape(100,),decoded_true_CLD[i],color=’seagreen’,\

label=’Encoded and decoded experimental CLD’,linewidth=3)

plt.plot(ch_lenghts,experimental_CLD[sample[i]],color=’royalblue’,\

label=’Untouched experimental CLD’,linewidth=3)

plt.xlabel(’Chord length [$\mu$m]’,fontsize=15)

plt.ylabel(’Chord length probability’, fontsize=15)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.xlim([0,250])

plt.legend(fontsize=14)

plt.savefig(’results/’+label)

Prediction of GCLD from experimental PSSD without the Gaussian pro-
cess regression

[67]: #load experimental PSSD

experimentalPSSD = np.load(’experimentalPSSD.npy’)

#load CNN network

cnn_model=load_model(’cnn_model.h5’)

#predict latent GCLD

latent_GCLD_pred= np.zeros((ValidationN,5))

for i in range(ValidationN):

latent_GCLD_pred[i]=cnn_model.predict(experimentalPSSD[sample[i]].

↪→reshape(1,30,300,5))[0]

#decode from latent to full space
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GCLD_pred =np.zeros((ValidationN,100))

for i in range(ValidationN):

GCLD_pred[i]= decoder(latent_GCLD_pred[i].reshape(1,encoding_dim)).numpy()

[68]: #Plot the results

for i in range(ValidationN):

plt.figure(figsize=[8,5],dpi=200)

label=’sample’+ str(sample[i])

plt.title(’Sample ’+ str(sample[i]), fontsize=15)

plt.plot(ch_lenghts.reshape(100,),GCLD_pred[i].reshape(100,),\

color=’mediumorchid’, label =’Decoded GCLD’,linewidth=3)

plt.plot(ch_lenghts.reshape(100,),decoded_CLD[i].reshape(100,), \

color=’indianred’,label=’Decoded GP predicited CLD’,linewidth=3)

plt.plot(ch_lenghts.reshape(100,),experimental_CLD[sample[i]].

↪→reshape(100,), \

color=’royalblue’, label=’Untouched experimental CLD’,linewidth=3)

plt.xlabel(’Chord length [$\mu$m]’,fontsize=15)

plt.ylabel(’Chord length probability’, fontsize=15)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.xlim([0,550])

plt.legend(fontsize=14)

plt.savefig(’results/GCLD’+label)

[69]: #Calculate the error of the prdicitons

errorGP = np.zeros(ValidationN)

errorGCLD = np.zeros(ValidationN)

for i in range(ValidationN):

errorGP[i] = \np.linalg.norm(experimental_CLD[sample[i]].reshape(100,) -

↪→decoded_CLD[i].reshape(100,))\

/np.linalg.norm(experimental_CLD[sample[i]].reshape(100,))

errorGCLD[i] = np.linalg.norm(experimental_CLD[sample[i]].reshape(100,) -

↪→GCLD_pred[i].reshape(100,))\

/np.linalg.norm(experimental_CLD[sample[i]].reshape(100,))

[70]: for i in range(ValidationN):

print(’Sample ’, sample[i],’: Relative error GPR:’,errorGP[i]*100,’

↪→Relative error GCLD: ’,errorGCLD[i]*100)

D.3 Code for generating simulated PSDs

[ ]: """

This code generates simualted PSDs. A large number of crystals are simualted by

↪→defining the \
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width L1 and obtaining the length L2 by multiplying with the aspect ratio. All

↪→the crystals are gathered \

in a 2D histogram which represent the PSD. The PSDs are saved in a tesor with

↪→dimensions NoSamplesx30x300x5.

Contributors: John Tsortos, John Maggioni and Solveig Sannes. Spring

↪→2020-Spring 2022.

"""

[2]: # Import the required modules

import numpy as np

import pandas as pd

import pylab as pl

import scipy, glob, os, fnmatch, re, sklearn, time, sys

import matplotlib.pyplot as plt

# Parallel Computing

from joblib import Parallel, delayed

# Convex Hull

from scipy.spatial import ConvexHull, convex_hull_plot_2d , distance

from scipy.interpolate import interp1d, griddata

from scipy.signal import savgol_filter as svf

from scipy.integrate import simps

# Draw 3D and 2D polygons

import pyny3d.geoms as pyny

[81]: # Number of Random Particles to approximate each Population

Np = int(5e4)

# Number of Random Populations

Npop = 10

# Type of Crystal

Type = ’Needles’ # Alternative: Platelets

# Select a Distribution

# Set AR > 1 for needles and 0 < AR <1. for platelets

L1PBE = np.zeros((Npop,30))

L3PBE = np.zeros((Npop,300))

f = np.zeros((Npop,L1PBE.shape[1],L3PBE.shape[1]))

PSSD = np.zeros((Npop, L1PBE.shape[1],L3PBE.shape[1],5))

for i in range(0,Npop):

Lm1 = np.random.uniform(10,50) #defining mean of L1
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cv1 = 0.15 + np.random.uniform(-0.01,0.01) #defining the variance

L1 = np.random.normal(Lm1,cv1*Lm1, Np) #generate L1s

#Generate an aspect ratio

AR = np.random.uniform(1,1.5,Np)

#Define L3

L3 = L1*AR

# Define the "discretisation grid"

L1g = np.linspace(0., Lm1*(1+3*cv1), L1PBE.shape[1]+1)

L3g = np.linspace(0.,(AR*Lm1*(1+3*cv1)).max(), L3PBE.shape[1]+1)

# Actual Cells width

dL1 = np.diff(L1g)

dL3 = np.diff(L3g)

# Representative points in each cell (mid-points)

L1PBE[i,:] = L1g[:-1]+dL1/2

L3PBE[i,:] = L3g[:-1]+dL3/2

# Approximate with 2D Histogram and smooth the results

A = svf(svf(np.

↪→histogram2d(L1,L3,bins=[L1g,L3g],density=True)[0],3,1,axis=0),3,1)

# REmove the unphysical zeros due to smoothing

A[A<0.] = 0.

# Normalise the Integral

A /= simps(simps(A,L3PBE[i,:]),L1PBE[i,:])

f[i,:,:] = A

#Saving the PSSDs in a vector with shape (nSamples,30,300,5)

for k in range(PSSD.shape[2]):

PSSD[i,:,k,0]= L1PBE[i]

PSSD[i,:,k,3]= dL1

for j in range(PSSD.shape[1]):

PSSD[i,j,:,1]=L3PBE[i]

PSSD[i,j,:,4]=dL3

PSSD[i,:,:,2]= A

#%% Check for Consistency

if Type == ’Needles’:

if np.any(L1>L3):

print("ERROR: Aspect Ratio not consistent")
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sys.exit()

if Type == ’Platelet’:

if np.any(L3>L1):

print("ERROR: Aspect Ratio not consistent")

sys.exit()

# Save the Simulated DAta

np.savez(’PSSD_populations.npz’, Xtrain=PSSD)

D.4 Code for generating the simulated CLDs

[ ]: """

This code generates the CLDs from the PSD data with a geometric model. Each

↪→crystal in the PSD is\

subject to rotations and projections. The generated CLDs are then saved.

Contributors: John Tsortos, John Maggioni and Solveig Sannes. Spring

↪→2020-Spring 2022.

"""

[ ]: #Importing packages

import pdb

import math

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import numpy as np

import pandas as pd

import scipy, glob, os, fnmatch, re, sklearn, time, sys

import matplotlib.pyplot as plt

import seaborn as sns

# Parallel Computing

from joblib import Parallel, delayed

# Convex Hull

from scipy.spatial import ConvexHull, convex_hull_plot_2d

# Draw 3D and 2D polygons

import pyny3d.geoms as pyny

from mpl_toolkits.mplot3d import Axes3D

[ ]: def rotationnmatrix(phi,theta,psi):

# This function yields a rotation matrix in the 3D-Euclidean Space

# based on the Euler Angles, psi, theta, phi.

# phi rotates around the original axis z
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# theta rotates around the axis x generated by the first rotation

# psi rotates around the axis z generated after the first two rations

# Each rotation is represented by a 3 dimensional matrix

# The output of this function is a tuple "P" containing the aforementioned

↪→matrices

# The three angles, scalars

psi = float(psi)

theta = float(theta)

phi = float(phi)

# The three rotation matrices

P3 = np.array([[np.cos(psi),-np.sin(psi),0.],

[np.sin(psi),np.cos(psi),0.],

[0.,0.,1.]])

P2 = np.array([[1.,0.,0.],

[0.,np.cos(theta),-np.sin(theta)],

[0.,np.sin(theta),np.cos(theta)]])

P1 = np.array([[np.cos(phi),-np.sin(phi),0.],

[np.sin(phi),np.cos(phi),0.],

[0.,0.,1.]])

return (P1,P2,P3)

[ ]: C = lambda L1,L2,L3: np.array([[0.,0.,0.],[L1,0.,0.],[L1,L2,0.],[0.,L2,0.],[0.

↪→,0.,L3],[L1,0.,L3],[L1,L2,L3],[0.,L2,L3]]).T

[ ]: def projection2D(psi,theta,phi,L1,L2,L3):

# Rotation Matrix

P = rotationnmatrix(psi,theta,phi)

# Projection Matrix onto X1-X2 Plane

Pxy = np.array([[1.,0.,0.],[0.,1.,0.]])

# Original Crystal

C0 = C(L1,L2,L3)

# Rotated Crystal

Cr = P[0]@P[1]@P[2]@C0

# Projected Crystal

Cp = Pxy@Cr

Feret = abs(Cp.T.min(0)-Cp.T.max(0))

# Feret = np.array([Feret.max(),Feret.min()])

# Feret = np.array([F0.max(),F0.min()])
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return C0,Cr,Cp,Feret

[ ]: def Ideal_CLD_generator(x):

# This function generates the ideal CLD distribution

# based on a purely geometric model.

# Inputs are the Lengths of the particle and the angles of rotation

# C is the function producing a Crystal modelled as a polytope.

(L1,L2,L3),C,(phi,theta,psi) = x

# Rotation Matrices

# Rotation around the original z-axis by phi

P1 = np.array([[np.cos(phi),-np.sin(phi),0.],

[np.sin(phi),np.cos(phi),0.],

[0.,0.,1.]])

# Rotation by theta around the x-axis after the rotation by phi

P2 = np.array([[1.,0.,0.],

[0.,np.cos(theta),-np.sin(theta)],

[0.,np.sin(theta),np.cos(theta)]])

# Rotation by psi around the z-axis after the rotation by theta

P3 = np.array([[np.cos(psi),-np.sin(psi),0.],

[np.sin(psi),np.cos(psi),0.],

[0.,0.,1.]])

# Original Crystal

C0 = C(L1,L2,L3)

# Rotated Crystal

Cr = P3@P2@P1@C0

# Projected Crystal

Cp = Pxy@Cr

# Feret Diameters along X1 and X2

Feret = abs(Cp.T.min(0)-Cp.T.max(0))

weight = Feret[1]

### Generate the chord length distribution associated with

# the specific projections of the individual particle

# Find the convex hull of the projection

hull = ConvexHull(Cp.T)

I = np.array([np.arange(0.,hull.vertices.size-1),np.arange(1.,hull.vertices.

↪→size)])

I = np.append(I.T,np.array([[0.,hull.vertices.size]]),axis=0)

# Random side thorugh which the chords are drwan
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N = np.asarray([np.random.choice(hull.vertices.size-1, 2,replace=False) for

↪→i in range(0,Nc)])

# Random values for the parametrisation of the segments

# beloging the perimeter of the projection and used to draw the chord

T1 = np.random.uniform(0.,1.,(Nc))

T1 = np.array([T1,1-T1])

T2 = np.random.uniform(0.,1.,(Nc))

T2 = np.array([T2,1-T2])

# Find the coordinates of the random Chord

X1 = np.asarray([Cp.T[I.astype(int)[N[i,0],:]].T@T1[:,[i]] for i in

↪→range(0,Nc)]).reshape(Nc,2)

X2 = np.asarray([Cp.T[I.astype(int)[N[i,1],:]].T@T2[:,[i]] for i in

↪→range(0,Nc)]).reshape(Nc,2)

# Compute the Chord length (Euclidean distance between the individual

↪→extremities of each chord)

Chord = np.sqrt(((X1-X2)**2).sum(1))#[:,None]

return np.append(Chord,weight)

Here we load the pre-existing data to re-generate the labels

[ ]: data = np.load(’PSSD_populations.npz’)

X = data[’Xtrain’]

PSSD = X

Here generate CLDs from the PSDs

[ ]: # Matrix to store log chord histogram for each image

chords_mat = np.zeros((images,100))

for i in np.arange(images):

print(i)

Chord_arr = np.array([])

Weight_arr = np.array([])

# Particles into bins

#If PSSD is full of zeros -> CLD is array of zeros

if np.sum(PSSD[i,:,:]) == 0:

chords_mat[i,:] = np.zeros((1,100))

else:

emp_psd = np.random.multinomial(particles, PSSD[i,:,:,2].flatten()\
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/np.sum(PSSD[i,:,:,2])).

↪→reshape(rows,col) # <- normalization

# Loop through each bin

for j in np.arange(rows):

for k in np.arange(col):

# Loop through each particle

for l in np.arange(emp_psd[j,k]):

#%% Generate the projections

# Initialise the Matrix containing Feret Diameters (Max and

↪→Min)

Feret = np.zeros((int(Np),2))

weight = np.ones((int(Np*Nc),))

# Initialise the Chord Matrix

Chord = np.zeros((Nc,Np))

# Projection Matrix onto X1-X2 Plane

Pxy = np.array([[1.,0.,0.],[0.,1.,0.]])

# Rotation angles, random

psi0 = np.random.uniform(0,2*np.pi,(1,Np))

theta0 = np.random.uniform(0,2*np.pi,(1,Np))

phi0 = np.arcsin(np.random.uniform(-1,1,(1,Np)))

# Particle length: sample from uniform dist defined by L1 &

↪→L2 bin edges

#Check if we’re at the beginning of the row/column j=

↪→row =30

#k =300

if j == 0:

L1 = np.random.uniform(0, PSSD[i,j,0,0])

else:

L1 = np.random.uniform(PSSD[i,j-1,0,0], PSSD[i,j,0,0])

if k == 0:

L2 = np.random.uniform(0, PSSD[i,0,k,1])

else:

L2 = np.random.uniform(PSSD[i,0,k-1,1], PSSD[i,0,k,1])
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#L3 is just the same as L1

L3 = L1

# Input list for the parallelised function

par_arg = [((L1,L2,L3),C,(phi0[0,p],theta0[0,p],psi0[0,p]))

↪→for p in range(0,Np)]

# Parallelised function

Dummy = Parallel(n_jobs=2, backend="loky")(

map(delayed(Ideal_CLD_generator), par_arg));

# Convert the list output of parallel into an array

# It contains both the chords and the weights

Chord = np.asarray(Dummy);

# Define the weights vector

weight = np.kron(Chord[:,1][:,None],np.ones((Nc,1)))

# Eliminate the weigths from the Chord Matrix

Chord = Chord[:,:-1]

# store chords and corresponding weights into Chord_arr for

↪→a given image

Chord_arr = np.append(Chord_arr,Chord.flatten())

Weight_arr = np.append(Weight_arr,weight.flatten())

Chord_hist = np.histogram(np.log10(Chord_arr),bins=100,range=(-1,3),\

density=True,weights=Weight_arr)[0]

Chord_hist = Chord_hist/np.sum(Chord_hist)

chords_mat[i,:] = Chord_hist

[ ]: #Save datset

np.savez(’GM_needle_train_2.npz’, Xtrain= PSSD,Ytrain=chords_mat)

D.5 Code for generating CLDs from FBRM data

[ ]: """

This code takes in the FBRM data from the experiments and generates the

↪→experimental CLDs. Then the CLDs \

are encoded to the latent space and saved.

Contributors: John Maggioni, Solveig Sannes and George Makrygiorgos. Spring

↪→2022

"""
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[ ]: #Importing packages

import numpy as np

import pandas as pd

import os, pdb

from pylab import *

import matplotlib.pyplot as plt

# 3D Plotting tool

from mpl_toolkits.mplot3d import Axes3D

import seaborn as sns

# from joblib import Parallel, delayed

from datetime import datetime, timedelta

from scipy.integrate import simps as simpson

from scipy.signal import savgol_filter as svf

from scipy import stats

# suppress tensorflow compilation warnings

import os

import tensorflow as tf

from tensorflow.keras import backend as K

from tensorflow.python.framework import ops

os.environ[’TF_CPP_MIN_LOG_LEVEL’] = ’2’

from tensorflow.keras.models import Sequential

from tensorflow.keras import optimizers

from tensorflow.keras import losses

from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D,

↪→MaxPool2D, Activation, LeakyReLU

from tensorflow.keras import utils

from tensorflow.python.keras.models import load_model

Generating the experimental CLD from FBRM data

[ ]: #deine filepath

FilePath = ’FBRM-Daten csv’

[ ]: #print summary of experimental data

data_summary_df = pd.read_excel (r’Data_Summary.xlsx’)

print (data_summary_df)

exp_names = []

num_exp = len(data_summary_df["Experiment"])

for k in range(num_exp):

exp_names.append(data_summary_df["Experiment"][k])
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[ ]: #ExpName = [exp_names[1] + ’ Default’]

# Define the CLD list

CLD_Experimental = []

Real_Chord = []

for jj in range(len(exp_names)-1): #Don’t get the NaN

ExpName = [exp_names[jj] + ’ Default’]

#print(ExpName)

# Use panda to extract the csv files

DataF = pd.read_csv(FilePath + ’/’ + ExpName[0] + ’.csv’,delimiter=’,’,

↪→header=1)

DataOriginal=DataF

# Chords, as midpoints of the bins

IntChords = DataF.to_numpy()[0,3:]

IntChords = IntChords.astype(float)

Chords = DataF.to_numpy()[1,3:-1]

Chords = Chords.astype(float)

Real_Chord.append(Chords)

# CLD

ChordDist = DataF.to_numpy()[2:,3:-1]

ChordDist = ChordDist.astype(float)

ChordDist[ChordDist<=0.] = 1e-32

ChordDist /=simpson(ChordDist,Chords)[:,None]

# Square-weighted

ChordDist_2 = ChordDist*(Chords**2)/simpson(ChordDist*(Chords**2),Chords)[:

↪→,None]

# Cube-weighted

ChordDist_3 = ChordDist*(Chords**3)/simpson(ChordDist*(Chords**3),Chords)[:

↪→,None]

# Absolute time

DateFormat = DataF.to_numpy()[2:,0]

TimeFormat = DataF.to_numpy()[2:,1]

a = [DateFormat[i] + ’ ’ + TimeFormat[i] for i in range(0,ChordDist.

↪→shape[0])]

del DataF, DateFormat, TimeFormat

Dates = [datetime.strptime(a[i], ’%d.%m.%Y %H:%M:%S’) for i in

↪→range(0,len(a))]

Duration = [Dates[i]-Dates[0] for i in range(0,len(Dates))]

Duration = [Duration[i].total_seconds() for i in range(0,len(Dates))]

Time = np.asarray(Duration)

del a, Dates, Duration

plt.plot(np.log(Chords),ChordDist[-1].T);

CLD_Experimental.append(ChordDist[-1])
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[ ]: #defining number of bins

nbins=len(CLD_Experimental[0])

nexp = len(CLD_Experimental)

Save the real chord length bins

[ ]: #save the real chord length bins as a .csv file

np.savetxt(’ch_len.csv’, Real_Chord[1], delimiter=",")

ch_lenghts = Real_Chord

Load the autoencoder

[ ]: #Load the AE, encoder & decode the CLD of each experiment

autoencoder = load_model(’autoencoder.h5’)

#extracting the encoder from the autoencoder

encoder = autoencoder.layers[1]

encoder.summary()

#finding the output size of encoding layer

encoder_output=autoencoder.layers[1].output.shape[1]

#creating empty array for encoded latent_CLD’s

latent_RCLD=np.zeros((len(CLD_Experimental),encoder_output))

Encoding the experimental CLDs

[ ]: #using encoder to encode the CLDs and then saving the encoded CLDS as a .npy

↪→file

for i in range(len(CLD_Experimental)):

cld_input=CLD_Experimental[i].reshape(1,100)

latent_RCLD[i,:]=encoder(cld_input).numpy()

#save latent space experimental CLD

np.save("latent_RCLD.npy", latent_RCLD)

[ ]: #Saving the untouched experimental CLDs

np.save("experimental_CLD.npy", CLD_Experimental)
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D.6 Code for generating PSDs from QicPic data

[ ]: """

This code generates the PSD from the QicPic data. The PSD are then passed to

↪→the CNN model to make \

predicitons about the CLD. The predicted GCLDs are then saved.

Contributors: John Maggioni, Solveig Sannes and George Makrygiorgos. Spring

↪→2022

"""

[ ]: #import packages

import numpy as np

import pandas as pd

import os, pdb

from pylab import *

import matplotlib.pyplot as plt

# 3D Plotting tool

from mpl_toolkits.mplot3d import Axes3D

import seaborn as sns

# from joblib import Parallel, delayed

from datetime import datetime, timedelta

from scipy.integrate import simps as simpson

from scipy import stats

# suppress tensorflow compilation warnings

import os

import tensorflow as tf

from tensorflow.keras import backend as K

from tensorflow.python.framework import ops

os.environ[’TF_CPP_MIN_LOG_LEVEL’] = ’2’

from tensorflow.keras.models import Sequential

from tensorflow.keras import optimizers

from tensorflow.keras import losses

from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D,

↪→MaxPool2D, Activation, LeakyReLU

from tensorflow.keras import utils

from tensorflow.python.keras.models import load_model
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[ ]: #reads and print the data summary

data_summary_df = pd.read_excel (r’Data_Summary.xlsx’)

print (data_summary_df)

[ ]: #keeping track of the number of each experiment

exp_names = []

num_exp = len(data_summary_df["Experiment"])

for k in range(num_exp-1):

experiment_number=data_summary_df["Experiment"][k].split(’-’)[-1]

if experiment_number[-1] == ’0’:

exp_names.append(int(experiment_number))

else:

experiment_number=experiment_number.split(’0’)[-1]

exp_names.append(int(experiment_number))

Read the PSSD and convert to correct shape for the CNN

[ ]: Population_PSSD = []

vecPSSD =np.zeros((len(exp_names),1,30,300,5))

for w in range(len(exp_names)):

print(w)

pssd_info = []

FilePath = r"QicPic-Daten"

ExpName = data_summary_df["Population"][w]

jj = ExpName

QicPic_Shape = np.array([1.,2.])

FMax_lim = 0.

Fmin_lim = 0.

AR_lim = 0.

#%%

# Depending on the Format

try:

QicPic_DF = pd.read_excel(FilePath + ’/’ + jj + ’.xlsx’, header=0)

except:

try:

QicPic_DF = pd.read_csv(FilePath + ’/’ + jj + ’.csv’, sep=’;

↪→’,header=0)

except:

break

# From metres to microns

QicPic_DF[’FERET_MAX’] *= 1e6
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QicPic_DF[’FERET_MIN’] *= 1e6

QicPic_DF[’ASPECT_RATIO’] = 1/QicPic_DF[’ASPECT_RATIO’]

# Volume of Each Crystal

QicPic_DF[’VOLUME’] =

↪→QicPic_DF[’FERET_MAX’]**QicPic_Shape[1]*QicPic_DF[’FERET_MIN’]**QicPic_Shape[0]

FMax_Spacing = 50*(QicPic_DF[’FERET_MAX’].max()<=400) +

↪→250*(QicPic_DF[’FERET_MAX’].max()>400)

Fmin_Spacing = FMax_Spacing/2*((QicPic_DF[’ASPECT_RATIO’]).median()<=4) +

↪→FMax_Spacing/2*((QicPic_DF[’ASPECT_RATIO’]).median()>4)

AR_Spacing = 1*(QicPic_DF[’ASPECT_RATIO’].median()<=4) +

↪→2*(QicPic_DF[’ASPECT_RATIO’].median()>4)

if FMax_lim == 0.:

FMax_lim = QicPic_DF[’FERET_MAX’].max()-QicPic_DF[’FERET_MAX’].

↪→max()%FMax_Spacing+FMax_Spacing

else:

FMax_lim = FMax_lim

if Fmin_lim == 0.:

Fmin_lim = QicPic_DF[’FERET_MIN’].max()-QicPic_DF[’FERET_MIN’].

↪→max()%Fmin_Spacing+Fmin_Spacing

else:

Fmin_lim = Fmin_lim

if AR_lim == 0.:

ARlim = (QicPic_DF[’ASPECT_RATIO’]).

↪→max()-((QicPic_DF[’ASPECT_RATIO’]).max())%AR_Spacing+AR_Spacing

else:

ARlim =AR_lim

# Bin Sizes

# Computed according to:

# Scott, D. 1979.

# On optimal and data-based histograms.

# Biometrika, 66:605-610

W_FMax = 3.5*QicPic_DF[’FERET_MAX’].std()*QicPic_DF[’FERET_MAX’].size**(-1/

↪→3)

W_Fmin = 3.5*QicPic_DF[’FERET_MIN’].std()*QicPic_DF[’FERET_MIN’].size**(-1/

↪→3)

W_AR = 3.5*QicPic_DF[’ASPECT_RATIO’].std()*QicPic_DF[’ASPECT_RATIO’].

↪→size**(-1/3)

FMaxbins=np.linspace(0,FMax_lim,301)

Fminbins = np.linspace(0,Fmin_lim,31)
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FM = FMaxbins[:]+W_FMax

Fm = Fminbins[:]+W_Fmin

V = np.kron(FM[:,None]**QicPic_Shape[1],Fm[None,:]**QicPic_Shape[0])

PSSD,_,_ = np.histogram2d(QicPic_DF[’FERET_MAX’]

↪→,QicPic_DF[’FERET_MIN’],bins=[FMaxbins,Fminbins],density=True )

#%% Plot the Results

values = np.vstack([QicPic_DF[’FERET_MAX’], QicPic_DF[’FERET_MIN’]])

kernel = stats.gaussian_kde(values)

xmin = QicPic_DF[’FERET_MAX’].min()

xmax = QicPic_DF[’FERET_MAX’].max()

ymin = QicPic_DF[’FERET_MIN’].min()

ymax = QicPic_DF[’FERET_MIN’].max()

X, Y = np.mgrid[xmin:xmax:300j, ymin:ymax:300j]

positions = np.vstack([X.ravel(), Y.ravel()])

Z = np.reshape(kernel(positions).T, X.shape)

plt.contourf(FM[:-1],Fm[:-1],(PSSD).T)

######################################################

#Create Sample

n_channels=5

sample = np.zeros((1,len(Fm),len(FM),n_channels))

"""

Channel 1: L2 (Fm)

Channel 2: L1 (FM)

Channel 3: PSSD Value

Channel 4: DL2 #Width of bin

Channel 5: DL1

"""

#creating a vector for the samples with 5 cahnnels

sample = np.zeros((1,len(Fm)-1,len(FM)-1,n_channels))

for i in range(len(Fm)-1):

for j in range(len(FM)-1):

sample[0,i,j,0] = Fm[i]/1000

sample[0,i,j,1] = FM[j]/1000

sample[0,i,j,2] = PSSD.T[i,j]
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sample[0,i,j,3] = (Fm[i+1]-Fm[i])/1000

sample[0,i,j,4] = (FM[j+1]-FM[j])/1000

#Saving the sample PSSD

vecPSSD[w] = sample

#Store the pssd as input for the CNN and the name in order to match with

↪→the data_summary

psd_info=[sample,data_summary_df["Population"][w]]

Population_PSSD.append(psd_info)

last_iteration=w

[ ]: #Saving the normalized experimental PSSD

vecPSSD=vecPSSD.reshape(26,30,300,5)

np.save(’experimentalPSSD.npy’ ,vecPSSD)

Loading the CNN to make predictions about the GCLD

[ ]: #loading the trained CNN model

cnn_model=load_model(’cnn_model.h5’)

latent_dim = 5

#Creating a vector for predicitons

latent_GCLD_pred = np.zeros((len(vecPSSD),latent_dim))

#Make predicitons for the GCLD from the expeirmental PSSD

for i in range(len(vecPSSD)):

latent_GCLD_pred[i]=cnn_model.predict(vecPSSD[i].reshape(1,30,300,5))[0]

[ ]: #Save the predicitons in a .npy fil

np.save("latent_GCLD_pred.npy", latent_GCLD_pred)
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