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1 Introduction

1.1 Background and Motivation

This masters thesis is based on applying machine learning concepts to the field of flow metering.
Thus the motivation is two-fold: the first part covers background on virtual flow metering and the
second states motivation over the inclusion of data science principles.

1.1.1 Need for Virtual Flow Metering

Flow measurement in oil and gas production is necessary, especially relative flow rates of oil and
gas, as they dictate well management and are important for optimal production from a well or
even network of wells.

Physical methods of measuring relative flow rates include well testing, conventional and deductive,
where multiphase flows are sent into a separator and single-phase flows are measured. This could
be done directly by sampling production fluid from each well, known as conventional well testing.
Another way to achieve the purpose would be to turn off the well in the network, measure the
single-phase flow rates of the rest of the network via a separator and back-calculate the flow rates
of the desired well. This is known as deduction well testing. These methods require a separate
flowlines and separators adding to costs and can cause production losses [13]. Moreover, these
operations do not perform well if continuous information is required about the flow rates.

Multiphase flow meters (MPFMs) constitute another physical method, where flow rates of all
phases are measured without separation and at real time. Such meters can be installed at well-
heads and use indirect measurements such as phase velocities and phase fractions to estimate flow
rates [2]. Since a typical well production would contain oil, water, gas, sand, wax and other solid
impurities, these can block and even damage the MPFMs leading to their failure to estimate flow
rates accurately. This is further detrimental as these meters are expensive to procure and maintain.

The unreliable and round-about nature of physical methods of flow metering call for indirect meth-
ods of measurement where available field data can be utilised to estimate flow rates. Virtual Flow
Metering (VFM) achieves this purpose by using easily available data such as bottom-hole pressures
and temperature, downstream pressures and temperatures and choke openings to estimate mul-
tiphase flow rates periodically or in real-time [1]. Since VFM only requires readily available data,
it does not call for the installation of additional physical systems and can thus be implemented
even on existing fields at any phase in their lifetime. In essence, VFM is a computational model
that processes available data to produce flow rates.

Based on the types of models used VFM can be divided into two approaches: First Principles
VFM and Statistical/Data-driven VFM. First principles VFM is based on physical or mechanistic
models where entire networks or sub-sections of it are modelled to replicate the field in flow
behaviour. One is required to solve conservation equations for momentum, mass and heat which
are dynamic in nature [5]. This form of modelling can be complex as it requires knowledge of
empirical correlations that determine relationships between pressures and flow rates as well as
constraints that accompany them. These methods however, produce robust models due to their
rigorous understanding of the flow behaviour in a network at the expense of computational power.
On the other hand, data-driven models seek to statistically alter input to produce desired flow
rates. Machine learning models examine trends in the relationship between already available input
and output data and fit a mathematical model on them which is used to predict outputs for new
input data [16]. Such models can provide accurate real-time data but are heavily dependant on
the availability of quality data that is used to train the model.
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1.1.2 Machine Learning Models

Machine learning (ML) models aim to ’learn’ trends and relationships between different parameters
set as inputs and outputs to predict outcomes for similar set of data. All of this is carried out
without knowing the actual physical behaviour of the system. In the field of VFM, it is a simpler
way of achieving the purpose of flow rate prediction without needing to have extensive knowledge
about flow modelling which is more complicated in the instance of multiphase flow.

The process of building a machine learning model begins with collecting data and processing.
This entails differentiating input data from output data and selecting certain ’features’ which are
indirectly related to the output and can increase the chances of the ML model towards fitting a
better model on the data. It is also useful to have a sufficient amount of noisy data, i.e. data with
outliers so that model can cope with irregular data and prevent over-fitting. In some cases, this
is induced artificially if the original data is not sufficiently noisy. The input data is then divided
into training and testing sets where the training set is used to optimize the model and the testing
set is to test the accuracy of the trained model. Once test, the model can be re-calibrated to
better predict outputs. After segregating the data, the model is trained by optimizing some of
its parameters to minimise a certain cost function. Usually a cost function is designed so that
the error in prediction of output is minimized. A trained ML model is essentially a mathematical
model that is fitted on the inputs so as to give its desired outputs. This trained model is used to
predict outputs for a new set of inputs [16].

Neural networks (NNs) are one such way of creating an ML model. Feed-forward multi-layer
NNs include an input and an output layer and several hidden intermediate layers which produce
a highly non-linear relationship between input and output [4]. Although one does not need to
know the exact relationship between the inputs and outputs, specific knowledge about the the field
of application is always helpful to nudge the machine learning model towards replicating similar
functions. Such NN models, have been observed to work well for steady state flow scenarios as
compared to transient flow [10].

Other methods like, linear regression can be employed for linear relationships. In the case of there
existing a non-linear relationship between the suggested input and outputs, the inputs are modified
such that a linear relationship is exploited. Several improvements on the NN have been discussed
in detail in a literature review [16] such as the combination of NNs with ensemble learning methods
like regression tree method, adding more features as inputs using principle component analysis,
using recurrent neural networks and space vector models.

1.2 Problem Formulation

In this project, we aim to predict phase flow rates for oil, water and gas for several flow scenarios in
a single horizontal pipe. Four different types of neural network models are built with variations in
the number of inputs and hidden layers. Pressures at different positions in the pipe are considered
as inputs and the flow rate of each individual phase are considered as the outputs. The data-sets
vary in increasing complexity with changes in the fluid composition (Gas-Oil Ratio and Watercut)
as well as boundary conditions (outlet pressure and operating temperature).

The model is then trained and its hyperparamters also optimized for different data-sets. K-fold
cross-validation is used to set the regularization co-efficient by further dividing the training set into
a number of folds. The various terms related to a neural network and how it is built is described
in Section 2. The methodology used to train the NN is described in Section 4.

The data is generated from an OLGA model and a general methodology is created for generat-
ing simulation files and extracting data from the OLGA simulations. The OLGA models and
supporting methodologies are described in Section 3.

2



1.3 Related Work

Much work has been carried out towards prediction flow rates for transient flow scenarios. The
usage of NNs is adapted for this application in the form of recurrent NNs which use input data
from previous time-steps to predict output at the current time-step. Long-Short Term Memory
is a commonly used recurrent NN model as seen in [3]. Apart from NNs, industrially established
processes such as the FieldWare Production Universe created by Shell are also in application
[8]. This system includes well testing of all individual wells in a network, with additional step-
wise changes in the well parameters to generate a data that may apply to a plethora of flow
scenarios. Such data from each of the wells is combined to generate a total network flow rates.
This total network flow rate can also be generated by multiphase flow modelling carried out in
the same manner. The data thus generated can be used to train ML models and then used for
future prediction [11]. Many instances also combine linear regression techniques along with NNs to
increase the efficiency of the NN models. Once adapted for transient flow conditions, VFM models
can be used to set up online or real-time prediction systems as seen in [11].

Another development in VFM systems is the appearance of hybrid models or grey box models
which combine first principles models ensemble learning methods. Since first principles models are
well studied in the oil and gas field, they can leveraged to provide additional data to statistical
VFM systems. Physical models replicating fields and networks can be used to generate data in the
event of unavailability, especially for transient flow scenarios. Such a hybrid model would be able
to provide data for different stages of field life and fill gaps in the data which may not be available
due to uncertainty in measurements or inability to halt production for the sake of data gathering
[9].
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2 Neural Networks (NNs)

Deep feed-forward networks or feed-forward neural networks or multi-layer perceptrons(MLPs),
are the most popular ML models. A NN aims to approximate a function so as to produce the same
output the function would produce for a given set of inputs within some margin of error.

Due to the nature of NN, it can approximate any form of relationship between its inputs and
outputs from one dimensional space to another within a desirable level of accuracy. Thus it can
be considered to be a universal approximator ([7]).

2.1 Principle of an NN

The goal of any ML model is to learn from a set of data to be able to predict certain outcomes for
an unknown set of data. The process of learning is constituted into three parts: learning from an
experience, to perform a task and upto a certain level of accuracy. Experience constitutes the data
used to train the model known as the training set. The data in a training set is divided into inputs
and outputs. Inputs are the known data and outputs are the data-sets that are to be predicted
by the model. If inputs are x and outputs are y, the goal of the NN is to generate a model f such
that f(x) = y. The task is the manner in which the learnt data is processed. The task of this NN
is regression type. In this, the model f is mapped from R → R. The performance of the model
is checked using a cost function. Most cost functions aim to minimise the error between predicted
outputs and actual outputs for the training data. The NN is then parameterised so as to minimise
this cost function. The trained (optimised) model is then tested by feeding a set of data, separate
from the training set, called the test data. The accuracy of the model is evaluated by comparing
the predicted outputs of the test data to its original outputs [4].

2.2 Structure of a NN

The main components of an NN are activations. An activation is can be any function that trans-
forms the input it receives. Activations are arranged into layers. A neural network can have several
layers with varying numbers of activations. The first and last are the input and output layers re-
spectively as the input layer receives the input data of the NN and the activations of the output
layer deliver the final output of the NN. Hence the input layer has the same number of activations
as the number of inputs and the output layer has same number of activations as the number of
outputs. The rest of the intermediate layers are known as the hidden layers. The number of layers
in an NN determines its depth. The number of activations determine the width of the model. T
The resulting functions from the output layer activations are used in cost function. The number
of layers and the number of activations in the hidden layers form the architecture of the NN [4].

In a NN input data is received at the input layer and the input activations transform the input
using the activation function. This transformed data is then passed on to the next layer. The
data from each of the input activations are each weighted by some factor θ and added. This sum
is passed on to every activation of the next layer. However, the weights corresponding to each
activation in the subsequent layer are different. To train a neural network to a given set of data,
the θ parameters are optimised so as to minimise the cost function. To further tune the model, to
make it more robust, the architecture of the NN i.e. the number of layers and number of activations
in the layers can also be altered. However, this is more complicated as there are few established
procedures for this.

The cost function for a neural network often includes a regularization co-efficient. Its purpose is
to limit the value of the θ parameters to prevent it from becoming too large. It can also be used to
weight the minimisation of the prediction error over the values of the θ parameters. Such weighting
coefficients, known as hyperparameters, are optimized outside of the learning process and require
additional steps to be finalised.
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Figure 1: Structure of a Neural Network

2.3 Forward and Back-propagation

2.3.1 Forward Propagation

The forward movement of information from layer to layer in a NN is called forward propagation.In

the example shown in 1, the inputs of one training sample are received at nodes a
(1)
1 and a

(1)
2 .

The nodes a
(1)
0 and a

(2)
0 are bias nodes. The bias nodes are not counted while expressing the

width of the layer i.e in the example, the input layer is considered to have 2 nodes/activations
and the hidden layer is considered to have 3 nodes/activations. The inputs are transformed by the
activation function of the input nodes, weighted by some parameter θ, summed with the value of
the other nodes and sent forward to the next layer. For example, at the second layer of the NN
we have

a
(2)
1 =z(a

(1)
0 θ

(1)
1,1 + a

(1)
1 θ

(1)
1,2 + a

(1)
2 θ

(1)
1,3) (1)

a
(2)
2 =z(a

(1)
0 θ

(1)
2,1 + a

(1)
1 θ

(1)
2,2 + a

(1)
2 θ

(1)
2,3) (2)

a
(2)
3 =z(a

(1)
0 θ

(1)
3,1 + a

(1)
1 θ

(1)
3,2 + a

(1)
2 θ

(1)
3,3) (3)

This can also be compactly represented for the hidden layer as

a(2) = z(Θ1 · a(1)) (4)

and for the output layer as

h = z(Θ2 · a(2)) (5)

Here, z() is the activation function, a(1), a(2) and a(3) are column vectors containing each of the
activations of the respective layer and θ(1) and θ(2) are matrices that contain the θ parameters. For
this example, the size of a(1) is 2x1, of a(2) is 3x1 and of h is 2x1. This is because the bias nodes
are not included as they have a fixed pre-defined value unaffected by the input data. The sizes of
θ(1) and θ(2) are 3x3 and 2x4 respectively. This is determined by the sizes of the layers that the
θ parameters connect. The size of a Θ matrix is defined as (lsxlp + 1) where ls is the number of
activations in the subsequent layer and lp is the number of activations in the preceding layer.
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2.3.2 Jacobian of Cost Function

An essential step of the learning process is to optimize the θ parameters with in order to minimize
the cost function. There are a plethora of optimization algorithms that can be applied to achieve
this purpose. However, most methods require the Jacobian of the cost function with respect to the

optimization parameters, which in this case would be δJ(Θ)
δΘi,j

where J is the cost function and Θ is

each of the θ parameters.

For NNs a back-propagation algorithm can be used which simplifies the process of calculating the
Jacobian of the cost function. For the example in 1 with 3 layers, the back-propagation algorithm
is given as

δ(3) =h (6)

δ(2) =(Θ(2)T δ(3)) · z′(Θ(1)a(1)) (7)

where z′() is the differential of the activation function with respect to θ. For the first training
example

∆ = a(2)δ(2) + a(3)δ(3) (8)

This is repeatedly summed for all the training examples.

6



3 Data Generation Using OLGA

This section describes how the flow modelling software OLGA was used to generate the training
and testing example sets for this study. This is in continuation to the Specialization Project done as
a preamble to the Master Thesis. A smaller section of the entire model, used in the Specialization
Project, has been focused on and been amended in various ways to generate different types of
data-sets.

3.1 OLGA Flow Modelling

The software OLGA (Version 2019) from Schlumberger was chosen to carry out the multiphase
flow modelling of the oil and gas network. OLGA is an industry standard multiphase flow sim-
ulator which uses one dimensional modelling. It uses a three-phase model, that is it applies the
conservation equations to the three phases separately.

The solver includes a steady-state pre-processor which generates its own initial conditions. The
solver starts with a fully filled flowline based on these initial conditions and then converges to the
required steady-state.

Each flowline is divided into discrete pipe sections and segments. The model solves the mass
conservation equations for each phase separately as well as for oil and water droplets in the gas
phase. Similarly, it solves momentum conservation equations for each discrete phase. In addition,
the phases are linked by mass transfer (gas-condensate equilibrium). An energy balance equation
is also solved assuming that the temperature is constant across the phases [15].

The Black-oil composition feature has been used in this project where the specific gravity of each
phase is input to OLGA and the rest of the PVT properties are generated by the solver itself
using a set of in-built Black-oil correlations. Based on the chosen values of oil specific gravity, the
Lasater correlation was selected [6].

3.2 Horizontal Pipeline Model

The model consists of a single horizontal pipeline with two boundaries specified: an inlet and an
outlet. The boundaries are modelled as nodes in OLGA. The inlet node is a closed node whereas
the outlet node is a pressure node where pressure can be specified. Additionally a mass source is
added at the first section of the pipeline which introduces flow in to the line.

Figure 2: OLGA Pipeline Model

3.2.1 Assumptions

Temperature calculations were modified in order to ensure an isothermal model. Due to flow
friction, pressures usually decrease along the length of a horizontal flowline in the direction of flow.
This decreasing pressure may cause some of the oil to enter the gas phase resulting in lowering of
temperature. This was offset by setting the temperature calculations to isothermal mode.

The steady-state pre-processor was used to ensure that the model reached steady state, avoiding
any transient state data.

7



Additionally, different flow rates were tried to ensure that all flow regimes were incorporated. The
presence of less favourable flow regimes such as annular flow and slug flow introduce noise into the
system as they cause large periodic fluctuations in boundary pressures as well as flow rates and
are calculated differently from the standard stratified flow regime [15].

3.2.2 Model Parameters

All the different flowline and fluid parameters used in the model are listed in Tables 1 and 2. These
properties are listed as ”Base” properties as they are the default properties in some data sets. In
data sets where this parameter is a variable, randomly generated values, within a reasonable range,
replace these ”base” values.

Parameter Value
Outlet Pressure 10 bara
Inlet Temperature 25 deg C
Length 1000 m
Diameter 0.2 m
Roughness 3e− 5 m

Table 1: Base Pipeline Parameters

Parameter Value
Oil Specific Gravity 0.867
Water Specific Gravity 1.020
Gas Specific Gravity 0.814
GOR 50 sm3/sm3

Watercut 0.3

Table 2: Fluid Properties

3.3 Data Generation

An OLGA simulation can be run using an .inp file where all specifications of the pipeline geometry,
time-step sizes, fluid properties, boundary conditions and requirements of outputs can be listed.
The .inp file contains all the details of the simulation.

To generate a large of amount data with one or two variables, a python script was coded to replicate
a base .inp file with different parameters such as different flow rates or different GORs. In this
manner 5 different data sets were generated:

• Constant GOR

• Variable GOR

• Variable GOR and Water cut (WC)

• Variable Outlet Pressure

• Variable GOR, WC and Outlet Pressure

Four different parameters were changed across the data sets namely, Flow Rate, GOR, Water
cut and Outlet Pressure. The values for these parameters were randomly generated and directly
plugged into the input files. Changing any of these four parameters would be reflected in the
change in the pressure at the inlet of the flowline and hence, the pressure differential across the
line.

8



A large number of simulation files could be run together one after the other by calling a .bat file
which sequences the files and ensure that they have run and their results are stored in the required
location. The results of an OLGA simulation, are stored in .ppl and .tpl files. These files have
been read and required results have been extracted using another python script dedicated to result
extraction. The results extracted from each simulation were:

• Inlet Pressure

• Outlet Pressure

• Oil Flow Rate

• Gas Flow Rate

• Water Flow Rate

These results have been divided into inputs: Inlet and Outlet Pressure and outputs: Flow Rats.
All files and generated data can be found in the link in the Appendix.
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4 Methodology

For this study 4 different types of neural network models were generated which can be classified
on two basis: number of inputs taken and number of hidden layers. The models can be described
as follows:

• Model 1: Accepts 1 input, provides 3 outputs and has one hidden layer with 4 activations.

• Model 2: Accepts 1 input, provides 3 outputs and has two hidden layers with 3 and 4
activations each.

• Model 3: Accepts 2 inputs, provides 3 outputs and has one hidden layer with 4 activations.

• Model 4: Accepts 2 inputs, provides 3 outputs and has two hidden layers with 3 and 4
activations each.

The aim of this virtual flow metering study is to use pressures across a horizontal pipeline to predict
the multiphase flow rate of fluids flowing through that line. Two forms of pressure measurement
are used in this study: one is a single input the overall loss of pressure across the line (difference
between inlet and outlet pressure) and the other is two inputs with the inlet and outlet pressures
separately.Therefore the models take either one or two inputs to produce three outputs which are
the flow rates of oil, gas and water respectively.

((a)) Model 1 ((b)) Model 2

((c)) Model 3 ((d)) Model 4

Figure 3: Structures of the different NN models
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4.1 Specifications of the NN model

4.1.1 Activation Function

The activations function used in a NN determines the function that it carried out. For example, a
sigmoid activation function is used for the function of data classification as it limits the mapped
value of any input between 0 and 1. However, since predicting flow rates from pressure data is a
form of regression, the NN models created in this study use the ReLU activation function. The
Rectified Linear Unit (ReLU) is a piece-wise linear function which aims to remove the occurrence
of negative values during the forward propagation of the NN. It directly outputs the input value if
it is greater than 0 and outputs 0 is the input is lesser than or equal to 0 [12].

4.1.2 Cost Function

For the purpose of error minimization, a least-squares error function is used. This cost function
aims to minimize the square of the error between the actual required output and the NN’s predicted
output. It also includes a regularization parameter, λ. The function is as follows

J =

3∑
i=1

(hi − yi)
2 +

L−1∑
l=1

∑
i

∑
j

(
Θ

(l)
i,j

)2

(9)

where L is the number of layers in the NN. ‘ The regularization co-efficient λ is used to limit the
values of the θ parameters. The value of λ can be adjusted to shift the weight of cost optimization
from the error minimisation to reducing the values of the θ parameters. In this study, the optimum
value of λ was chosen on the basis of the least prediction error for the training set. Selecting λ on
this basis is known as cross-validation. There exist several techniques to carry out cross-validation,
the method chosen for this study is explained in later sections.

4.1.3 Normalization

Since the data used for training and testing has been extracted from OLGA simulation results, the
units of the pressure and flow rate values are set to the default of OLGA. The pressure values are
output in Pascal, Pa and therefore are of the order 106. The flow rate values are output in cubic
meters per second, m3/s and are of the order 100 to 101. There is a large difference in the scale of
the inputs and outputs which may lead to difficulties in optimizing the θ parameters. To counteract
this, the inputs are normalized to match the order of the outputs. All pressure measurements are
converted from Pa to bar by factoring them by 10−5.

4.2 Cross Validation

Cross validation is a procedure carried out on a NN model to validate and fine-tune it before it
is implemented on a testing set. It can also simultaneously be used to optimize the regularization
parameter λ. In other cases, it can also be used to optimize or check other hyperparameters such
as the number of hidden layers, number of activations, etc.

K-Fold is a widely used cross validation method and is applied in this study as well. It is carried
out by dividing the training set further into training and validating sets. The training set is first
divided into k number of folds and the cross-validation algorithm is run in a loop for k number of
iterations. In this study, the training set was divided into k folds such that each fold has between
20 to 30 examples in it. In each iteration i, the ith fold of the data becomes the validating fold and
all other folds constitute the training folds. In each iteration, the model is trained by the training
folds and then used to predict the outputs of the validating fold. The error between the actual
outputs and predicted outputs of the validating folds of each iteration are averaged to produce one
error value for the NN model. This process can be repeated with different values of λ to finalize
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a value which has the least validation error. The chosen λ is then plugged into the cost function
and the NN model is trained over the entire training set.

Figure 4: Example of Cross Validation with 5 folds [14]

The main assumption to be satisfied when carrying out cross-validation by the K-Fold method is
that each example in the training set is independent of each other. This criteria is fulfilled for this
study as flow rate prediction is being carried out for isolated instances of steady flow in a pipeline.
One drawback of this method is that the λ values are limited to only those values which are tested
and hence this process may not even check more optimal values of λ.

4.3 Training and Testing Procedure

The following paragraph outlines a step by step procedure followed on MATLAB through which
the NN models built are trained, validated and tested. Each model has been trained with different
types of OLGA generated data to produce one error value. This has been done to evaluate the
differences in prediction among the four models. Also, different types of training and testing sets
are used to find the change in error for increasing complex changes in the data.

Firstly, the data is imported into the MATLAB workspace and divided into a training and a testing
set. The inputs of both sets are then normalized. The cost function is set up and the values of λ
and the θ parameters are initialised with random values. Cross validation is then carried out as
explained in the previous section. In the cross validation procedure indices ranging from 1 to k are
randomly assinged to each example in the training set. This is done using the MATLAB function
crossvalind. Then all examples having the same index are collected into a fold. The indices are
assigned such that each fold has roughly a similar number of examples in it. The cross validation
procedure is carried out for different ranges of λ and are gradually narrowed down to obtain an
integer value. The chosen value of λ is then plugged into the cost function and it is optimized over
the entire training set to minimize the cost function and obtain a set of θ parameters. The NN
model along with these optimum θ values constitute the trained model. The inputs of the testing
set are fed to the trained model (Boundary pressures or pressure differential) are fed to the NN so
as to predict their outputs (multiphase flow rates). The predicted outputs are compared with the
actual outputs of the testing set and their relative errors are calculated. The errors are averaged
over the number of examples in the testing set to produce one error value which is considered to
the be the result of each NN model for the given type of data set.
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5 Results and Conclusions

5.1 Performance of NN Models

As mentioned in the previous section, each model was tested with different data sets to check
their relative performance as well as their ability to handle more and more non-uniformity in the
data. The relative error between the predicted outputs and the actual outputs of the testing data,
averaged over the number of testing examples has been reported as the result of each model for
each instance of use. All these results have been tabulated in Table 3.

Data Set Model Type Error
Constant GOR Model 1 0.0512

Model 2 0.9904
Model 3 2.0891
Model 4 5.4473

Variable GOR Model 1 0.2147
Model 2 0.2506
Model 3 0.6202
Model 4 1.0416

Variable GOR & WC Model 1 4.9013
Model 2 2.6594
Model 3 1.5205
Model 4 2.6184

Variable Outlet Pressure Model 1 0.3632
Model 2 0.3591
Model 3 0.3504
Model 4 0.7907

Variable GOR, WC and Outlet Pressure Model 1 1.8805
Model 2 1.9506
Model 3 1.8999
Model 4 1.7737

Table 3: Results for each Model using each Data Set

From the results, the general trend is that Model 1 performs better for lesser complex data. As
the complexity of the data increases, all models show a similar range of error indicating that the
models are too simple to grasp the varying trends. Also, in general Models 1 and 2 perform better
than Models 3 and 4 suggesting that the model is not able to create a relation between the inlet
and outlet pressures, but are able to directly map differential pressure to the flow rates.

5.2 Discussion and Conclusion

From the results, the main conclusion is that it is better to use differential pressure as an input
to the models instead of providing the inlet and outlet pressure separately. In the instance that
there are more inputs than simply the boundary pressures, such as temperature, fluid properties,
etc, pre-processing the data to combine two inputs into one would be sensible and avoid the model
to have to make further connections between the inputs.

The significant amount of error in all models can be attributed to two reasons: insufficient number
of training examples and over-fitting of model to the training data. The first reason is straight-
forward in that using more training examples will ensure that the training data is more diverse
and would make the model more robust.

Over-fitting of the NN model can arise due to lack of sufficient noise in the training data. Since the
data is generated in OLGA, it lacks the noise that is part of general field measurements which may
be induced due to discrepancies in sensor or general human error. This can contribute towards
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the model being highly specific towards the training data and unable to predict trends in new
data it has not encountered before. Another more probable reason for over-fitting can be due
to the inefficient estimation of the λ co-efficient. A highly specific λ can cause the NN model
to also become highly specific towards the training data and be unable to fit in new data. This
was also observed when the cross-validation errors while optimizing λ were much lower than the
error produced while actually testing the model. The cross-validation errors can be found on the
individual .mlx files for each model which are linked in the Appendix.

It is also observed from the results that Model 2 and 4 which have an extra hidden layer and more
activations as compared to the other two models do not present any extra advantage in terms of
reduction of error. This may be due to the fact that increased number of layers and activations
cause an increase in the number of θ values. An increased number of θ would add more constraints
to the cost function minimization and may even increase the value of the cost function due to the
regularization term making the optimization process complicated and inefficient.

In conclusion, several improvements can be made to the model to improve its performance and
then the model can be tested with more and more complicated data sets. Firstly, in the instance
of more than two inputs, the model would require some more of feature engineering to reduce the
number of inputs and combine redundant inputs. Additionally, usage of more realistic data such as
lab generated data or data from active fields would provide sufficient spread or variance preventing
over-fitting of the model. Along with this, an increase in the number of training examples would
also pose a benefit. A more efficient way to calculate λ would also ease the problem of over-fitting.
In this instance reducing the number of folds in the K-Fold method might have prevented the issue.
Further, more studies need to be done on improving the architecture of the model i.e. optimizing
the other hyperparameters such as number of layers and activations.

For the examples of constant and variable GOR the models, especially, 1 and 2 function fairly well
even with the limited number of training sets provided. With the addition of more examples and
noise, these models can be used in fields over a certain period of production where the GOR and
Water cut are within a predictable range. As the field life progresses, the models can be re-tuned
to the logged data and be kept in use for the rest of the field life.
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6 Future Work

In the vein of statistical VFM models, different machine learning techniques can be explored. A
neural network has several hyperparameters that need to be optimized which can be quite taxing.
Using different approaches such as SVMs might make this part of the process simpler. Furthermore,
a hybrid VFM model can be explored to increase the accuracy of predictions by constraining them
with physics-based correlations. This would focus the fine-tuning of parameters to the physical
parameters of the model rather than strictly statistical parameters. It would also be easier to
exercise physical intuition in the constraint of these parameters, increasing their reliability. In this
study, flow rates are predicted using boundary pressures with the assumption that fluid properties
such as GOR and Water cut are not monitored. However, multiphase flow rates are directly
correlated to these fluid properties and prediction models can benefit from the knowledge of these
correlations. As a practice, in active oil and gas fields, well fluids are regularly tested to estimate
these properties not just for the current production but also to forecast future production. These
forecasted values can also be included in the statistical or even hybrid models to bolster their
ability to predict flow rates.
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Appendix

A GitHub Source

https://mgha2511.github.io/Megha-Rajasekhar/

The GitHub repository linked above contains the following:

• .mlx files for each model type along with the MATLAB functions required to run the main
file

• Python script for generating .inp files from a Template

• All the template .inp files used for data generation

• An example .bat file that is used to sequence the .inp files and run large batches of simulations

• An example .ppl and .tpl file for information on how resutls are output

• Python script for extracting specific results from a .ppl or a .tpl file which can be modified
to extract any type of results.

• A text guide explaining the function of each python file, OLGA file and also a guide to the
MATLAB model folders.

B Breakdown of Data Sets

s

Data Set Training Test
Constant GOR 180 14
Variable GOR 190 10
Variable GOR & WC 380 20
Outlet Pressure Variable 480 20
Variable GOR, WC & Pressure 480 20

Table 4: Number of Training Examples
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