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Abstract

This thesis describes an object-oriented modeling framework for interfacing an energy sys-
tem model to the stochastic programming software GOSSIP. Key uncertainties related to
optimizing flexible renewable energy systems such as the intermittent output of renewable
energy sources, volatile utility market spot prices, and varying end user demand are ad-
dressed. In previous work [13], two-stage stochastic formulations were considered to be a
promising approach to incorporate uncertainties, and the recently developed GOSSIP soft-
ware was used for modeling. However, one could not easily extend programs to include new
technologies and different kinds of modeling fidelity and levels of complexity. Furthermore,
it was revealed that using GOSSIP requires explicit formulation of equations, variables, and
constraints in the user input model. The proposed solution presented in this thesis is an
object-oriented framework that enables an extensible user input model. An object-oriented
structure implies the generalization of system structure and allows for abstraction and en-
capsulation through classes. The framework includes the following classes: EnergySystem,
UncertainParam, PrimarySource, Conversion, Utility, EndUser and ObjectiveFunction.

The proposed object-oriented framework divides the model input into two parts: Interface
and implementation. The interface is accessible to the user, whereas the implementation
includes the class definitions, member functions for energy balance, and attributes. The
implementation ensures that a correct two-stage stochastic mixed-integer linear program
is formulated and interfaced with the solver. Then, the two algorithms Non-convex Gen-
eralized Benders Decomposition and Full Space can find the optimal design of a flexible
energy system. Three systems are implemented to verify the framework correctness and
show the utility of the resulting object-oriented program: (1) A simple system with wind
turbines as energy conversion technology and one end user with electricity demand. (2) A
more complex system with wind turbines and solar photo-voltaic panels as energy conver-
sion technologies and one end user with electricity demand. (3) A more complex system
with wind turbines, and solar photo-voltaic and solar thermal panels as energy conversion
technologies, and two end users with heat and electricity demand.

Expanding the simplest system to the two more complex ones requires few lines of code,
no explicit variable and constraint declarations, and no changes to the implementation.
The extensibility and scalability that the framework displays encourage pooling together of
models, underscoring the suitability of object-oriented programming in optimizing flexible
renewable energy systems. To summarize, a framework as the one presented can simplify
the process of formulating stochastic programming problems to design flexible renewable
energy systems.
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Sammendrag
Denne masteravhandlingen beskriver et objektorientert modelleringsrammeverk som et grens-
esnitt mellom en modell av ett energisystem og den stokastiske programmeringsprogram-
varen GOSSIP. Viktige usikkerheter knyttet til optimalisering av fleksible fornybare en-
ergisystemer som ustabile spotmarkedspriser, den intermitterende energiproduksjonen til
fornybare energikilder, og varierende etterspørsel fra sluttbrukere inkluderes i problemfor-
muleringen. I tidligere arbeider [13] ble to-trinns stokastiske formuleringer ansett for å
være en lovende tilnærming for å innlemme usikkerhet, og den nylig utviklede GOSSIP-
programvaren ble brukt til modellering. Imidlertid, i tidligere arbeider kunne man ikke
enkelt utvide programmene til å omfatte ny teknologi, forskjellige modeller og nivåer av
kompleksitet. Videre ble det avslørt at bruk av GOSSIP krever eksplisitt formulering av
ligninger, variabler og begrensninger i brukermodellen. Den foreslåtte løsningen, presen-
tert i denne oppgaven, er et objektorientert rammeverk som muliggjør en utvidbar bruk-
ermodell. En objektorientert struktur innebærer generalisering av systemstrukturen og
gir mulighet for abstraksjon og innkapsling gjennom klasser. Rammeverket inkluderer føl-
gende klasser: EnergySystem, UncertainParam, PrimarySource, Conversion, Utility, EndUser
og ObjectiveFunction.

Det foreslåtte objektorienterte rammeverket deler modelleringen i to deler: Grensesnitt og
implementering. Grensesnittet er tilgjengelig for brukeren, mens implementeringen inklud-
erer klassedefinisjoner, medlemsfunksjoner for energibalanse og attributter. Implementerin-
gen sørger for den korrekte formuleringen av ett to-trinns stokastisk mixed-integer lineært
program og formidler det til GOSSIP. Deretter kan de to algoritmene Non-Generalized
Benders Decomposition og Full Space finne den mest gunstige utformingen av et fleksibelt
energisystem. Tre systemer er implementert for å verifisere rammeverkets korrekthet og
vise nytten av det resulterende objektorienterte programmet: (1) Et enkelt system med
vindturbiner til energiomdanning og en sluttbruker med strømbehov. (2) Et mer sammensatt
system med vindturbiner og fotovoltaiske solcellepaneler til energiomdanning og en slut-
tbruker med strømbehov. (3) Et enda mer sammensatt system med vindturbiner, fotovoltaiske
og solvarme paneler til energiomdanning, og to sluttbrukere med varme- og strømbehov.

Å utvide det enkleste systemet til de to mer komplekse krever få kodelinjer, ingen eksplisitte
variabel- og begrensningserklæringer, og ingen endringer i implementeringen. Muligheten
til å utvide og skalere brukermodellen som rammeverket viser, oppmuntrer til å slå sammen
energimodeller, og understreker egnetheten til objektorientert programmering i optimering
av fleksible fornybare energisystemer. For å oppsummere, det utviklede rammeverket kan
forenkle prosessen med å formulere stokastiske programmeringsproblemer for utforming av
fleksible fornybare energisystemer.
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CHAPTER

ONE

INTRODUCTION

We need to put a price on carbon in the
markets, and a price on denial in
politics

- Al Gore

1.1 Motivation
One of the biggest threats to future generations is the ongoing climate crisis and the cur-
rent over-consumption of natural resources. Accordingly, the global energy demand has
increased steadily since industrialization. Historically, this energy surge has been ac-
counted for by increased use of fossil fuels [11]. In solution strategies that limit global
warming to the United Nations 1.5 �

C target, renewables make up 70-85% of the global
energy mix [5]. To motivate governing forces to encourage private companies and capital
markets into sustainable growth and energy consumption, the UN has formulated 12 sus-
tainability goals where goal number 7 reads:

“Ensure access to affordable, reliable, sustainable and modern energy for all” [9]

In addition to reducing the negative impact of human activities on the climate, it is advo-
cated that ensuring clean energy to households that are below the poverty line can have
positive social-economic effects through increased life-expectancy, educational level, and
consequently household income [9].

Unfortunately, except for hydro-power, most widespread renewable energy sources such
as wind and solar have an intermittent nature that makes it difficult to provide clean en-
ergy with high reliability. In addition, there are varying end user demands and volatile
market spot prices of utilities. Consequently, the availability and profitability of renewable
energy production and projects are challenging to forecast. This can make governments

1



1.1 Motivation

and investors hesitant to increase the fraction of renewable energy in the global energy mix.

One approach to address the aforementioned uncertainties related to renewable energy
systems is to implement a flexible design. Flexible renewable energy systems can adapt
operating conditions to external signals such as changes in prices, weather, and demand.
Measures for flexible design include combining multiple energy sources, extra production
capacity, and energy storage technologies.

Optimization of flexible renewable energy systems requires approaches that take uncertain
operating conditions into account. By accounting for uncertain and varying operating con-
ditions in the problem formulation, the resulting flexible design enables the energy system
to react to changes in operational circumstances, increasing overall availability. In pre-
vious work, a two-stage stochastic programming approach for the optimization of flexible
renewable energy systems showed promising results with an increase in energy system
profitability and reliability [13]. The program was created in GOSSIP, a stochastic opti-
mization software developed at the Process Systems Engineering Laboratory at MIT by
Kannan and Barton [6].

However, the program in [13] was not easily extended to new technologies and differ-
ent kinds of model fidelity and levels of complexity. Making a small change to the energy
system structure, such as adding a wind turbine, required a significant programming ef-
fort. Moreover, with the current fast-paced development of renewable energy technologies,
both efficiencies and model fidelity are expected to change rapidly, and this needs to be
accounted for. In addition, multiple different conversion technologies can be considered at
the design stage. As an example, suppose that wind turbines are regarded as the most
promising renewable energy technology today, but it is expected that the cost of solar
fuel panels will decrease significantly over the next decade. Naturally, one wants to look
into the potential of solar energy and possibly test different system configurations. It is
currently a non-trivial task to construct stochastic optimization programs extensible enough
to new technologies and models.

A solution is to create an object-oriented framework for efficient and scalable modeling
of energy systems. Object-oriented programming facilitates the implementation of a user-
friendly interface and automates the formulation of the stochastic programming problem. It
also enables an implementation to ensure a generalized problem formulation that satisfies
energy balances. The result is software that enables an extensible and scalable problem
formulation to optimization flexible renewable energy systems.

The resulting framework implementation ensures the correct formulation of a two-stage
stochastic mixed-integer linear program to model the flexible design problem. The frame-
work leverages that GOSSIP was developed using the C++ language, which allows for
object-oriented programming. The resulting optimization problem can be solved using the
two GOSSIP algorithms NGBD and Full-Space. Hence, the development of an object-
oriented framework compatible with GOSSIP is a promising step toward creating a user-
friendly and extendable program for the optimization of flexible renewable energy systems.

2



1.2 Scope and objective

1.2 Scope and objective
The main goal of this thesis is to develop a framework for modeling a variety of renewable

energy systems using object-oriented programming and interfacing it to GOSSIP.

The following contributions and tasks were initially considered:

• Investigate different suitable data structures such as linked lists, trees, graphs.

• Attempt to formulate linear models from the literature and previous work [13].

• Investigate ways to extend to a richer class of models, such as disciplined polynomial
programming or neural networks.

• Include algorithmic considerations.

However, in agreement with the supervisors, the following contributions and tasks related
to the aforementioned goal were prioritized:

• Ensure that the problem formulation in the object-oriented framework is compatible
with the two algorithms NGBD and Full-Space embedded in GOSSIP.

• Ensure that the aforementioned framework can handle various levels of modeling
complexity:

1. Complexity of the uncertainty model (e.g., including more scenarios and addi-
tional uncertain parameters).

2. Temporal complexity through the number of time-steps per scenario.
3. Increasing complexity of the RES by including additional components (e.g, en-

ergy sources, conversion technologies, utilities, and end users).

• Show extensibility in the implementation of classes and functions.

• Illustrate extensibility of the user input model, and user-friendliness of the aforemen-
tioned framework, through relevant examples of increasing complexity.

3



1.3 Structure of thesis

1.3 Structure of thesis
First, Chapter 2 presents a brief introduction to optimization and relevant methodologies
from stochastic optimization. Thereafter, the applied optimization software GOSSIP is intro-
duced in Chapter 3. The chapter gives a simplified overview of the two relevant optimization
algorithms NGBD and Full-Space. In Chapter 4 an overview of object-oriented program-
ming principles and their application in the optimization of energy systems is given. Then,
the resulting object-oriented optimization framework is presented with a brief overview of
all classes in Section 5.1. Section 5.2 sequentially includes and explains class header files.
Section 5.3 gives a detailed description of the framework implementation, including system
models and constraints. Lastly, Section 5.4 attempts to explain how to create a viable user
input model in the framework. To further explain and illustrate the framework attributes and
structure, three case studies are presented in Chapter 6. The examples are presented in
order of increasing complexity starting from Section 6.1. In Chapter 7 both quantitative and
qualitative results from the case studies in Chapter 6 are presented. Section 7.1 presents
numerical results from the examples, whereas Section 7.2 presents algorithmic results. This
is followed by a discussion of the resulting OOP framework and numerical results in Chapter
8. Lastly, final remarks and suggestions for future work are asserted in Chapter 9.
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CHAPTER

TWO

OPTIMIZATION METHODOLOGIES

2.1 Introduction to optimization
Optimization is a mathematical procedure where the intention is to locate an optimal so-
lution expressed through the minimization or maximization of an objective function. The
output from the objective function is a scalar value, but the actual solution to the optimiza-
tion problem is the value of the independent, feasible, decision variable(s). If the optimization
problem does not contain any constraints it is an unconstrained problem. However, most
often the problem is constrained by one or multiple equality and/or inequality constraints.

Equation 2.1 shows the formulation of a constrained optimization problem with an objective
function, J , and constraints h(x) and g(x).

min
x2X

J(x)

s.t. h(x) = 0
g(x)  0

(2.1)

The vector x contains the independent decision variables. For x to be a feasible point, all
equality (h(x)) and inequality (g(x)) constraints are satisfied.

Figure 2.1: Geometrical representation of a constrained optimization problem [1].
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2.1 Introduction to optimization

Convexity in optimization
A convex set is a set C where for every two points (x, y) in C , a line segment z, as defined
in Equation 2.2 must be in the set C . In other words, for C to be a convex set, every
interior point on the line segment z must also be in C [2]. A convex set C is illustrated in
Figure 2.2 a).

z = �x+ (1� �)y, 8� 2 [0, 1] (2.2)

If such a line segment z cannot be drawn without crossing any boundaries, the set is by
nature non-convex, as illustrated in Figure 2.2 b).

(a) (b)

Figure 2.2: Convex (a) and nonconvex (b) set [2].

Following this, a convex function f , is a function defined on a convex domain C where for
each two points x1, f(x1) and x2, f(x2) the line segment between the points lie entirely
above the graph of the function f as illustrated in Figure 2.3 a) [2]. In mathematical terms,
a function f : X ! R is a convex function on a convex set X if:

f(�x1 + (1� �)x2)  �f(x1) + (1� �)f(x2), 8� 2 [0, 1], 8x1, x2 2 X (2.3)

(a) (b)

Figure 2.3: Convex (a) and nonconvex (b) function [2].
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2.2 Mixed-Integer Programming - MIP

In a convex optimization problem, a local optimum is guaranteed to be a global opti-
mum. However, if either the objective function or the feasible set is non-convex, then a local
optimum is not guaranteed to be a global optimum.

2.2 Mixed-Integer Programming - MIP
Optimization problems are also distinguished by which type of decision variables they
contain, where problems with both continuous and discrete variables are defined as mixed-
integer programs (MIP).

The scope of this thesis involves mixed-integer linear programming problem (MILP) for-
mulations, illustrated in Equation 2.4.

min
x,y

cTx+ dTy

s.t. Ax+By  b

x 2 {0, 1}p

y 2 Rn
+

(2.4)

A is a m⇥ n matrix, B is a m⇥ p matrix, and b, c and d are m-,n- and p-dimensional
vectors [18]. x is a p-dimensional vector of binary variables and y is a n-dimensional
vector with continuous variables.

Mixed-Integer Programming (MIP) is one of the most common approaches to optimize
design and planning of production systems in industry. In recent years it has also attained
a strong position within the field of flexible renewable energy systems (RES). Even though
most energy systems can be somewhat approximated using a linear model, providing a
realistic representation of some systems requires the use of nonlinear (and thus nonconvex)
model equations. The problem is then considered a nonconvex mixed-integer non-linear
programming problem (MINLP).

2.3 Stochastic programming
An optimization problem can contain certain or uncertain input parameters. It is called a
deterministic problem if it is assumed that none of the parameters is subject to randomness.
On the other hand, if a model or parameter is subject to uncertainty, the problem can be
formulated as a stochastic optimization problem and stochastic programming approaches
can then be considered.

Contrary to deterministic approaches where all parameters in a model are assumed to
be certain, stochastic programs incorporate random variables into the problem formulation
to capture the uncertain nature of relevant parameters. The main purpose of a stochastic
program is to reduce the risk of undertaking sub-optimal decisions. Probability distributions
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2.3 Stochastic programming

or patterns from historical data can be used to describe parametric uncertainty. Although
(the solution to) the resulting optimization problem is assumed to be more robust, including
uncertainty increases the problem size. Several methods for handling optimization un-
der uncertainty have been developed, and one acclaimed approach is two-stage stochastic
programming with scenario generation [7] [10].

2.3.1 Two-stage stochastic programming
Equation 2.5 shows the mathematical formulation of a two-stage stochastic program.

min
x,y

f(x) + E⇠[Q(x,y, ⇠)],

s.t. g(1)(x)  0

h(1)(x) = 0

x 2 X

(2.5)

Here f(x) is some function of x, and the vector ⇠ contains the realisations of the uncertain
parameters. The functions g(1) and h(1) constrain the first stage design variables, and X
defines the feasible set for the variables. The expected value of the function Q(x,y, ⇠),
E⇠ , is shown in Equation 2.6. It is the sum of the function for all scenarios, h, multiplied
by a corresponding probability, ph, and with parameter values ⇠h. Q(x,y, ⇠) represents
the recourse problem and is given by Equation 2.7.

E⇠[Q(x,y, ⇠)] =
SX

h=1

ph ·Q(x,yh, ⇠h) (2.6)

min
yh

Q(yh,x, ⇠h)

s.t. g(2)h (yh,x, ⇠h)  0 8 h 2 S

h(2)h (yh,x, ⇠h) = 0 8 h 2 S
yh 2 Y

(2.7)

Functions g(2) and h(2) constrain the 2nd stage variables, and Y defines the feasible set
for the 2nd stage variables.

In two-stage stochastic programs, the number of scenarios is a function of the number
of uncertain parameters and the number of possible realizations of these parameters. In
the first stage of the program, prior to the realization of the uncertain parameters, a set
of immediate decisions are made. In the second stage, corrective actions are made to
compensate for the realization of uncertainties. Both first- and second-stage variables are
determined with the purpose of minimizing (or maximizing) the value of the objective function.

Contrary to deterministic optimization problems, stochastic programs have an objective
function with two separate terms, namely a first- and second-stage term. The aim is to
simultaneously minimize (or maximize) the first stage term and the expected value of the
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2.3 Stochastic programming

second stage term. Determining the optimal decision variables in the second stage is called
the recourse problem. Throughout this thesis, the first stage decision variables of a two-
stage stochastic program are represented by a vector x, while the second stage variables
are represented by a vector y.

In a two-stage stochastic program, uncertain parameters take values from a finite num-
ber of realizations, each with an associated probability. Figure 2.4 illustrates the scenario
tree for a two-stage stochastic program.

Figure 2.4: Scenario tree for a two-stage stochastic program.

9



2.3 Stochastic programming

2.3.2 Multi-stage stochastic programming
A multi-stage program is set up in an analog way to Equation 2.5, only that there are
several recourse stages. In a multi-stage program, the number of scenarios is, in addition
to the number of uncertain parameters and realizations, dependent on the number of time-
steps. Multi-stage programs can be used to optimize flexible renewable energy systems that
demand sequential, dependent days. A multi-stage approach can be necessary if energy
storage is included as the state of charge of the storage technology requires sequential
days to be linked. Unfortunately, the number of scenarios increases exponentially with
the number of time-steps. As a result, even a low time resolution and horizon such as
10 scenarios per day over the course of one week gives an explosion in scenarios (107
scenarios). The scenario tree in a multi-stage approach is illustrated in Figure 2.5.

Figure 2.5: Scenario tree for a multi-stage stochastic program.

10



2.3 Stochastic programming

2.3.3 Multi-period stochastic programming
A potential workaround to the multi-stage formulation is a two-stage multi-period formu-
lation as illustrated in Figure 2.6. Uncertain parameters are aggregated over the entire
time period considered. As a result, all uncertain parameters for a scenario branch is as-
sumed to be known in advance. The multi-period formulation can be applied by creating
scenario profiles with the desired time resolution and range for each uncertain parameter.
For instance, three different hourly solar radiation profiles such as sunny, cloudy and rainy
day, each with its corresponding probability and hourly varying value. The downside of the
approach is that the solver has perfect information. With multi-period modeling, the solver
will, in advance, know the realization of the uncertain parameters in all time-steps. This
can reduce the validity of the resulting solution.

Figure 2.6: Scenario tree for a two-stage multi-period stochastic program.
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2.3.4 Value of Stochastic Solution
The value of Stochastic Solution (VSS) can be used to evaluate the performance of a
stochastic program. To calculate the VSS an Expected Value Problem (EVP) is formulated.

• An optimization program where all uncertain values are assumed to take on their
expected value (mean) is called an Expected Value Problem (EVP). The EVP can be
viewed as a single-scenario approach where uncertain parameters are set constant
at their mean value. First stage variables are selected to yield the optimal value of
the objective function for the single scenario, and the selected first stage variables is
referred to as the nominal design.

• The value of the objective function under the nominal design subject to uncertainty
is called the Expectation of Expected Value Problem (EEVP).

• The additional value obtained by including uncertainty in the problem formulation
is called the Value of Stochastic Solution (VSS) and is defined as the difference
between the value of the objective function in the stochastic program (SP) and the
EEVP. The VSS is defined in Equation 2.8.

V SS = SP � EEV P (2.8)
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CHAPTER

THREE

GOSSIP SOFTWARE

GOSSIP is a software framework for modeling and solving two-stage stochastic noncon-
vex MINLPs. It is embedded in a C++ platform and an overview of functionalities and
worked out examples for solving two-stage stochastic programs in GOSSIP can be found
in the documentation [8]. The GOSSIP software is, under certain requirements, guaranteed
to determine the global optimum of a non-convex two-stage stochastic problem. However,
GOSSIP can also be used to solve convex two-stage stochastic programs (MICP) as well
as large-scale MILP. Multiple solution methods are implemented in GOSSIP, but only the
NGBD and Full-space algorithms are applied in this thesis.

Various decomposition approaches have been developed to handle different classes of
stochastic programming problems as illustrated in Figure 3.1. The earliest approach was
termed ’Benders decomposition (BD)’ and was only applicable to the class of two-stage
stochastic MILPs. BD was then extended to give Generalized Benders Decomposition (GBD)
which could solve the class of two-stage stochastic Mixed-Integer Convex Programs (MICPs).
Finally, GBD was extended for the class of two-stage nonconvex MINLPs with the Noncon-
vex Generalized Benders Decomposition (NGBD) algorithm. We note that NGBD reduces to
the GBD algorithm for convex problems and to the BD algorithm for linear problems (MILP).

Next, a brief overview of the GBD, NGBD and Full-Space algorithm is presented. Complete
details are presented in [2] and [4].

3.1 Generalized Benders decomposition and extensions
GBD is a method for solving two-stage stochastic MICPs. The GBD strategy involves con-
structing an equivalent dual representation of the original problem with a large but finite
number of constraints. A relaxation of the dual representation is then constructed by only
including a small subset of the constraints. The solution of this relaxed problem yields the
lower bound on the solution to the original problem. Due to the strong duality for con-
vex problems, the solution to the dual problem itself yields the upper bound to the original
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3.1 Generalized Benders decomposition and extensions

problem. These two steps are done in an iterative manner until a global solution is found [2].

The NGBD extension strategy involves convexifying the MINLP and then applying GBD
to give a lower bound to the problem. The upper bound is found by solving the MINLP
using a local solver. This procedure is done in an iterative manner shrinking the gap be-
tween the lower and upper bound until convergence to a global optimum.

1

MICP

MINLP

MILP

NGBD

GBD

BD

Figure 3.1: A schematic of the different decomposition algorithms and the class of stochastic programs
they are applicable to.

Two-stage stochastic problems are decomposed into smaller sub-problems in the NGBD
algorithm, e.g. one for each scenario, which provides efficient scaling of solution time with
an increasing number of scenarios considered. The aforementioned methods make NGBD a
strong tool for the global optimization of MINLP and other non-linear programming prob-
lems. However, the NGBD algorithm is only guaranteed to converge for discrete 1st stage
variables. Consequently, the 1st-stage variables in x from Equation 2.5 and 2.7 can only
contain variables from a discrete set of integer values. A potential workaround (used in this
thesis) is to discretize each continuous 1st stage variable by assuming it can only take on
a fixed number of values, xj , within its interval bounds as defined in Equation 3.1.

x
discrete
j = j · x

UBD

d� 1
8 j 2 {0,....,d-1} (3.1)

x
discrete
j denotes the discretized value in the j

th interval, d number of intervals, and x
UBD

the upper bound of the interval, respectively. The lower bound is set to zero and omitted
here. A set of binary variables, xbinary , are implemented to ensure that x only take on
one of the fixed variables discretized above. This implies that the first stage variables in
a two-stage program needs to be included through a sum of the product of the binary
variables and the corresponding discrete value, as shown in equation 3.2.

x =
nX

j=0

x
binary
j · xdiscrete

j (3.2)
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3.2 Full-Space algorithm

3.2 Full-Space algorithm
The scenario-wise decomposition mentioned in Section 3.1 is not executed in the Full-
Space algorithm. As the name Full-Space indicates, the algorithm finds the solution to the
full-space problem (Problem SP in [8]) through a linked version of ANTIGONE (Algorithms
for coNTinuous/Integer Global Optimiztion of Nonlinear EquatioNs). It is a global optimizer
for nonconvex MINLP’s. The optimization software transforms a user-defined MINLP by
reformulation of the model, detects mathematical structure, solves the optimization problem
with branch-and-cut global optimization, and returns the model with respect to the original
user-defined variables [4]. For more details about ANTIGONE, the reader is referred to [4].

The Full-space algorithm is assumed to be efficient for small problems, but solution time
is expected to increase asymptotically faster in CPU time with in increased number of
scenarios compared to the NGBD solver [6]. Contrary to NGBD, the Full-Space solver is
guaranteed to find the global solution with both continuous and discrete 1st stage variables
in a stochastic MILP or MINLP.
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CHAPTER

FOUR

OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OOP) is a powerful programming technique that involves
hiding specific details (encapsulation), re-using code (inheritance), and applying interfaces
that can represent multiple different types (polymorphism). A short description of basic
definitions from computer programming and specifically object-oriented programming is
provided below to simplify subsequent explanations.

Basic programming terms [3]

• Procedure(s) - Also called function, method, routine, or subroutine. In general, an
input is manipulated to give the desired output. An example is how wind speeds are
converted to rated power outputs in a wind turbine model.

• Procedural programming - A computer program with a series of computational steps
to be carried out in a predetermined order. A procedure is only operated on the data
structure upon which it is called.

• Data structures - Several variables stored together in a type of structure. Some
common types are strings (words and/or sentences), lists, vectors, and hash tables.

• Class - A class is a definition of a specific data format (object type). Classes contain
attributes and functions that are shared among, and available to, all instances (ob-
jects) of the class. E.g objects SolarRadiation, Wind and Water could all belong to the
class RenewableEnergySource as they all share attributes such as being a renewable
energy source.

• Object - An instance of a class. A wind turbine could be an instance of a class named
EnergyConversion.

• Header file - A header (hpp) file can be thought of as the overview or recipe of a
class. The header file contains class declarations, specifically class attributes and
class function declarations.
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4.1 Object-oriented programming

• Implementation file - An implementation/source (cpp) file contains the class function
definitions, e.g the class function implementations. The implementation file shows
how an instance of the class is constructed, and how input is manipulated to output
in class functions.

4.1 Object-oriented programming
4.1.1 An introduction to object-oriented programming
In classic procedural programming, it is common to define a set of relevant parameters and
write separate functions that take one, several, or all of the parameters and computes the
desired output. However, as the problem complexity, and sub-sequentially computer pro-
grams, grow, the procedural programming method can become tedious. Firstly, if an existing
function is used as a base to create a new function with slightly different functionality, the
programmer has to write an entirely new function even though the two are almost identical.
Secondly, making changes in the later stages of the program development often causes
the need to change the entire program so as to avoid breaking already defined functions.
Lastly, exceptions and multiple possible cases are difficult to handle in an appropriate
fashion, increasing the number of lines of code. Object-oriented programming can in part
be viewed as a result of trying to overcome these issues.

OOP is a programming paradigm based on the concept of objects that can contain data,
data structures, and functions. Specifically, data in the form of fields with attributes or
properties. The key idea is that attributes and functionalities that are shared by several
objects can be defined within a family, or class, of objects, thus avoiding copy-paste of
almost identical code. For instance, all portable computers have certain attributes like a
screen, mouse-pad, keyboard, hard-drive, etc. The class would then be called PCs and the
aforementioned attributes would automatically be defined for all PC objects through a class
constructor.

However, an Apple and DELL PC have different operating systems (OS) and this func-
tionality would be different for an Apple PC and DELL PC object. Either two sub-classes,
Apple and DELL computers, would be constructed, or specifications would be set after the
construction of the generic PC object through member functions.

Languages that support OOP often use inheritance to reuse code within classes. Two
sub-classes Apple and DELL computers from the class Computer is an example of this. Class
variables and procedures are inherited to all instances (objects) of the base class. Member
variables refer to both the class and instance variables that are defined by a particular
class. Instance variables are data that belong to a specific object and each object has its
own copy, e.g it can be the different DELL and Apple operating systems (OS). As for func-
tions, a class function belongs to the class as a whole whereas instance functions belong to
individual objects of the class. The class functions have access to class variables and inputs
from the procedure call, whereas the instance functions only have access to the instance
variables of the specific object they are called on.
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4.2 Object-oriented programming in the optimization of flexible renewable energy systems

Another feature of objects in OOP is that the object’s procedures can modify and change
the object’s attributes, giving the object a notion of the self and other objects which it can
interact with.

4.1.2 The 4 object-oriented programming pillars
The 4 renowned OOP pillars are listed below [19].

• Encapsulation - To group related variables and procedures into units (objects of the
same class).

• Abstraction - Ensure that the programmer can ignore certain details during program-
ming and the current implementation. Hide details to the user such that changes to
the program can be made without modification of the application (e.g changes related
to the implementation of class constructors and functions).

• Polymorphism - Make an object (instance of a class) behave like another instance of
the same class as long as the object satisfies the base class specifications.

• Inheritance - Ease the work of encapsulation and polymorphism by allowing the
programmer to create objects (derived class) that are more specialized versions of
other (base class) objects.

4.2 Object-oriented programming in the optimization of flexi-
ble renewable energy systems

A fundamental quality of a flexible (renewable) energy system (RES) is that multiple energy
sources, as well as conversion and storage technologies, can be integrated into one system.
The primary motivation of flexible design is to mitigate operational challenges associated
with related uncertain parameters. Another key property of a flexible RES with multiple
conversion technologies is that several end users with multiple different utility demands
can be considered. As an example, chemical plants need extensive amounts of both heat
and electricity to run certain processes. Furthermore, to comply with environmental due
diligence, energy from renewable sources should be included in the plant energy mix. A
solution consisting of energy from a natural gas combined cycle (NGCC) and solar PV
panels could satisfy the aforementioned utility requirements (heat and electricity) while
reducing the negative environmental impact of the plant. However, with solar panels as the
only renewable source, the plant is at risk of deficit production of renewable electricity on
cloudy days. The inclusion of a wind turbine and/or energy storage could reduce the risk
of deficiency. On the other hand, in the event of redundant capacity, the energy producer
would want to sell surplus electricity and heat to another end user. The resulting flexible
RES could include multiple energy sources, converters, and end users, culminating in a
large and complex optimization problem.
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4.2 Object-oriented programming in the optimization of flexible renewable energy systems

OOP is a programming technique that can simplify the construction and problem formu-
lation of large energy systems as it enables the user to break the modeled system into
smaller components (objects). Furthermore, OOP promotes user-friendly interfaces through
encapsulation and abstraction of classes and functions.

Through a framework interface the user could construct and link components of the RES,
call respective member functions and specify certain and uncertain parameters. The user
would specify the energy balance models of the different components by implementing an
efficiency parameter. Following this, the implementation formulates a two-stage stochastic
programming problem based on the user input. To summarize, the implementation of an
OOP framework for the formulation of two-stage stochastic programming problems could
simplify the process of optimizing flexible renewable energy systems.
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CHAPTER

FIVE

OBJECT-ORIENTED FRAMEWORK

This chapter contains the main developments of this work. Section 5.1 describes relevant
properties of an object-oriented framework for two-stage stochastic optimization of flexible
renewable energy systems. The section includes a flowsheet with the desired framework
classes and information flow. In Section 5.2, descriptions and explanations of the resulting
framework classes are presented with the respective header files (hpp-files). The associated
implementation files (cpp-files) are found in Appendix A. Section 5.3 deals with the model
objective, equations and constraints. The section shows how the user input is applied in
the implementation to formulate a two-stage stochastic MILP problem. Finally, Section
5.4 shows the minimum number of objects that have to be constructed, and explains which
function calls are necessary, to ensure successful compilation and execution of the resulting
program.

5.1 Process flowsheet and corresponding objects
Figure 5.1 shows the information flow from the user interface to the solvers in GOSSIP,
whereas Figure 5.2 shows the structure and information flow of the OOP framework. In
general, it is preferable to keep the information flow simple and avoid creating cycles and
inter-dependencies. This way, it is easy to remove or add objects.

Information is shared between the energy system class and the other classes through the
inclusion of a pointer to the energy system object in the constructor of the other classes.
This ensures consistency of main temporal and system variables, namely the number of
time-steps and scenarios, respectively. Pointers are used as the primary link between
system objects and as a conveyor of information. Pointers enable easy information flow,
avoiding explicit declaration of variables and constraints in the user input model. This way,
the majority of the system functionality can be embodied in the implementation, ensuring
encapsulation of details that ensure model correctness, such as energy balance equations.
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5.1 Process flowsheet and corresponding objects

Specifically, the implementation deals with the declaration and naming of system and object
variables and constraints. For instance, properties as well as input and resulting energy
output from a conversion technology. This way, the client only specifies the actual objects
and the relationship between the objects in the flexible RES. Conversely, in writing a
procedural program using the native GOSSIP interface, the user would have to specify
whether the variable is 1st or 2nd stage, the variable bounds, name, and type (integer,
binary, etc). In addition, the client would have to keep track of the number of variables
and constraints. This is a non-trivial task as even a small system can have hundreds of
variables and constraints. OOP enables the abstraction of the aforementioned details which
normally would require a substantial amount of code in the user input model.

Figure 5.1: An overview of the different layers of code in the framework. User input is sent through
the user interface to formulate an optimization problem that can be solved using GOSSIP. The internal
information flow in and between interface and formulation of optimization problem is illustrated in
the process flowsheet in Figure 5.2.
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5.1 Process flowsheet and corresponding objects

Figure 5.2: Flowsheet illustrating the relationship between the different objects.
The rectangles represent objects where the color of the rectangle marks the class that the object is
an instance of. Arrows represent flow of values or variables, braces represent bi-directional pointers
to and from the object.
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5.2 Classes
The framework developed in this thesis consists of the following classes where the respective
header (hpp) and source (cpp) files are placed in the GOSSIP library lib in a folder named
OOP.

• EnergySystem

• UncertainParam

• PrimarySource

• Conversion

• Utility

• EndUser

• ObjectiveFunction

To apply the developed OOP framework the user has to add the following declarations to
the inputModel.cpp[8] in GOSSIP:

1. #include "headerfiles.hpp"

2. #include "MSCfiles.hpp"

Below, in Sections 5.2.1 to 5.2.7, the classes are described.

5.2.1 The EnergySystem class
Each instance of the EnergySystem class corresponds to an entire renewable energy system.
A single case study would correspond to one object of this class. The EnergySystem object
is responsible for system consistency and keeping track of the number of system variables
and constraints. The user sets the number of scenarios, scen, and time-steps, time, once,
and through pointers to the energy system object, this information is shared with all other
system objects. Pointers are the primary method of transferring information between ob-
jects. This is to avoid duplicating variables and constraints, and to conceal the actual data
structure, thus promoting a user input model with a clear system structure. This benefit is
implicit wherever pointers are implemented, and will not be stressed further in later class
descriptions.

When a variable or constraint is set in a system object, a global variable or constraint
count is incremented in the EnergySystem object. A consistent number of scenarios and
time-steps as well as the variable and constraint count are basic requirements for running
optimization programs in GOSSIP. However, the interface to construct the user defined en-
ergy system does not have to involve these details. Thus, related operations and procedures
are left in the implementation, hidden from the client.

Because the EnergySystem object specifies the number of scenarios and other variables
required by GOSSIP, the class is also responsible for importing the scenario probabilities
specified by the user. The probabilities have to be stored in, and imported from, a csv-file.
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5.2 Classes

1 // ENERGY SYSTEM CLASS
2 #ifndef ENERGYSYSTEM_H
3 #define ENERGYSYSTEM_H
4 #include "headerFiles.hpp"
5 //#include "EndUser.hpp"
6

7 namespace decomposition
8 {
9 class EnergySystem

10 {
11 private:
12

13 int numScen , numTimeSteps;
14

15 int numUncertainParams , numSources , numConverters , numUtilities ,
numUsers; //keep track of objects included in the system

16

17

18 int varcount; // variable count , GOSSIP essential
19 int concount; // constraints count , GOSSIP essential
20 vector <double > probabilities;// vector with numScen probabilities ,

should always sum up to 1
21

22 public:
23

24 char clabel [70]; //label for GOSSIP variables , GOSSIP essential
25

26

27 EnergySystem(int scen , int time); // constructor , initialises
renewablesProduced , nonRenewablesProduced ,importedFromGrid;

28 void importProbabilities(string filePath , vector <double > & prob); //
import probabilities from csv file and add to weight vector in
main file

29

30 int getNumScen (){return numScen ;};
31 int getNumTimeSteps (){return numTimeSteps ;};
32

33 // inline functions to increment variable , constraint and object
counts

34 int addVariable (){++ varcount; return varcount ;};
35 int addConstraint (){++ concount; return concount ;};
36

37 };
38

39 }
40 #endif

Listing 5.1: The EnergySystem class header file.
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In Listing 5.1 we have:

1. EnergySystem(int scen, int time)

• The energy system class constructor on line 27 initialises the aforementioned
system variables.

2. addVariable() and addConstraint()

• Public member functions addVariable() and addConstraint() on lines 14 and
15 keeps track of the number of constraints and variables in the entire RES
model through member variables varcount and concount.

3. importProbabilities(string filepath, vector<double>& prob)

• Public member-function importProbabilities(vector<double>& prob) on line 26
imports probabilities for numScen scenarios from a csv-file located at filePath.

• The probabilities are added to the vector prob, which is a parameter in the user
input model in GOSSIP.

• In addition, the probabilities are stored locally in the vector named probabilities
.

5.2.2 The UncertainParam class
One uncertain parameter can be relevant to several system objects. To avoid importing the
same parameter multiple times, the realisation of a parameter is stored in an UncertainParam
object. The parameter value can then be used as input to multiple objects. For instance, the
market spot price of electricity could be relevant in the case of deficit electricity and/or heat
production as electricity can be used for heating as well. Consequently, Utility objects for
both electricity and heat would depend on the same uncertain parameter.

Uncertain parameter objects import and store the realization of uncertain parameters. Each
instance of the class corresponds to one uncertain parameter, which in turn requires one
csv-file from the client with numScen scenarios and a time-resolution of numTimeSteps.

1 // UNCERTAIN PARAM CLASS
2 #ifndef UNCERTAINPARAM_H
3 #define UNCERTAINPARAM_H
4 #include "headerFiles.hpp"
5 #include "EnergySystem.hpp"
6

7 namespace decomposition
8 {
9

10 class UncertainParam
11 {
12

13 private:
14

15 int numScen ,numTimeSteps;
16
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17 string paramName; //name of imported parameter scenario values , set
by user

18 string filePath; // filepath to text/csv/excel file with parameter
scenario values , should be numScen x numTimeSteps values

19

20 vector <vector <double >> output; // vector with outout directly
imported from csv file , dimensions numTimeSteps and numScen

21

22

23 public:
24 friend EnergySystem;
25

26 EnergySystem* linkToSystem; // linking parameter to main energy
system

27

28

29 UncertainParam(string path , EnergySystem* enrg , bool print=false);
// constructor

30

31

32 vector <vector <double >>* getOutput (){return &output ;};
33 };
34 }
35 #endif

Listing 5.2: The UncertainParameter class header file.

In Listing 5.2 we have:

1. UncertainParameter(string path, EnergySystem* enrg, bool print=false)

• The uncertain parameter constructor on line 10 initialises system variables and
imports parameter realisations from the csv-file located at filepath path and
stores them in the 2-dimensional vector named output.

2. getOutput()

• Inline function getOutput() on line 33 returns a pointer to the imported param-
eter values in vector output.

• The function is primarily used as a parameter in function calls of other objects.
The pointer is later dereferenced to access the actual values.

5.2.3 The PrimarySource class
The intention behind the primary source class is that if one renewable energy source
(uncertain parameter) has multiple different energy outputs, the client can construct multiple
primary sources that link to the same energy source. For instance, solar radiation could
be both an electricity and heat source, and the client could then construct primary sources
solarRadiation and solarThermalRadiation from the uncertain parameter object solar. As
a result, the user can easily specify another energy model and expand from one to multiple
conversion technologies and subsequently utilities.
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1 // PRIMARY SOURCE CLASS
2 #ifndef PRIMARYSOURCE_H
3 #define PRIMARYSOURCE_H
4 #include "headerFiles.hpp"
5 #include "EnergySystem.hpp"
6

7 namespace decomposition
8 {
9

10 class PrimarySource
11 {
12 private:
13 int numScen , numTimeSteps;
14

15 vector <vector <double >> output; // vector with outputs from primary
energy source

16

17

18 public:
19 friend EnergySystem;
20

21 PrimarySource(vector <vector <double >>* input , EnergySystem* enrg );
// constructor

22

23 vector <vector <double >>* getOutput (){return &output ;}
24

25 };
26 }
27 #endif

Listing 5.3: The PrimarySource class header file.

In Listing 5.3 we have:

1. PrimarySource(vector<vector<double>>* input, EnergySystem* enrg)

• The constructor on line 21 initialises system variables, and modifies input values
from pointer input to output stored in the output vector.

2. getOutput()

• Inline function getOutput() returns a pointer to the vector output. It has the
same purpose as that of the uncertain parameter class.

5.2.4 The Conversion class
The conversion class is used to denote pieces of equipment that change the input from
the primary energy source to a useful utility. For instance, photo-voltaic panels and wind
turbines are examples of objects in the Conversion class. Each object in the Conversion
class is linked on the input side with an object from the PrimarySource or UncertainParam
class, and on the output side with a Utility object.
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A considerable amount of the costs in an energy production project is related to the capital
expenses associated with energy conversion technologies. Capital cost estimates for renew-
able energy conversion technologies are continuously being cut as a result of technological
advancements. Consequently, the cost equation for the Conversion class was developed
with the intention of being easy to specify and update.

In addition to cutting capital expenses, technological advancements can result in improved
efficiencies and increased energy output. A natural consequence of this is the development
of new energy conversion models which in turn motivated the development of functionality
to modify the energy conversion model in a Conversion object.

Binary 1st stage variables are introduced to represent the choice of picking a particu-
lar equipment size of a conversion technology. To enforce the selection of exactly one size
from the sizes vector of each conversion technology, the program has to set first-stage
binary design variables and constraints designVarBin and designConBin, respectively. In
addition, to link the binary 1st stage variables to the 2nd stage recourse problem, vari-
ables and constraints designVarDisc and designConDisc are declared. Both the 1st stage
binary constraints and the 2nd stage linking constraints are of little relevance to the user
input model but required to ensure the convergence of the NGBD algorithm in GOSSIP. In
accordance with the second OOP-pillar in Section 4.1.2, abstraction, these variables and
constraints are set in the implementation files.

1 // Conversion class
2

3 #ifndef CONVERSION_H
4 #define CONVERSION_H
5 #include "headerFiles.hpp"
6 #include "PrimarySource.hpp"
7 #include "EnergySystem.hpp"
8

9

10

11

12 namespace decomposition
13 {
14

15

16 class Conversion
17 {
18 private:
19

20

21 vector <vector <double >>* input; // pointer to input vales from primary
source/energy source , e.g solar irradiation etc

22

23 EnergySystem* linkToSystem;
24

25 double a, b; // parameter values for linear or affine linear
conversion equation

26

27 int numScen , numTimeSteps , numDiscrete , lifeTime;
28

29 string convTech;
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30

31 double baseCost , CRF ,r{0.06} , capN {100}, econScaleFac {0.7}, maintFac
{0.05};

32 //cost0=base cost , cap0=base capacity , capN=max capacity
33 // econScaleFaf= economies of scale factor , eff=efficiency
34

35 vector <double > sizes; // vector with numDiscrete size intervals for
conversion technology

36

37 vector <vector <double >> output; // vector with output values in unit
energy MW, will be initialized in setConversionFunction

38

39 vector <Variables > designVarBin;
40 Constraints designConBin;
41

42 vector <Variables > designVarDisc;
43 vector <Constraints > designConDisc;
44

45 vector <vector <Variables >> produced;
46 vector <vector <Constraints >> exported;
47

48 public:
49 friend EnergySystem;
50

51 string unitName;
52

53 Conversion(vector <vector <double >>* inputSource ,EnergySystem* enrg);
// constructor

54

55 Conversion* getPointer (){return this ;};
56

57 void setCostFunction(double unitCost , double maxCap , int
numSizeIntervals , int CRFtime , string type ,bool VSS=false , double
EVPsize =0); //set CAPEX cost function , dependent on installed size

58

59 void setConversionFunction(double constA =1.0, double constB =0.0); //
set output conversion function , how much energy produced

60

61 vector <vector <Variables >>* getOutput (){return &produced ;}; // returns
output value for timestep t and scenario h, only one double value

62

63 void optimizeCapacity ();
64

65 void addCAPEX(vector <Constraints >& objectiveFunction , vector <
Constraints >& budget);

66

67 };
68

69 }
70

71 #endif

Listing 5.4: The Conversion class header file.
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In Listing 5.4 we have:

1. Conversion(vector<vector<double>>* inputSource, EnergySystem* enrg)

• The constructor initialises system variables input, linkToSystem, numScen and
numTimeSteps.

• The constructor also declares class variable produced and constraint exported.
produced is constrained by exported, which equals the energy output of the
Conversion object, output.

2. setCostFunction(double unitCost, double maxCap, int numSizeintervals, int CRFtime
, string type, bool VSS=false, double EVPsize=0)

• The function sets the parameters for the discrete cost function described in
Section 5.3. The list below shows which class attributes that the user input
parameters correspond to.

I unitCost=baseCost

II maxCap=capN

III numSizeintervals=numDiscrete

IV CRFtime=lifeTime

V type=unitName

• The client specifies both value and unit of the most influential cost parameters
in Equation 5.6, namely maxCap and unitCost.

• In addition, the function sets the designVar vector and calculates the Capital
Recovery Factor (CRF), defined in Equation 5.4, from parameters CRFtime, and
rate.

3. setConversionFunction(double constA=1.0, double constB=0.0)

• The member function allows the client to specify or change any affine linear
energy conversion model,

Outputt,h = A · Inputt,h +B

where A is constA, ususally denoting an efficiency value relating the energy
input and output of the converter. B is constB. As an example:

PowerOutSolar = EfficiencyPV · SolarRadiation

The EfficiencyPV denotes A (constA), and B (constB) is set to zero.
• It converts the inputSource from a primarySource object to output in the form

of utility.

4. getOutput()

• Inline function getOutput() returns a pointer to the vector produced and is used
to forward the production from the Conversion object to other objects.
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• The implementation is identical to the getOutput() function in the UncertainParam
class in Section 5.2.2.

5. optimizeCapacity().

• The function sets the binary 1st stage and discrete 2nd stage constraint
designConBin and designConDisc, respectively.

• Output from the conversion object is calculated and added to constraint exported
together with produced.

6. addCAPEX(vector<Constraints>& objectiveFunction, vector<Constraints>& budget)

• It is an auxiliary function that is used back-end in the ObjectiveFunction class
to add the resulting capital expense from the conversion object.

Currently, the interest rate and economies of scale factor, rate and econScaleFac, have de-
fault values, but it is a simple task to make it modifiable. Moreover, in function setCostFunction
(double unitCost, double maxCap, int numSizeintervals, int CRFtime, string type, bool
VSS=false, double EVPsize=0) there is the option to calculate the Value of Stochastic So-

lution (VSS) as defined on page 12. To calculate the VSS the client has to set VSS=true and
specify the nominal design, the design from the Expected Value Problem (EVP), in EVPsize.
This way, the Expectation of Expected Value Problem (EEVP) and subsequently VSS is
obtained. The stochastic solution and the VSS cannot be calculated simultaneously.

5.2.5 The Utility class
The purpose of the Utility class is to accumulate all the flows of a given utility type
such as electricity or heat. The flows originate from multiple Conversion objects. From the
Utility object the utility is forwarded to an EndUser object with demand for that particular
utility type. The Utility class allows the client to include multiple different energy sources
and conversion technologies in the flexible RES. This is an essential property of the OOP
framework as using multiple energy sources is a potential solution to the reliability problem
mentioned in the introduction.

1 // UTILITY class
2 #ifndef UTILITY_H
3 #define UTILITY_H
4 #include "headerFiles.hpp"
5 #include "Conversion.hpp"
6 #include "EnergySystem.hpp"
7

8 namespace decomposition
9 {

10

11

12 class Utility
13 {
14 private:
15

16 EnergySystem* linkToSystem;
17
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18 int numScen , numTimeSteps;
19

20 vector <vector <vector <Variables >>*> inputSources;
21 vector <double > inputFractions;
22

23 public:
24 friend Conversion;
25 friend EnergySystem;
26

27 string name;
28 bool uncertainPrice{false};
29 double constImportPrice {300} , constFiT {70}, surplusFiT {0.5};
30 vector <vector <double >> importPrice;
31

32

33 vector <vector <Constraints >> producedCon;
34

35 vector <vector <Variables >> exported;
36 vector <vector <Variables >> imported;
37 vector <vector <Variables >> surplus;
38

39

40 Utility(vector <vector <double >>* price , EnergySystem* enrg , string
utilityName); // constructor

41

42 void addUtility(vector <vector <Variables >>* input , double fraction);
// adding energy from conversion to this utility type , fraction
specifies amount of

43 //
44

45 vector <vector <Variables >>* getOutput (){return &exported ;};
46 vector <vector <Variables >>* getImportVariable (){return &imported ;};
47

48 Variables& getSurplus(int t, int h){return surplus[t][h];};
49 Variables& getExport(int t, int h){return exported[t][h];};
50 Variables& getImport(int t, int h){return imported[t][h];};
51

52 void setFiT(double FiT){constFiT=FiT ;};
53 void setSurplusFiT(double FiT){surplusFiT=FiT;};
54

55

56 void setUtilityExportConstraint ();
57

58 };
59

60 }
61

62 #endif

Listing 5.5: The Utility class header file.
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In Listing 5.5 we have:

1. Utility(vector<vector<double>>* price, EnergySystem* enrg, string utilityName)

• The constructor on line 40 initialises system and class variables, and imports a
user specified import price from an UncertainParameter object.

• Class variables exported and surplus are defined as the amount of utility ex-
ported to end user to cover demand, and say additional exported to the grid,
respectively.

• The utility prices from price are stored in vector importPrice. However, the
importPrice can also be set to be a constant through variable constImportPrice.

2. addUtility(vector<vector<Variables>>* input, double fraction)

• The member function imports utility from a PrimarySource or Conversion object
and stores a pointer to the source in vector inputSources.

• The input variables are added to the constraints in vector producedCon to con-
strain the total output from the Utility object.

3. getSurplus(int t, int h), getExport(int t, int h) and getImport(int t, int h)

• Returns the surplus, export or import variable from time-step t and scenario h.
• Primarily used in the EndUser object to ensure that utility demand is met through

production (export) and/or import (import), and to calculate the potential surplus
in the case of additional utility production.

4. setFiT(double FiT) and setSurplusFit(double FiT)

• A feed-in tariff is a policy mechanism designed to accelerate investment in
renewable energy technologies by offering long-term contracts to renewable
energy producers. Under a feed-in tariff, energy producers are paid a cost-
based price for the renewable electricity they supply to the grid (https :
//en.wikipedia.org/wiki/Feed� intariff , 08.06.21) [15].

• The two functions let the client specify feed-in-tariff/sales price of utility ex-
ported to cover end user demand and any surplus utility, respectively.

5. setUtilityExportConstraint()

• void function setUtilityExportConstraint() sets the producedCon constraints.

The fraction parameter in function addUtility(input, fraction) makes it possible to dis-
tribute the output from one energy source to multiple utility types. fraction specifies how
much of the input that is converted to the utility type which the function is called upon.
This property is helpful in cases such as the natural gas combined cycle (NGCC) described
in Section 4.2.
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Constraint producedCon ensures that the variables exported and surplus are constrained to
satisfy energy balances. The sum of exported and surplus for each time-step and scenario
should be equal to the total input of utility in that time-step and scenario. surplus is
defined as the potential surplus of utility if production surpasses demand. The demand of
each utility is found in the end user object (see Section 5.2.6).

To summarize, the back-end implementation ensures consistent energy balances. In other
words that the total output of utility does not surpass the total input of utility. This way,
the client does not have to specifically specify input-output constraints for the utility object.
However, setUtilityExportConstraint() has to be called explicitly by the client after all
utility sources have been added. This is to avoid the "Out-of-turn definition of variable"
error in GOSSIP which is invoked if a variable is set after a constraint.

5.2.6 The EndUser class
End users are the energy sinks, or customers, of the energy system. An end user object
can require multiple different utilities such as heat, electricity, steam, etc. Pointers to the
different demand profiles of the EndUser object are stored in the map demandMap together
with a key that points to the associated Utility object. Utility is only imported from an
Utility object to an EndUser object if there is demand for that utility in the demandMap.

1 //END USER CLASS
2 #ifndef ENDUSER_H
3 #define ENDUSER_H
4 #include "headerFiles.hpp"
5 #include "Utility.hpp"
6 #include "EnergySystem.hpp"
7

8 namespace decomposition
9 {

10

11 class EndUser
12 {
13 private:
14

15 EnergySystem* linkToSystem;
16

17 int numScen ,numTimeSteps;
18

19 vector <Utility*> inputUtilities;
20 vector <Utility*> importUtilities;
21

22 map <Utility*,vector <vector <Constraints >> > demandMap;
23

24 public:
25 friend EnergySystem;
26 friend Utility;
27

28 EndUser(EnergySystem* enrg);
29

30 void addUtilityDemand(Utility* utilityType , vector <vector <double >>*
input);// imports user demand from uncertain parameter object , adds
value to demandMap with constriants
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31

32 void addUtilitySource(Utility* utilityType); // imports energy from
given utility source/type , e.g. electricity

33

34 void setUtilityImportConstraint(Utility* utilityType);
35

36 void getUtilityExport(vector <Objective >& objectiveFunction);
37 void getUtilityImport(vector <Objective >& objectiveFunction);
38

39 };
40

41 }
42

43

44 #endif

Listing 5.6: The EndUser class header file.

In Listing 5.6 we have:

1. EndUser(EnergySystem* enrg)

• The constructor initialises system and class variables numScen, numTimeSteps and
linkToSystem.

2. addUtilityDemand(Utility* utilityType, vector<vector<double>>* input)

• Function imports the end user demand of utility utilityType from source input
(uncertain parameter object) and adds it to the constraint with key utilityType
in demandMap.

• From the utility pointer utilityType the imported variable is accessed and
added to the constraint in demandMap.

3. addUtilitySource(Utility* utilityType)

• The function adds the utility type utilityType to vector inputUtilities.

4. setUtilityImportConstriant(Utility* utilityType)

• The function adds utility from all sources in inputUtilites to the respective
constraint in demandMap, and sets the respective constraints.

5. getUtilityExport(vector<Objective>& objectiveFunction) and getUtilityImport(vector
<Objective>& objectiveFunction)

• The two inline functions are back-end help functions with the sole purpose
of adding operating income and expenses to the objective function in the
ObjectiveFunc object.

The imported variable is added to demandMap to ensure that in the case of deficit renewable
utility, end user demand is met by importing utility at an import cost. As mentioned in
Section 5.2.5, the import price is encapsulated in the utility object.
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Because all aforementioned function operations are implemented without input from the
client, the client only has to specify "big picture" information flows such as the demand, and
input and output sources.

5.2.7 The ObjectiveFunction class
By constructing a separate ObjectiveFunction object, the client can optimize the flexible
RES design with respect to several different goals. For instance, the objective could be to
minimize total emissions or cost, or maximize reliability of renewable energy. In the current
implementation of the framework, the default objective is to minimize project lifetime cost.
However, a class member function to set a different objective can be implemented easily
without changing the rest of the existing framework.

1 // Objective class
2 #ifndef OBJECTIVEFUNC_H
3 #define OBJECTIVEFUNC_H
4 #include "headerFiles.hpp"
5 #include "EndUser.hpp"
6 #include "EnergySystem.hpp"
7

8 namespace decomposition
9 {

10 class ObjectiveFunction
11 {
12 private:
13 int numScen , numTimeSteps;
14

15 EnergySystem* linkToSystem;
16

17 double budget;
18 vector <Constraints > budgetCon;
19

20 vector <Objective > objFunc; // vector to store objective function ,
function to be minimized by default

21

22

23

24 public:
25 friend EnergySystem;
26

27 ObjectiveFunction(EnergySystem* enrg , double setBudget =100000000);
28

29 void addOPEX(EndUser* user);
30

31 void addCAPEX(Conversion* technology);
32

33 int getNumScen (){return numScen ;};
34

35 void setObjective (); // setting the objective function ,
minimization by default

36

37 };
38

39

40
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41 }
42

43 #endif

Listing 5.7: The ObjectiveFunciton class header file.

In Listing 5.7 we have:

1. ObjectiveFunction(EnergySystem* enrg, double setBudget=20000000)

• The constructor on line 25 initialises system variables and the objective-vector
objFunc.

• It also adds the potentially user-defined setBudget to budget constraint budgetCon
.

2. addCAPEX(Conversion* technology)

• The member function adds the capital expense of Conversion object technology
to the objective function objFun and constraint budgetCon.

3. addOPEX(EndUser* user)

• The function adds the operational expenses and revenues from EndUser object
user.

4. setObjective()

• This function is called after all relevant variables has been added by the client.
It sets the final objective function and the capital expense budget constraint.

5.3 Model objective, equations and constraints
By constructing necessary objects and calling relevant functions through the user interface,
a two-stage stochastic MILP problem is formulated in the implementation. This includes
formulating the problem objective function, as defined in Section 5.3.1, and constraints that
are necessary for a consistent model formulation, as defined in Section 5.3.2.

5.3.1 The objective
Currently, the default objective is to minimize the expected lifetime cost of the energy
system as defined by Equation 5.1. This can be split into the capital costs, CAP (x), and
the expected operating cost over the different scenarios, where OPh is the operational cost
in scenario h. The capital costs are determined in the 1st stage, and operational costs are
incurred in the 2nd stage.

OBJmin = CAP (x) +
X

h

ph ·OPh(yh) 8 h 2 S (5.1)

Here x is a vector of binary decision variables in the 1st stage, ph is probability of scenario
h and yh is a vector of scenario dependent operational decision variables in the 2nd stage.
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S defines the set of possible scenarios h. The size of x is dependent on the number of
different conversion technologies installed and the number of different sizes to chose from
for each conversion technology. The size of yh depends on number of scenarios, time-steps,
utilities produced, end users and possible conversion technologies.

Capital cost estimation [13] [17]

The project capital cost can be written as,

CAP (x) =
X

i2I

FCi(xi) (5.2)

where FCi is defined in Equation 5.3 and I is the set of constructed conversion technologies.
The total capital cost of conversion technology i consists of an investment cost Ci,base

multiplied by capacity installed Ji, a maintenance cost factor Fm,i and the Capital Recovery
Factor, CRFi.

FCi(xi) = Ji(xi) · Ci,base · Fm,i · CRFi (5.3)
The Capital Recovery Factor is defined as in Equation 5.4 where r is the interest rate and
Ti denotes lifetime of technology i.

CRFi = r · (1 + r)Ti

(1 + r)Ti � 1
(5.4)

As mentioned in Chapter 3, the 1st stage variables must be discrete for guaranteed con-
vergence of the NGBD algorithm. Consequently, the capacity Ji is a function of the binary
decision variable zi,j and a discrete capacity function, Si,j , where subscript i denotes
conversion technology and j capacity interval.

Ji(xi) =
dX

j=0

Si,j · xi,j xi,j 2 {0,1} (5.5)

The capacity, Si,j , is calculated from Equation (5.6) where Si,max is the user-defined
maximum capacity that can be installed.

Si,j = j · (Si,max

d� 1
) 8 j 2 {0,....,d} (5.6)

Operating cost estimation

The operating costs in the second term of Equation 5.1 is in each scenario summed up from
discrete time t0 to tfinal for each utility-type, u. It calculates the expected revenue from
production over the entire project lifetime T and is formulated in Equation 5.7.

OPh(y) =
X

u2U

tfinalX

t0

y
import
u,t,h · UiPu,h

�y
demand
u,t,h · FiTu

�y
redundant
u,t,h · FiT

redundant
u

8 h 2 S

(5.7)
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Utility flow y
import
u,t,h is energy that is imported externally from grid to end user if production

is less than demand, and y
demand
u,t,h and y

redundant
u,t,h is energy exported from energy system

to end users. Here demand and redundant indicates if the energy is exported to cover
end user demand or if it is redundant production exported to grid, respectively. All energy
flows are indexed by scenario h and time t. UiPu,t,h is the price of imported utility u

in scenario h whereas FiTu and FiT
redundant
u are constant feed-in tariffs for exported

utility, u, to end user and back to grid, respectively.

5.3.2 Framework constraints
The number of constraints in the user input model depends on the number of scenarios, time-
steps, conversion technologies, utilities, and end users. Some constraints are individual, e.g
specific for one object such as the design constraint in Equation 5.8, whereas equations
such as 5.11 involve different classes and multiple objects. Constraints are generated
automatically and declared in the implementation, but the client has to call setConstraint
(...) functions for several of the framework objects. This is to ensure that 1st stage
constraints are set after 1st and 2nd stage variables and before any 2nd stage constraints.
Nonetheless, the tedious and repetitive work of resizing vectors and constraining simple
input-output variables is done back-end.

Design constraints

To ensure that only one size, Si,j , is selected for each Conversion object i, the variable
constraint formulated in Equation 5.8 is imposed on the system.

dX

j=0

xi,j = 1 xi,j 2 {0,1} (5.8)

In addition, the client can specify a budget constraint that limits the total investment cost
related to conversion technologies. The budget constraint is defined by Equation 5.9 where
i denotes a Conversion object from the set I of installed conversion technologies. Ji denotes
the installed capacity of Conversion object i with unit cost Ci,base.

CAPEXbudget �
X

i2I

Ji · Ci,base (5.9)

Energy balance constraints

Each Conversion object, i, has a production constraint as defined by Equation 5.10 to satisfy
energy balance constraints, i.e that the amount of exported energy does not surpass the
amount of produced energy in each time-step t for each scenario h. outputt,h is energy
output from the Conversion object in time-step t and scenario h. Ji scales the energy
output to reflect the installed capacity.

y
export,i
u,t,h = outputt,h · Ji, h (5.10)
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Furthermore, each Utility object u has a production constraint as defined by Equation
5.11. This is to ensure that the amount of utility exported to end user (demand) and back
to grid (redundant) is equal to the sum of utility (export) from all relevant utility sources
(Conversion objects i).

X

i2I

y
export,i
u,t,h = y

demand
u,t,h + y

redundant
u,t,h (5.11)

Demand and import constraint

It is assumed that there are no arbitrage opportunities in the energy market. This entails
that it is not beneficial for the system to import utility from the market and export this to the
end users. However, to ensure that the end user demand is met, there must be a possibility
to cover deficit utility production through import. To enforce the arbitrage assumption
and simultaneously ensure satisfied end user demand, an end user demand constraint is
defined for each type of utility that an end user requires. The demand constraint is defined
in Equation 5.12 where demandu,t,h is the end user demand of utility u, ydemand

u,t,h is utility
exported to the end user and y

import
u,t,h is utility imported from the market. All variables are

indexed by Utility object/type u, time t and scenario h.

demandu,t,h = y
demand
u,t,h + y

import
u,t,h (5.12)
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5.4 User input model: Setting up a simple program

5.4 User input model: Setting up a simple program
The coming sections explain the objects and function calls required for any program within
the developed OOP framework to compile and run. Abbreviations for the different objects,
for instance the term UPO for an UncertanParameter object, are listed on page xii.

5.4.1 Uncertain parameter objects and related input-files
The list below shows the framework classes that can involve uncertain parameters and lists
where typical uncertainties in a flexible RES are included in the OOP framework.

1. One UncertanParameter object (UPO) per PrimarySource object (PSO), representing
the input to the PSO. Example: Wind speed for primary source wind.

2. One UPO per Utility object (UTO), representing the import price of that utility. Ex-
ample: The volatile market spot price for electricity, e.g the cost related to importing
electricity from the grid.

3. One UPO for each utility type that an EndUser object needs. Example: An end user
that needs heat and electricity results in two UPOs to give the user demand profile
for heat and electricity, respectively.

5.4.2 Energy system objects
In addition to the number of related uncertain parameters described above, the following
objects have to be constructed to ensure the compilation and correct execution of a program
in the OOP framework. Note that construction of the objects should follow the line of order
below.

1. One energy system object (ESO).

2. One primary source object (PSO), representing an intermediary energy source.

3. One conversion object (CVO) that turns the input from a PSO into output to a UTO.

4. One utility object (UTO), an intermediary sink, to accumulate utility from multiple
conversion objects.

5. One end user object (EUO) representing the final sink.

6. One objective object (OBJO) to define a function for the program to minimize/maximize.

5.4.3 Function calls
The following function calls have to be made to set the necessary system variables and
constraints. The order in which the calls are made depends on function input parameters and
whether the function involves 1st or 2nd stage variables, or 1st or 2nd stage constraints.
1st stage variables must be defined and set before 2nd stage variables, which in turn must
be defined and set before 1st and 2nd stage constraints.
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5.4 User input model: Setting up a simple program

1 ESO.importProbabilities(string filepath , vector <double >& prob)
2

3 CVO.setCostFunction(double unitCost , double maxCap , int
numSizeIntervals , double efficiency , string type)

4

5 CVO.setConversionFunction(double constA , double constB)
6

7 EUO.addUtilityDemand(Utilty* type=&UT , UP.getOutput ())
8

9 EUO.addUtilitySource(Utility* type=&UT, type.getOutput ())
10

11 CVO.optimizeCapacity ()
12

13 UTO.addUtility(CV.getOutput (), double fraction)
14

15 UTO.setUtilityExportConstraint ()
16

17 EUO.setUtilityImportConstraint(Utiliy * type=&UT)
18

19 OBJ.addOPEX(EndUser * user=&EU)
20

21 OBJ.addCAPEX(Conversion* technology =&CV)
22

23 OBJ.setObjective ()

Listing 5.8: Necessary function calls to set system and create an executable program. The capital
letters in front of the function call in Listing 5.8 refers to the class which the function is a member
of. See the list of abbreviations on page xii for information about which object the capital letters
symbolize.
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CHAPTER

SIX

CASE STUDIES

This chapter illustrates and further explains how the object-oriented framework works
through three examples with increasing complexity. First, a small but viable system is
presented in Section 6.1 to show the essential components of a solvable user input model.
In Section 6.2 the model is expanded to replicate the model in [17] without the implemen-
tation of batteries. This is to verify the correctness of the OOP framework by showing that
the results obtained are identical. Lastly, in Section 6.3 the user input model is further
expanded to include multiple utility types and end users. This is to show the extensibility
of framework components and scalability of the user input model.

The objective in all three examples is to determine the optimal design and operation under
uncertainty that minimizes lifetime cost. The intermittent nature of both renewable energy
sources and user demand, as well as the volatile market spot price for electricity, introduces
uncertainty into the system.

The examples are, listed after increasing complexity:

• Example 1: A simple system

• Example 2: A system consisting of multiple energy sources

• Example 3: A more complex system with multiple energy sources, utilities and end
users

43



6.1 A small system

6.1 A small system
6.1.1 The system
The model consists of renewable energy source wind, energy conversion through wind
turbines, and an end user with one utility demand (electricity). The system has three un-
certain variables, namely wind speed, the market spot price of electricity, and user demand.
However, it should be noted that the user can set both the import price and demand to a
constant. The physical system is illustrated in Figure 6.1.

Figure 6.1: A simple illustration of the physical system in Example 1. Blue arrows represent electricity
flow.

The wind turbine model in Equation 6.1 and 6.2 is nonlinear with respect to the wind
speed, thus, the expression in the 2nd case in Equation 6.2 is rearranged to fit the affine
linear input-output relationship in the Conversion class object. The resulting wind turbine
model and input parameters (constA and constB) are listed in Table 6.1 and 6.2, respectively.

The rated power output, PWT
t,h , from a wind turbine is modelled after Equation 6.1.

P
WT
t,h  qt,h · ZWT (6.1)
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6.1 A small system

qt,h is a function of wind speed defined by Equation 6.2, and specific for the model [14].
Z

WT is a function of the first stage decision variables and denotes the number of wind
turbines installed.

qt,h =

8
>>>><

>>>>:

0, if Wt,h  Wmin

qd ·
W 3

t,h�W 3
min

W 3
d�W 3

min
, if Wmin  Wt,h < Wd

qd, if Wd  Wt,h < Wmax

0, if Wt,h � Wmax

(6.2)

qd is the maximum production capacity of one wind turbine, obtained if the wind speed is
between wd and wmax. Wmin and Wmax is the cut-in and cut-out wind speed, respec-
tively, and Wt,h the wind speed in time-step t and scenario h. The wind model parameters
are listed in Table 6.1.

Symbol Unit Value
qd MW 8
Wd m/s 14

Wmin m/s 4
Wmax m/s 25

qd
W 3

d�W 3
min

MW/(m/s)3 0.002985

�qd·W 3
min

W 3
d�W 3

min
MW -0.1910

Table 6.1: Parameters used in the wind model in Equation 6.2.

The overall objective is to minimize project costs. Renewable energy is exported to end user
at a constant feed-in tariff until the end user demand is met. Any redundant renewable
energy is exported to the grid at a lower feed-in tariff, and any deficit production is covered
by importing electricity from the grid at market spot price. The key result from the program
is the 1st stage decision variables, namely the number of wind turbines installed. The
process flowsheet is illustrated in Figure 6.2, and the user input parameters and model is
listed in Table 6.2 and shown in Listing 6.1, respectively.
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6.1 A small system

Figure 6.2: Flowsheet illustrating the relationship between objects in the renewable energy system
illustrated in Figure 6.1. The corresponding user input model is shown in Listing 6.1. Produced,
exported, surplus and imported are system variables.

6.1.2 User model
Listing 6.1 shows the user input model of the system illustrated in Figure 6.1 and with
corresponding process flowsheet in Figure 6.2. User input parameters are listed in Table
6.2. The code listing has also been split into segments to show the order of declaration for
1st and 2nd stage variables and constraints.
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6.1 A small system

Table 6.2: User input parameters in Listing 6.1. Stage denotes whether the parameter is used in the
1st or 2nd stage of the resulting two-stage MILP problem formulation.
(1time-steps per day, 2no. wind turbines)

Stage Name Unit Value
RES object
1 time - 1 24
1 scen - 12
WT object
1 unitCost $ 1 200 000
1 maxCap - 2 18
1 numSizeIntervals - 10
1 CRFtime years 20
2 constA MW/(m/s)3 0.002985
2 constB MW -0.1910
Electricity object
2 fraction - 1.0
minimize object
2 setBudget $ 20 000 000
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6.1 A small system

1 #include "headerFiles.hpp"
2 #include "MSCfiles.hpp"
3

4 using namespace decomposition;
5

6 // ----------Simplest possible program -------------//
7 int inputmodel(std::vector <double > &weights)
8 {
9 // Setting energy system time -steps =24 hours and scenarios specs =12

scenarios per hour
10 EnergySystem RES (12 ,24);
11 // Importing probabilities for each of the 12 scenarios , parameter is

filepat and vector weights
12 RES.importProbabilities("Examples/GOSSIP_library/MSC_v3/ImportFIles/

UncertaintyData_v2/probabilities.csv", weights);
13

14 // ----------Importing scenario profiles for all relevant uncertain
parameters -------------//

15

16 // Electricity demand profile
17 UncertainParam ELdemand("Examples/GOSSIP_library/MSC_v3/ImportFIles/

UncertaintyData_v2/param4.csv",&RES);
18 // Electricity import price from grid
19 UncertainParam GridImportPrice("Examples/GOSSIP_library/MSC_v3/

ImportFIles/UncertaintyData_v2/param3.csv",&RES);
20 // EFfective power throughput
21 UncertainParam WindSpeed("Examples/GOSSIP_library/MSC_v3/ImportFIles

/UncertaintyData_v2/param2new.csv" ,&RES);
22 //Need one uncertain parameter for each primary source = energy

source input
23 PrimarySource Wind(WindSpeed.getOutput () ,&RES);
24

25 //.-----------Setting 1st stage variables ---------//
26

27 //Input(vector with wind output , link to energy system)
28 Conversion WT(Wind.getOutput () ,&RES);
29 // Setting cost function: Input (unit price , max capacity , number of

discrete intervals , name)
30 WT.setCostFunction (1200000 ,18 ,10 ,20 ,"WT");
31

32 // -----------Setting 2nd stage variables ---------//
33

34 //Input(constant a, constant b)
35 WT.setConversionFunction (0.002985 , -0.1910);
36 //Need one uncertain parameter for each type of utility = price of

utility import
37 //Input(vector with price , link to system , name)
38 Utility Electricity(GridImportPrice.getOutput () ,&RES ,"EL");
39 // Simple constructor
40 EndUser NTNU(&RES);
41 //Need one uncertain parameter for each type of utility demand for

each end user
42 //Input(link to relevant utility , vector with demand profile for

that utiliy)
43 NTNU.addUtilityDemand (& Electricity ,ELdemand.getOutput ());
44 //Input(link to utility source for which there is demand)
45 NTNU.addUtilitySource (& Electricity);
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6.1 A small system

46 // Setting 1st stage capacity/design constraints
47 WT.optimizeCapacity ();
48

49 // -------------------------Setting 2nd stage operational constraints
---------------------//

50

51 //Input(vector with energy outout from converion object , fraction of
energy output to that utility type)

52 Electricity.addUtility(WT.getOutput () ,1.0);
53 // Constraint to ensure utility exported does not surpass utility

produced
54 Electricity.setUtilityExportConstraint ();
55 // Constraint to ensure utility improted does not surpass utility

produced
56 //Input(link to utility source for which there is a demand)
57 NTNU.setUtilityImportConstraint (& Electricity);
58

59 // ----------Objective function -------//
60

61 // Simple constructor , sets CAPEX budget
62 ObjectiveFunction minimize (&RES , 20000000);
63 // Adding OPEX (operational expenses and income)
64 //Input(link to end user that the system exports energy to)
65 minimize.addOPEX (&NTNU);
66 // Adding CAPEX for energy system (capital expense for each

conversion technology possibly installed)
67 //Input(link to conversion technology)
68 minimize.addCAPEX (&WT);
69 // Setting the final objective function after adding all expenses and

revenues
70 minimize.setObjective ();
71

72 // Returning number of scenarios as output of inputmodel
73 return minimize.getNumScen ();
74

75 };

Listing 6.1: Resulting user input model for the system illustrated in Figure 6.1
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6.2 Solar PV and wind turbine system

6.2 Solar PV and wind turbine system
6.2.1 The system
In Figure 6.3, the system from Figure 6.1 is expanded to include renewable energy source
solar radiation with corresponding conversion technology solar photo voltaic panels. The
process flowsheet is illustrated in Figure 6.4.

Figure 6.3: A simple illustration of the physical system in Example 2. Blue arrows represent electricity
flow.

The power output per square meter of solar panels, PPV
t,h , is modelled as,

P
PV
t,h = ⌘

PV (It,h, ✓) · It,h · ZPV (6.3)

where ⌘
PV is the efficiency, It,h is solar radiation at time t and scenario h [MW/km2],

and ✓ the solar incidence angle. ZPV is a function of the first stage decision variable and
denotes how many m

2 of solar PV panels that is installed. For simplicity ⌘
PV and ✓ are

assumed constant.
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6.2 Solar PV and wind turbine system

The user input model in Listing 6.2 verifies the correctness of the framework as it gives
the same results as the model in [17] run without the inclusion of batteries. The user
demand and import price of electricity are the same as in the case study in Section 6.1,
but now a sufficient amount of renewable energy can be ensured from two different sources
and by two conversion technologies.

Figure 6.4: Flowsheet illustrating the relationship between objects in the renewable energy system
illustrated in Figure 6.3. The corresponding user input model is shown in Listing 6.2. Produced,
exported, surplus and imported are system variables.

6.2.2 User model
Some explanatory comments have been omitted in this example and the reader is referred
to Chapter 5 for extensive explanations. The program in Listing 6.2 is the object-oriented
equivalent of the model in [17] without implementation of batteries. User input parameters
are listed in Table 6.3.
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6.2 Solar PV and wind turbine system

Table 6.3: User input parameters in Listing 6.2. Stage denotes whether the parameter is used in the
1st or 2nd stage of the resulting two-stage MILP problem formulation.

Stage Name Unit Value
RES object
1 time - 1 24
1 scen - 12
WT object
1 unitCost $ 1 200 000
1 maxCap -2 18
1 numSizeIntervals - 10
1 CRFtime years 20
2 constA MW/(m/s)3 0.002985
2 constB MW -0.1910
SolarPV object
1 unitCost $ 130
1 maxCap m

2 72 000
1 numSizeIntervals - 10
1 CRFtime years 30
2 constA - 2·10�7

2 constB - 0.0
Electricity object
2 fraction - 1.0
2 fraction - 1.0
minimize object
2 setBudget $ 20 000 000
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6.2 Solar PV and wind turbine system

1 #include "headerFiles.hpp"
2 #include "MSCfiles.hpp"
3

4 using namespace decomposition;
5

6 int inputmodel(std::vector <double > &weights)
7 {
8 EnergySystem RES (12 ,24);
9

10 RES.importProbabilities("Examples/GOSSIP_library/MSC_v3/ImportFIles/
UncertaintyData_v2/probabilities.csv", weights);

11

12 UncertainParam SolarRadiation("Examples/GOSSIP_library/MSC_v3/
ImportFIles/UncertaintyData_v2/param1.csv",&RES);

13 UncertainParam WindSpeed("Examples/GOSSIP_library/MSC_v3/ImportFIles
/UncertaintyData_v2/param2new.csv" ,&RES);

14 UncertainParam GridImportPrice("Examples/GOSSIP_library/MSC_v3/
ImportFIles/UncertaintyData_v2/param3.csv",&RES);

15 UncertainParam ELdemand("Examples/GOSSIP_library/MSC_v3/ImportFIles/
UncertaintyData_v2/param4.csv",&RES);

16

17 PrimarySource Solar(SolarRadiation.getOutput () ,&RES);
18 PrimarySource Wind(WindSpeed.getOutput () ,&RES);
19

20 // -------------Setting 1st stage variables --------//
21 Conversion SolarPV(Solar.getOutput (), &RES);
22 Conversion WT(Wind.getOutput () ,&RES);
23

24 SolarPV.setCostFunction (130 ,72000 ,10 ,30 ,"PV");
25 WT.setCostFunction (1200000 ,18 ,10 ,20 ,"WT");
26

27 // -----------Setting 2nd stage variables ---------//
28 SolarPV.setConversionFunction (0.0000002 ,0);
29 WT.setConversionFunction (0.002985 , -0.1910);
30

31 Utility Electricity(GridImportPrice.getOutput () ,&RES , "EL");
32

33 EndUser NTNU(&RES);
34

35 NTNU.addUtilityDemand (& Electricity ,ELdemand.getOutput ());
36

37 NTNU.addUtilitySource (& Electricity);
38 SolarPV.optimizeCapacity ();
39 WT.optimizeCapacity ();
40

41 // --------Setting 2nd stage constraints --------//
42 Electricity.addUtility(SolarPV.getOutput () ,1.0);
43 Electricity.addUtility(WT.getOutput () ,1.0);
44

45 // Constraint to ensure utility exported does not surpass utility
produced

46 Electricity.setUtilityExportConstraint ();
47

48 // Constraint to ensure utility imported does not surpass utility
produced

49 NTNU.setUtilityImportConstraint (& Electricity);
50
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6.2 Solar PV and wind turbine system

51 ObjectiveFunction minimize (&RES , 20000000);
52

53 // Adding OPEX (operational expenses and income) for end user
54 minimize.addOPEX (&NTNU);
55

56 // Adding CAPEX for energy system , for each technology possibly
installed

57 minimize.addCAPEX (& SolarPV);
58 minimize.addCAPEX (&WT);
59

60 // Setting objective function
61 minimize.setObjective ();
62

63 return minimize.getNumScen ();
64 };

Listing 6.2: Resulting user input model for the system illustrated in Figure 6.3.
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6.3 System with heat and electricity demand

6.3 System with heat and electricity demand
6.3.1 The system
The system in Figure 6.5 with corresponding process flowsheet in Figure 6.6 is an expan-
sion of the system in Figure 6.3. Another utility type and end user is introduced to show
extensibility of the object-oriented framework. The end users now consist of the electricity
requirement of a medium-sized university (NTNU) and the heating demand of a small neigh-
bourhood (TidemandsGate). Solar panels (solarPV) and wind turbines (WT) can be used for
generating electricity to NTNU, and solar thermal panels (solarTP) can be used for generating
heat to TidemandsGate.

Figure 6.5: A simple illustration of the physical system in case study 3. The grey and red solar
panels represent solar photo voltaic and thermal panels, respectively. Blue and red arrows represent
electricity and heat flow, respectively.

The power output from the solar thermal panels, PPT
t,h , is calculated from the surrogate

model in Equation 6.4.
P

PT
t,h = ⌘

PT (It,h) · It,h · ZPT (6.4)

⌘
PT is the efficiency and It,h solar radiation at time t and scenario h [MW/km2]. Z

PT

is the first stage decision variable and denotes the installed area of solar thermal panels
[m2]. For simplicity ⌘

PT is assumed constant.

If there is a deficit production of electricity and/or heat, electricity is imported from the
grid at market spot price. Either for direct consumption or as an intermediary to generate
heat. On the other hand, if user demand is satisfied, abundant electricity and heat can be
exported to the grid or end user at a lower feed-in tariff.
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6.3 System with heat and electricity demand

Listing 6.3 is the problem formulation for the system illustrated in Figure 6.6. For sim-
plicity the electricity demand of NTNU and the heating demand of TidemandsGate are equal,
but the client can specify individual demand profiles. Also, because electricity can be used
to produce heat in the case of deficit heat from renewables, the import prices of heat and
electricity are assumed to be the same.

Figure 6.6: Flowsheet of a more complex system illustrating the different objects and relationships
in the program listed on page 58. Produced, exported, surplus and imported are system variables.

6.3.2 User model
Listing 6.3 shows the user input model for the system illustrated in Figure 6.5. Explanatory
comments have been removed and the reader is referred to Chapter 5 and Appendix A for
more details about the individual class implementations. User input parameters are listed
in Table 6.4.
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6.3 System with heat and electricity demand

Table 6.4: User input parameters in Listing 6.3. Stage denotes whether the parameter is used in the
1st or 2nd stage of the resulting two-stage MILP problem formulation.

Stage Name Unit Value
RES object
1 time -1 24
1 scen - 12
WT object
1 unitCost $ 1 200 000
1 maxCap - 2 18
1 numSizeIntervals - 10
1 CRFtime years 20
2 constA MW/(m/s)3 0.002985
2 constB MW -0.1910
SolarPV object
1 unitCost $ 130
1 maxCap m

2 72 000
1 numSizeIntervals - 10
1 CRFtime years 30
2 constA - 2·10�7

2 constB - 0.0
SolarTP object
1 unitCost $ 100
1 maxCap m

2 72 000
1 numSizeIntervals - 10
1 CRFtime years 30
2 constA - 5·10�7

2 constB - 0.0
Electricity object
2 fraction - 1.0
2 fraction - 1.0
Heat object
2 fraction - 0.9
minimize object
2 setBudget $ 20 000 000
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6.3 System with heat and electricity demand

1 #include "headerFiles.hpp"
2 #include "MSCfiles.hpp"
3

4 using namespace decomposition;
5

6 int inputmodel(std::vector <double > &weights)
7 {
8 EnergySystem RES (12 ,24);
9

10 RES.importProbabilities("Examples/GOSSIP_library/MSC_v3/ImportFIles/
UncertaintyData_v2/probabilities.csv", weights);

11

12 UncertainParam SolarRadiation("Examples/GOSSIP_library/MSC_v3/
ImportFIles/UncertaintyData_v2/param1.csv",&RES);

13 UncertainParam WindSpeed("Examples/GOSSIP_library/MSC_v3/ImportFIles
/UncertaintyData_v2/param2new.csv" ,&RES);

14 UncertainParam GridImportPrice("Examples/GOSSIP_library/MSC_v3/
ImportFIles/UncertaintyData_v2/param3.csv",&RES);

15 UncertainParam ELdemand("Examples/GOSSIP_library/MSC_v3/ImportFIles/
UncertaintyData_v2/param4.csv",&RES);

16 UncertainParam HeatDemand("Examples/GOSSIP_library/MSC_v3/
ImportFIles/UncertaintyData_v2/param4.csv",&RES);

17

18 PrimarySource Solar(SolarRadiation.getOutput () ,&RES);
19 PrimarySource Wind(WindSpeed.getOutput () ,&RES);
20

21 // -------------Setting 1st stage variables --------//
22 Conversion SolarPV(Solar.getOutput (), &RES);
23 Conversion SolarTP(Solar.getOutput () ,&RES);
24 Conversion WT(Wind.getOutput () ,&RES);
25

26 SolarPV.setCostFunction (130 ,72000 ,10 ,30 ,"PV");
27 SolarTP.setCostFunction (100 ,72000 ,10 ,30 ,"PT");
28 WT.setCostFunction (1200000 ,18 ,10 ,20 ,"WT");
29

30 // -----------Setting 2nd stage variables ---------//
31 SolarPV.setConversionFunction (0.0000002 ,0);
32 SolarTP.setConversionFunction (0.0000005 ,0);
33 WT.setConversionFunction (0.002985 , -0.1910);
34

35 Utility Electricity(GridImportPrice.getOutput () ,&RES , "EL");
36 Utility Heat(GridImportPrice.getOutput () ,&RES ,"HEAT");
37

38 EndUser NTNU(&RES);
39 EndUser TidemandsGate (&RES);
40

41 NTNU.addUtilityDemand (& Electricity ,ELdemand.getOutput ());
42 TidemandsGate.addUtilityDemand (&Heat ,HeatDemand.getOutput ());
43

44 NTNU.addUtilitySource (& Electricity);
45 TidemandsGate.addUtilitySource (&Heat);
46

47 SolarPV.optimizeCapacity ();
48 SolarTP.optimizeCapacity ();
49 WT.optimizeCapacity ();
50

51 // --------Setting 2nd stage constraints --------//
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6.3 System with heat and electricity demand

52 Electricity.addUtility(SolarPV.getOutput () ,1.0);
53 Heat.addUtility(SolarTP.getOutput () ,0.9);
54 Electricity.addUtility(WT.getOutput () ,1.0);
55

56 // Constraint to ensure utility exported does not surpass utility
produced

57 Electricity.setUtilityExportConstraint ();
58 Heat.setUtilityExportConstraint ();
59

60 // Constraint to ensure utility imported does not surpass utility
produced

61 NTNU.setUtilityImportConstraint (& Electricity);
62 TidemandsGate.setUtilityImportConstraint (&Heat);
63

64 ObjectiveFunction minimize (&RES ,20000000);
65

66 // Adding OPEX (operational expenses and income) for end user
67 minimize.addOPEX (&NTNU);
68 minimize.addOPEX (& TidemandsGate);
69

70 // Adding CAPEX for energy system , for each technology possibly
installed

71 minimize.addCAPEX (& SolarPV);
72 minimize.addCAPEX (& SolarTP);
73 minimize.addCAPEX (&WT);
74

75 // Setting objective function
76 minimize.setObjective ();
77

78 return minimize.getNumScen ();
79 };

Listing 6.3: Resulting user input model for the more complex system illustrated in Figure 6.5.
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CHAPTER

SEVEN

RESULTS

In Section 7.1 1st stage design results from the three examples in Chapter 6 are presented
together with the corresponding Net Present Value and Value of Stochastic Solution. The
Section also contains results from running the program in Listing 6.1 without a capital
expense budget constraint. Next, Section 7.2 presents a limited number of results related
to the performance of the two algorithms Full Space and NGBD.

7.1 Optimal design of energy system
The NGBD and Full-Space algorithm produced the same results for both the Expected Value
and Stochastic Problem. Consequently, results from the Full-Space algorithm are omitted.
Sections 7.1.1, 7.1.2 and 7.1.3 presents the design from the Expected Value Problem and
the Stochastic Problem for all three case studies as well as the Net Present Value and the
Value of Stochastic Solution. In addition to verifying the framework, the results from the
examples illustrate the value of stochastic programming.

7.1.1 Example 1
The optimal design for the energy system in Section 6.1 is listed in Table 7.1. Table 7.2
lists the resulting Net Present Value and the Value of Stochastic Solution. The program
in Listing 6.1 was run without the budget constraint on capital expenses to see whether it
was the lack of measures for flexibility or maximization of the budget that resulted in the
identical nominal and stochastic design in Table 7.1.
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7.1 Optimal design of energy system

Table 7.1: First stage design results from Example 1 in Chapter 6 solved with the NGBD algorithm.
N/A indicates that the conversion technology was not included in the user input model. SP and EVP
indicates the solution to the Stochastic and Expected Value Problem, respectively.

Example 1
W/budget W/O budget

No. scenarios 12 12
Variable Unit SP EVP SP EVP
Solar PV m

2 N/A N/A N/A N/A
Solar TP m

2 N/A N/A N/A N/A
Wind turbines no. turbines 16 16 18 16

Table 7.2: The Net Present Value (NPV) from the stochastic problem, and the Value of Stochastic
Solution (VSS) of the renewable energy system in Example 1 with and without the budget constraint.

Example 1
Value Unit W/budget W/O budget
NPV $ 153 975 205 063
VSS $ 0 51 088

For the simple system illustrated in Figure 6.2 the nominal and stochastic optimal designs
are identical. The practical implication of the result is that it is indifferent whether the
mean wind speed or a 12-scenario profile with an hourly resolution is used in the modeling
and selection of the energy system design. However, a zero VSS for a system with only one
energy source, i.e., zero measures for flexibility, is expected. Moreover, the capital expense
budget is maximized with the installment of 16 wind turbines. Thus, it could be that both the
EVP and SP are constrained financially. Results from Table 7.1 show that without a budget
constraint, the nominal design is unchanged, whereas the stochastic design maximizes the
number of wind turbines installed. The resulting positive VSS underscores the value of
stochastic programming even for small energy systems with zero measures for flexibility.

7.1.2 Example 2
The optimal design for the energy system in Section 6.2 is listed in Table 7.3. Resulting
Net Present Value and the Value of Stochastic Solution is listed in Table 7.4.
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7.1 Optimal design of energy system

Table 7.3: First stage design results from Example 2 in Chapter 6 solved with the NGBD algorithm.
N/A indicates that the conversion technology was not included in the user input model. SP and EVP
indicate the solution to the Stochastic and Expected Value Problem, respectively.

Example 2
No. scenarios 12

Variable Unit SP EVP
Solar PV m

2 40 000 72 000
Solar TP m

2 N/A N/A
Wind turbines no. turbines 12 8

Table 7.4: The Net Present Value (NPV) from the stochastic problem, and the Value of Stochastic
Solution (VSS) of the renewable energy system in Example 2.

Example 2
Value Unit
NPV $ 370 840
VSS $ 58 389

The results in Table 7.3 correspond with the results from the model in [17] without imple-
mentation of batteries. Specifically, both models output 40 000 m

2 of solar PV panels and
12 wind turbines as the optimal 1st stage design variables for the system illustrated in
Figure 6.3.

7.1.3 Example 3
The optimal design for the energy system in Section 6.3 is listed in Table 7.5. Resulting
Net Present Value and the Value of Stochastic Solution is listed in Table 7.6.

Table 7.5: First stage design results from Example 3 in Chapter 6 solved with the NGBD algorithm.
SP and EVP indicates the solution to the Stochastic and Expected Value Problem, respectively.

Example 3
No. scenarios 12

Variable Unit SP EVP
Solar PV m

2 24 000 48 000
Solar TP m

2 72 000 64 000
Wind turbines no. turbines 8 6
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7.2 Algorithmic results

Table 7.6: The Net Present Value (NPV) from the stochastic problem and the Value of Stochastic
Solution (VSS) of the renewable energy system in Example 3.

Example 3
Value Unit
NPV $ 672 490
VSS $ 81 323

The positive value of the stochastic solution (VSS) for Example 2 and 3 implies that ac-
counting for uncertainty in the design of the systems in Figure 6.4 and 6.6 increases the
expected profitability. In addition, the VSS increases with the expansion of the system
in Example 2 to the system in Example 3. The added value with an increase in system
flexibility, and accompanied associated uncertainty, substantiates the importance of includ-
ing uncertainty in formulating the flexible design problem. It suggests that the value of
stochastic programming improves with increased related uncertainty. In other words, the
related uncertainty should be significant.

An approach to indicate which parameters have a substantial impact on the solution, and
value of stochastic programming, is to execute sensitivity analyses for all relevant and po-
tentially uncertain parameters. Sensitivity analyses could indicate the parameters that can
be set constant at their mean value and which parameters to model as uncertain.

7.2 Algorithmic results
The three examples in Chapter 6 were run with both the NGBD and Full Space algorithm.
How to select and switch between algorithms in GOSSIP is explained in the documentation
[8]. Output from the solvers is listed in Table 7.7. Complicating variables are the first stage
decision variables, e.g, variables that must be set before the realization of uncertainties.
Contrary to what was mentioned in Chapter 3 the results show that there are minor
differences between the run-times of the NGBD and Full Space algorithm despite an
increase in problem size (variables and constraints). The problems are too small to give a
meaningful difference in solution times. Moreover, the scope of this thesis was on efficient
modeling of two-stage stochastic programs for RES and not on testing out different solution
strategies.
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7.2 Algorithmic results

Table 7.7: Solver output from the NGBD and Full-Space algorithm in the three examples in Chapter
6. Number of variables and constraints are after pre-processing.
*(The NGBD algorithm reduces to BD for MILP’s as described in Chapter 3.)

Example 1 Example 2 Example 3
Algorithm NGBD(⇤) Full Space NGBD(⇤) Full Space NGBD(⇤) Full Space

No. scenarios 12 12 12 12 12 12
No. time-steps 24 24 24 24 24 24
No. variables 1186 1186 1496 1496 2670 2670

No. complicating variables 10 10 20 20 30 30
No. constraints 889 889 1202 1202 2079 2079

Total solver time (s) 0.03 0.05 0.08 0.11 0.2 0.15
Total time (s) 1.87 1.87 1.95 1.98 2.31 2.23
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CHAPTER

EIGHT

DISCUSSION

The object-oriented framework aims to simplify the formulation of a two-stage stochastic
program for the optimization of flexible renewable energy systems. More specifically, the
framework is developed as a user-friendly interface to the stochastic programming software
GOSSIP. A user-friendly program should be easy to learn, understand and use. However,
due to the relatively complex nature of stochastic programming, it is expected that any
user applying the framework and GOSSIP software is familiar with or can understand basic
concepts and methods from optimization. Specifically, this entails a basic understanding
concerning the order of declaration of 1st and 2nd stage variables and constraints in a
stochastic MILP and how to ensure consistency in the problem formulation. In addition, the
user should be familiar with object-oriented programming and the C++ language.

Framework correctness
It is difficult to validate the numerical results in Section 7.1.1, 7.1.2 and 7.1.3 as there is
no accurate answer when uncertain parameters are involved. The scenario profiles are
assumed to be one of the most prominent sources of inaccuracy as yearly weather profiles
(wind speed and solar radiation) are geo-specific and prone to large deviations from one
year to another. Consequently, the results give an approximate estimate of how much
energy a renewable conversion technology could recover. Furthermore, it is challenging to
isolate simple input-output relationships in renewable energy conversion models such as
wind turbines and solar PV panels. The direction of the wind and the angle of the solar
radiation affects the actual output of the turbines and panels, respectively. As a result, the
(affine) linear model structure in the Conversion class is a simplification of reality. However,
it should be noted that detailed energy models are beyond the scope of this thesis and
that the developed framework is a helpful tool in deciding whether it is profitable or not to
install a certain renewable conversion technology.
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The correctness of the framework is verified by constructing a program in the OOP framework
identical to the model in [17] without the implementation of batteries. The results from [17]
is used as a benchmark for the 1st stage decision variables from Example 2 in Section
6.2. 1st stage decision variables from Example 2 in Section 6.2 listed in Table 7.3 give
the same energy system design as the model in [17]. The identical designs indicate that
the framework implementation is correct and ensures consistency between the user input
model and the resulting problem formulation interfaced to GOSSIP.

Extensibility of framework
One of the virtues of an OOP framework for the optimization of flexible RES is its exten-
sibility. From the user perspective it should be easy to change the model objective, and
expand the system by adding system components.

Expanding the system in Example 1 (Section 6.1) to the system in Example 2 (Section
6.2) requires exactly 8 lines of code, increasing the size of the user input model from 22
lines to 30 lines as shown in the resulting Listing 6.2. The extra lines of code specify
primarySource, cost and conversion function, as well as the size and utility type of the
added conversion technology. In other words, the client does not have to re-write any code,
only add new connections resulting from the added conversion technology. Contrary to
the small change in user input model size, the results in Table 7.7 show that the program
complexity grows through a substantial increase in variables and constraints.

To create the system in Example 3 (Section 6.3), the client has to add one more con-
version technology, utility type, and end user. Once again, the client does not have to
re-write the input model, only add 13 lines of code. An addition of 13 lines is a relatively
trivial amount compared to the actual change in problem size. The total program interfaced
to GOSSIP is almost doubled in size as it grows with 2051 variables and constraints, as can
be seen from the results in Table 7.7. The large increase in variables and constraints despite
small changes to the user input model results from the encapsulation and abstraction that
defines an object-oriented program. OOP pillar one, encapsulation, is achieved by grouping
relevant attributes, energy production export and import variables, and constraints in ob-
jects. The encapsulation enables the programmer to change class implementations without
interfering with the user input model. This is an illustration of OOP pillar two, abstraction
of the program.

An effect of the encapsulation and abstraction is that isolating which lines of code that
are essential to which object can be challenging for the client. One function call can involve
two objects from different classes. For instance, the function call NTNU.addUtilitySource
(&Electricity) on line 44 in Listing 6.3 sets end user object NTNU as a potential sink for
utility object Electricity, and Electricity as a potential source to NTNU. The upside to
this is the aforementioned small addition of code, and the downside is that the client is at
risk of over- or under-specifying sources and sinks in the system.
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Without necessarily linking the objects to a source or sink, the three examples show that
the work related to creating the framework objects can be summarized as follows:

• A renewable energy source (UncertainParam or PrimarySource) requires minimum 1
line of code.

• A conversion technology requires minimum 5 lines of code.

• An utility requires minimum 3 lines of code.

• An end user requires minimum 5 lines of code.

As expected, the amount of code is proportional to the object’s relative position in the
framework. With an increase in connections comes an increase in specifications. The
uncertain parameter objects only have one output connection, whereas the utility and end
user objects can have multiple inputs and output connections.

Adaptability of framework
The advantage of changeable connections and models in the optimization of flexible re-
newable energy systems was stressed in Section 4.2. The desired framework adaptability
and extensibility is achieved through user-defined energy and cost models, and modifi-
able input-output relationships between objects, respectively. Two of the most fundamental
framework properties for model extensibility are the multiple input and output sources the
Utility and EndUser objects can have, and the unlimited number of capital and operating
expenses that can be added to the ObjectiveFunction object.

Lessons from previous attempts
The final framework structure is the result of testing multiple different back-end struc-
tures. Appendix C contains the first attempt at formulating a two-stage stochastic MILP
through OOP in GOSSIP. Appendix D contains a second attempt with linked-lists and a
specialized data structure named ESvector(2D). Both attempts showed promising results.
However, attempt one in Appendix C was too similar to a procedural program with a large
number of variable-, constraint- and vector declarations in the user input model. Attempt
2 in Appendix D was an improvement as it had a higher degree of abstraction through the
use of linked lists and the ESvector data structure. Both frameworks were discarded in
favor of the framework presented, but ideas from the attempts should be investigated further.

As can be seen in Listing 6.3 there is currently no automatic connecting structure be-
tween objects of the same class. For instance, adding capital and operating expenses is
a repetitive process where the client has to call OBJO.addCAPEX(Conversion* technology)
and OBJO.addOPEX(EndUser* user) for each Conversion and endUser object. One potential
solution could be to create a specialized container to group related objects. The OBJO.
addCAPEX(Conversion* technology) and OBJO.addOPEX(EndUser* user) functions would then
be called with a pointer to a container instead of an individual object. Objects would
then be added by iterating through the container. The ESvector class could be used as
inspiration for the implementation of this container. Another solution, also proposed in
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the framework in Appendix D, could be a singly or doubly linked list structure within the
classes to give the objects a notion of other instances from the class. Then the EnergySystem
and objectiveFunction object would have a notion of how many objects exist of each class.
However, a linked list would imply implementing specialized functions to remove and add
objects such that objects can be added or deleted without breaking other connections.
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CHAPTER

NINE

CONCLUSION AND DIRECTIONS FOR FUTURE WORK

Final remarks
Flexible renewable energy systems have been singled out as a promising solution to obtain
a larger fraction of renewable energy in the global energy mix. However, investigating
which and how much renewable technologies to include in a flexible design is a non-trivial
task. An object-oriented framework was developed to simplify the formulation of two-stage
stochastic programs to optimize flexible renewable energy system design. The resulting
framework works as a user-friendly interface to the two-stage stochastic programming soft-
ware GOSSIP.

To obtain desirable framework properties such as extendability and scalability of energy
models and system, respectively, object-oriented programming was chosen as the pre-
ferred programming paradigm. Object-oriented programming enabled the encapsulation of
variables and constraints through classes and abstraction in implementing the framework
structure. The use of pointers for information flow enabled data structures and values to
be transferred between objects without being explicitly declared in the user input model.
However, advanced techniques such as inheritance and polymorphism were not implemented
in the current version. The resulting framework interface show signs of user-friendliness
with simple function calls and zero variable and constraint declarations. Chapters 5 and 6
represents a user documentation and manual with class and user input model descriptions,
respectively.

The three different examples of increasing complexity illustrated the framework functional-
ity and verified the resulting problem formulation. The corresponding two-stage stochastic
MILP problems were solved using the two algorithms NGBD and Full Space. Results from
Example 2 corresponded with results from the model in [17] without implementation of bat-
teries. The identical results verified the two-stage problem formulation and subsequently
the framework correctness.
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Furthermore, results from Example 2 and 3 illustrated the value of stochastic program-
ming with a positive VSS of 58, 389 and 81, 323 $, respectively. The system in Example 1,
on the other hand, had a VSS of zero. However, without a budget constraint on the capital
expenses, the VSS for Example 1 was positive. A positive VSS indicates that stochastic
programming is valuable even for small energy systems without measures for flexibility such
as multiple energy sources and energy storage technologies.

Overall, the framework shows promising tendencies regarding user friendliness, and pro-
duces valid and valuable results for programs related to complex energy systems.

Future work
Inheritance

The fourth OOP-pillar in Section 4.1.2 states that inheritance is one of the main attributes of
an object-oriented program. Inheritance has not been implemented in the OOP framework
presented in Chapter 5. However, implementation of inheritance could entail recycling of
the generic parts of functions like the multiple setConstraint(...) and addImport/Export/
Utility(...) functions instead of having to fully define an almost identical procedure for
each class and variable type. Moreover, inheritance could be applied to create more spe-
cialized versions of already existing classes. Implementation of inheritance could increase
the customization from the user perspective and simultaneously ensure a general problem
formulation.

Extension of classes

A flexible design can only be achieved partly with the inclusion of multiple energy sources
and conversion technologies. Even though it technically would be possible to produce
energy under every circumstance, it is expected that the amount produced would vary.
Simultaneously the cost of storage technologies such as batteries is decreasing [16]. How-
ever, it is a fairly complicated task to implement an EnergyStorage class as it would require
constraints linking one time-step to another as well as periodicity constraints [17]. Never-
theless, it is expected that energy storage will play an important role in flexible renewable
energy systems and the implementation of an EnergyStorage class should be investigated.

Furthermore, in the current framework implementation, the import variable with the related
import price is part of the Utility class. This implementation opposes OOP methodology
and thinking. Even though the imported variable is a utility type, creating an ImportUtility
class should be investigated. This way, there could be different instances of one import
utility type. For instance, imported electricity can be produced by both renewable and
non-renewable sources, thus have varying emission rates and import prices. Furthermore,
an import utility can also be used as an intermediary for another utility, as in Example 3
in Section 6.3 where electricity is used to generate heat. With an ImportUtility class the
client could specify individual ImportUtility objects for the aforementioned applications.
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Extension to MINLP formulations

Another shortcoming of the current framework implementation is that the energy models
are limited to affine linear functions. Many linear models are evident simplifications of
the real world. With the implementation of an EnergyStorage class, batteries, with their
inherently non-linear models [12], would be a highly relevant storage technology to include
in a flexible RES.

To represent contemporary and future energy systems, the framework implementation should
include a two-stage MINLP formulation. This way, batteries and other technologies with
non-linear models can be more accurately represented. It is expected that future imple-
mentation of a polynomial surrogate model is manageable as the framework is compatible
with the MINLP solvers described in Chapter 3.
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APPENDIX

A

SOURCE FILES

A.1 Energy system class

1 #include "EnergySystem.hpp"
2

3 namespace decomposition
4 {
5

6 EnergySystem :: EnergySystem(int scen , int time) : numScen{scen},
numTimeSteps{time}

7 {
8 numUncertainParams =0;
9 numSources =0;

10 numConverters =0;
11 numUtilities =0;
12 numUsers =0;
13

14 varcount =-1;
15 concount =-1;
16 };
17

18 void EnergySystem :: importProbabilities(string filePath , vector <double
>& prob)

19 {
20 // Scenario probabilities from csv to program
21 int it_line =0;
22 int it_cell =0;
23 ifstream file;
24 string filepath;
25 string cell;
26 string line;
27 file.open(filePath);
28 bool printFile{false};
29 if (!file.is_open ())
30 {
31 cout <<"Error opening file for probabilities"<<endl;
32
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A.1 Energy system class

33 }
34 while(getline(file , line))
35 {
36 string comma(",");
37 if(printFile){ cout <<line <<endl;}
38 if(it_line !=0)
39 {
40 stringstream ss(line);
41 while (getline(ss,cell ,’;’))
42 {
43 if(it_cell == 1)
44 {
45 if(cell.find(comma)!= string ::npos)
46 {
47 probabilities.push_back(stod(cell.replace(cell.

find(comma),comma.length (),".")));
48 }
49 else
50 {
51 probabilities.push_back(stod(cell));
52 }
53 }
54 it_cell ++;
55 }
56 }
57 it_line ++;
58 it_cell =0;
59

60 }
61 file.close();
62 if (file.is_open ())
63 {
64 cout <<"Error closing file for probabilities"<<endl;
65

66 }
67 for(int h=0;h<numScen ;++h)
68 {
69 prob.push_back(probabilities[h]);
70 }
71 };
72

73

74 }
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A.2 Uncertain parameter class

A.2 Uncertain parameter class

1 #include "UncertainParam.hpp"
2

3 namespace decomposition
4 {
5

6 UncertainParam :: UncertainParam(string path , EnergySystem* enrg , bool
print=false): filePath{path}, linkToSystem{enrg}, numScen{enrg ->
getNumScen ()}, numTimeSteps{enrg ->getNumTimeSteps ()}

7 {
8 // initializing
9 int t=0;

10 int h=0;
11 int it_line =0;
12 int it_cell =0;
13 ifstream file;
14 string cell;
15 string line;
16

17 bool printFile{print};
18

19 vector <vector <double >> temp(numTimeSteps ,vector <double >( numScen)
);

20

21 // uncertain parameter values from csv to program
22 file.open(filePath);
23 string comma(",");
24 if (!file.is_open ())
25 {
26 cout <<"Error opening file at "<< filePath <<endl;
27 }
28 while(getline(file , line))
29 {
30 if (printFile){cout <<line <<endl;}
31 if(it_line !=1)
32 {
33 stringstream ss(line);
34 while (getline(ss,cell ,’;’))
35 {
36

37 if(it_line ==0 && it_cell ==1)
38 {
39 paramName=cell;
40 }
41 else if (it_line >1 && it_cell ==0)
42 {
43 t = stoi(cell);
44 }
45 else if(it_line >1 && it_cell >0 )
46 {
47 if(cell.find(comma)!= string ::npos)
48 {
49 temp[t-1][ it_cell -1]= stod(cell.replace(cell.find

(comma),comma.length (),","));
50 }
51 else
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A.2 Uncertain parameter class

52 {
53 temp[t-1][ it_cell -1] = stod(cell);
54 }
55 }
56 it_cell ++;
57 }
58 }
59 it_line ++;
60 it_cell =0;
61 }
62 file.close();
63 if (file.is_open ())
64 {
65 cout <<"Error closing file at "<< filePath <<endl;
66

67 };
68

69 output.resize(numTimeSteps);
70 for(int t=0;t<numTimeSteps ;++t)
71 {
72 output[t]. resize(numScen);
73 for(int h=0;h<numScen ;++h)
74 {
75 output[t][h]=temp[t][h];
76 };
77

78 };
79 cout <<"Imported uncertain parameter values from csv -file "<<

filePath <<endl;
80 };
81 }
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A.3 Primary Source class

A.3 Primary Source class

1 #include "PrimarySource.hpp"
2

3 namespace decomposition
4 {
5 PrimarySource :: PrimarySource(vector <vector <double >>* input ,

EnergySystem* enrg ): numScen{enrg ->getNumScen ()}, numTimeSteps{
enrg ->getNumTimeSteps ()}

6 {
7 output.resize(numTimeSteps);
8 int t=0;
9 for(vector <vector <double >>:: iterator itRow=input ->begin();itRow!=

input ->end();++ itRow)
10 {
11 output[t]. resize(numScen);
12 int h=0;
13 for(vector <double >:: iterator itCol=itRow ->begin();itCol!=itRow ->

end();++ itCol)
14 {
15 output[t][h]=(* itCol);
16 h++;
17 }
18 t++;
19 };
20

21 };
22 }
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A.4 Conversion class

A.4 Conversion class

1 #include "Conversion.hpp"
2

3 namespace decomposition
4 {
5

6 Conversion :: Conversion(vector <vector <double >>* inputSource ,
EnergySystem* enrg): input{inputSource}, linkToSystem{enrg},
numScen{enrg ->getNumScen ()}, numTimeSteps{enrg ->getNumTimeSteps ()}

7 {
8 output.resize(numTimeSteps);
9 produced.resize(numTimeSteps);

10 exported.resize(numTimeSteps);
11

12 designVarDisc.resize(numScen);
13

14 for(int t=0;t<numTimeSteps ;++t)
15 {
16 output[t]. resize(numScen);
17 produced[t]. resize(numScen);
18 exported[t]. resize(numScen);
19 }
20 };
21

22 void Conversion :: setCostFunction(double unitCost , double maxCap , int
numSizeIntervals ,int CRFtime , string type , bool VSS=false , double
EVPsize =0)

23 {
24 lifeTime=CRFtime;
25 convTech=type;
26 char* name=&type [0];
27 baseCost=unitCost;
28 capN=maxCap;
29 CRF=r*pow(1+r,lifeTime)/(pow(1+r,lifeTime) -1);
30 cout <<"CRF for "<<type << " is :"<<CRF <<endl;
31 if(!VSS)
32 {
33 numDiscrete=numSizeIntervals;
34 sizes.resize(numDiscrete);
35 designVarBin.resize(numDiscrete);
36

37 for(int n=0;n<numDiscrete ;++n)
38 {
39 sizes[n]=n*capN/( numDiscrete -1);
40 sprintf(linkToSystem ->clabel , "%s[%d]", name , n+1);
41 designVarBin[n]. setIndependentVariable(linkToSystem ->

addVariable (), compgraph ::BINARY , I(0,1) ,0.,-1,linkToSystem ->
clabel);

42 }
43 }
44 else
45 {
46 numDiscrete =1;
47 sizes.resize(numDiscrete);
48 designVarBin.resize(numDiscrete);
49 sizes[numDiscrete -1]= EVPsize;
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A.4 Conversion class

50 sprintf(linkToSystem ->clabel , "%s[%d]", name , numDiscrete);
51 designVarBin[numDiscrete -1]. setIndependentVariable(linkToSystem

->addVariable (), compgraph ::BINARY , I(0,1) ,0.,-1,linkToSystem ->
clabel);

52 }
53

54

55 };
56

57 void Conversion :: setConversionFunction(double constA =1.0, double
constB =0.0)

58 {
59 a=constA;
60 b=constB;
61 string varName1=convTech+"produced";
62 char* name1 =& varName1 [0];
63

64 int t=0;
65 for(vector <vector <double >>:: iterator itRow=input ->begin();itRow!=

input ->end();++ itRow)
66 {
67 int h=0;
68 for(vector <double >:: iterator itCol=itRow ->begin();itCol!=itRow ->

end();++ itCol)
69 {
70 sprintf(linkToSystem ->clabel ,"%s[%d][%d]",name1 ,t+1,h+1);
71 produced[t][h]. setIndependentVariable(linkToSystem ->

addVariable (),compgraph ::CONTINUOUS ,I(0 ,1000) ,0.,h+1,linkToSystem
->clabel);

72 if((* itCol) >0)
73 {
74 output[t][h]=a*(* itCol)+b;
75 }
76 else
77 {
78 output[t][h]=0;
79 }
80 cout <<output[t][h]<<endl;
81 h++;
82 }
83 t++;
84 };
85

86 string varName2=convTech+"zDisc";
87 char* name2 =& varName2 [0];
88 for(int h=0;h<numScen ;++h)
89 {
90 sprintf(linkToSystem ->clabel ,"%s[%d]",name2 ,h+1);
91 designVarDisc[h]. setIndependentVariable(linkToSystem ->

addVariable (),compgraph ::CONTINUOUS ,I(0,capN) ,0.,h+1,linkToSystem
->clabel);

92 }
93 };
94

95 void Conversion :: optimizeCapacity ()
96 {
97 designConBin =-1;
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98 designConDisc.resize(numScen);
99

100 for(int n=0;n<numDiscrete ;++n)
101 {
102 designConBin += designVarBin[n];
103 }
104 designConBin.setDependentVariable(linkToSystem ->addConstraint (),

compgraph ::EQUALITY ,false ,-1);
105

106 for(int h=0;h<numScen ;++h)
107 {
108 designConDisc[h]= designVarDisc[h];
109 for(int n=0;n<numDiscrete ;++n)
110 {
111 designConDisc[h]-= designVarBin[n]*sizes[n];
112 }
113 designConDisc[h]. setDependentVariable(linkToSystem ->

addConstraint (),compgraph ::EQUALITY ,true ,h+1);
114 }
115

116 for(int t=0;t<numTimeSteps ;++t)
117 {
118 for(int h=0;h<numScen ;++h)
119 {
120 exported[t][h]= produced[t][h];
121 exported[t][h]-=output[t][h]* designVarDisc[h];
122 exported[t][h]. setDependentVariable(linkToSystem ->

addConstraint (),compgraph ::EQUALITY ,true ,h+1);
123 };
124 }
125 };
126

127 void Conversion :: addCAPEX(vector <Objective >& objectiveFunction ,
vector <Constraints >& budget)

128 {
129 for(int h=0;h<numScen ;++h)
130 {
131

132 objectiveFunction[h]+= baseCost*designVarDisc[h]*CRF *(1+ maintFac)
;

133 budget[h]+= baseCost*designVarDisc[h];
134

135 }
136

137 };
138

139 }
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A.5 Utility class

1 #include "Utility.hpp"
2

3 namespace decomposition
4 {
5

6 Utility :: Utility(vector <vector <double >>* price ,EnergySystem* enrg ,
string utilityName): linkToSystem{enrg}, numScen{enrg ->getNumScen
()}, numTimeSteps{enrg ->getNumTimeSteps ()}, name{utilityName}

7 {
8 string varName1=utilityName+"exported";
9 string varName2=utilityName+"imported";

10 string varname3=utilityName+"surplus";
11 char* name1 =& varName1 [0];
12 char* name2 =& varName2 [0];
13 char* name3 =& varname3 [0];
14

15 exported.resize(numTimeSteps);
16 imported.resize(numTimeSteps);
17 surplus.resize(numTimeSteps);
18

19 producedCon.resize(numTimeSteps);
20 importPrice.resize(numTimeSteps);
21

22 for(int t=0;t<numTimeSteps ;++t)
23 {
24 exported[t]. resize(numScen);
25 imported[t]. resize(numScen);
26 surplus[t]. resize(numScen);
27

28 producedCon[t]. resize(numScen);
29 importPrice[t]. resize(numScen);
30

31 for(int h=0;h<numScen ;++h)
32 {
33 sprintf(linkToSystem ->clabel ,"%s[%d][%d]",name1 ,t+1,h+1);
34 exported[t][h]. setIndependentVariable(linkToSystem ->addVariable

(),compgraph ::CONTINUOUS ,I(0 ,1000) ,0.,h+1,linkToSystem ->clabel);
35 sprintf(linkToSystem ->clabel ,"%s[%d][%d]",name2 ,t+1,h+1);
36 imported[t][h]. setIndependentVariable(linkToSystem ->addVariable

(),compgraph ::CONTINUOUS ,I(0 ,1000) ,0.,h+1,linkToSystem ->clabel);
37 sprintf(linkToSystem ->clabel ,"%s[%d][%d]",name3 ,t+1,h+1);
38 surplus[t][h]. setIndependentVariable(linkToSystem ->addVariable ()

,compgraph :: CONTINUOUS ,I(0 ,1000) ,0.,h+1,linkToSystem ->clabel);
39 }
40 };
41

42 cout <<"Initialized utility object "<<name <<".\n";
43 uncertainPrice=true;
44 vector <vector <double >>:: iterator it1;
45 int t=0;
46 for(it1=price ->begin();it1!=price ->end();++ it1)
47 {
48 vector <double >:: iterator it2;
49 int h=0;
50 for(it2=it1 ->begin ();it2!=it1 ->end();++ it2)
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51 {
52 importPrice[t][h]=(* it2);
53 ++h;
54 }
55 ++t;
56 };
57 cout <<"Imported import price for utility "<<utilityName <<".\n";
58

59

60 };
61

62 void Utility :: addUtility(vector <vector <Variables >>* input , double
fraction)

63 {
64 inputSources.push_back(input);
65 inputFractions.push_back(fraction);
66

67 cout <<"Added utility input to "<<name <<".\n";
68 int t=0;
69 for(vector <vector <Variables >>:: iterator itRow=input ->begin ();itRow !=

input ->end();++ itRow)
70 {
71 int h=0;
72 for(vector <Variables >:: iterator itCol=itRow ->begin ();itCol !=itRow

->end();++ itCol)
73 {
74 if(inputSources.size() <=1)
75 {
76 producedCon[t][h]=0;
77 producedCon[t][h]+=(* itCol)*inputFractions[inputFractions.size

() -1];
78 }
79 else
80 {
81 producedCon[t][h]+=(* itCol)*inputFractions[inputFractions.size

() -1];
82 }
83 h++;
84 }
85 t++;
86 };
87

88 };
89

90 void Utility :: setUtilityExportConstraint ()
91 {
92 for(int t=0;t<numTimeSteps ;++t)
93 {
94 for(int h=0;h<numScen ;++h)
95 {
96 producedCon[t][h]-=exported[t][h];
97 producedCon[t][h]-=surplus[t][h];
98 producedCon[t][h]. setDependentVariable(linkToSystem ->

addConstraint (),compgraph ::EQUALITY ,true ,h+1);
99 }

100 }
101 };
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102

103 }
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A.6 End user class

1 #include "EndUser.hpp"
2

3

4 namespace decomposition
5 {
6

7 EndUser :: EndUser(EnergySystem* enrg): linkToSystem{enrg}, numScen{
enrg ->getNumScen ()}, numTimeSteps{enrg ->getNumTimeSteps ()}

8 {};
9

10 void EndUser :: addUtilityDemand(Utility* utilityType , vector <vector <
double >>* input)

11 {
12 map <Utility*,vector <vector <Constraints >>>:: iterator it1=demandMap.

find(utilityType);
13 if(it1!= demandMap.end())
14 {
15 vector <vector <double >> temp(numTimeSteps ,vector <double >( numScen)

);
16

17 int t=0;
18 for(vector <vector <double >>:: iterator itRow=input ->begin();itRow

!=input ->end();++ itRow)
19 {
20 int h=0;
21 for(vector <double >:: iterator itCol=itRow ->begin();itCol!=itRow

->end();++ itCol)
22 {
23 temp[t][h]=(* itCol);
24 h++;
25 }
26 t++;
27 };
28 cout <<"Added utility user demand to exisiting utility type "<<

utilityType ->name <<"."<<endl;
29 for(int t=0;t<numTimeSteps ;++t)
30 {
31 for(int h=0;h<numScen ;++h)
32 {
33 it1 ->second[t][h]+= temp[t][h];
34 }
35 }
36 }
37 else
38 {
39 vector <vector <Constraints >> temp2(numTimeSteps ,vector <

Constraints >( numScen));
40

41 int t=0;
42 for(vector <vector <double >>:: iterator itRow=input ->begin();itRow

!=input ->end();++ itRow)
43 {
44 int h=0;
45 for(vector <double >:: iterator itCol=itRow ->begin();itCol!=itRow

->end();++ itCol)
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46 {
47 temp2[t][h]=(* itCol);
48 h++;
49 }
50 t++;
51 };
52 importUtilities.push_back(utilityType);
53 demandMap.insert(pair <Utility*,vector <vector <Constraints >>>(

utilityType ,temp2));
54 cout <<"Added user demand and import price for new utility type "

<<utilityType ->name <<"."<<endl;
55 };
56

57

58 }
59

60

61 void EndUser :: addUtilitySource(Utility* utilityType)
62 {
63 vector <Utility *>:: iterator it=find(inputUtilities.begin(),

inputUtilities.end(),utilityType);
64 if(it== inputUtilities.end())
65 {
66 inputUtilities.push_back(utilityType);
67 cout <<"Added utility type "<<utilityType ->name <<"."<<endl;
68 }
69 else
70 {
71 cout <<"Error , utility already added. Check system .\n";
72

73 };
74 };
75

76 void EndUser :: setUtilityImportConstraint(Utility* utilityType)
77 {
78 map <Utility*,vector <vector <Constraints >>>:: iterator it1=demandMap.

find(utilityType);
79 if(it1!= demandMap.end())
80 {
81 cout <<"Found user demand for the requested utilitytype "<<

utilityType ->name <<"."<<endl;
82 vector <Utility *>:: iterator it3=find(inputUtilities.begin(),

inputUtilities.end(),utilityType);
83 vector <Utility *>:: iterator it4=find(importUtilities.begin(),

importUtilities.end(),utilityType);
84 if(it3!= inputUtilities.end() && it4!= importUtilities.end())
85 {
86 for(int t=0;t<numTimeSteps ;++t)
87 {
88 for(int h=0;h<numScen ;++h)
89 {
90 it1 ->second[t][h]-=(*it3)->getExport(t,h);
91 it1 ->second[t][h]-=(*it4)->getImport(t,h);
92 }
93 }
94 }
95 for(int t=0;t<numTimeSteps ;++t)
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96 {
97 for(int h=0; h<numScen ;++h)
98 {
99 it1 ->second[t][h]. setDependentVariable(linkToSystem ->

addConstraint (),compgraph ::EQUALITY ,true ,h+1);
100 }
101 }
102 }
103 else
104 {
105 cout <<"Could not find any demand constraint for the requested

utility type "<<utilityType ->name <<"."<<endl;
106 };
107 };
108

109

110 void EndUser :: getUtilityExport(vector <Objective >& objectiveFunction)
111 {
112 vector <Utility *>:: iterator it;
113 for(it=inputUtilities.begin();it!= inputUtilities.end();++it)
114 {
115 double FiT=(*it)->constFiT;
116 double FitExtra =((*it)->surplusFiT)*FiT;
117 for(int t=0;t<numTimeSteps ;++t)
118 {
119 for(int h=0;h<numScen ;++h)
120 {
121 objectiveFunction[h]-=(*it)->getExport(t,h)*FiT *365;
122 objectiveFunction[h]-=(*it)->getSurplus(t,h)*FitExtra *365;
123 }
124 }
125 }
126

127 };
128

129 void EndUser :: getUtilityImport(vector <Objective >& objectiveFunction)
130 {
131 vector <Utility *>:: iterator it;
132 for(it=importUtilities.begin();it!= importUtilities.end();++it)
133 {
134 for(int t=0;t<numTimeSteps ;++t)
135 {
136 for(int h=0;h<numScen ;++h)
137 {
138 objectiveFunction[h]+=(* it)->getImport(t,h)*(*it)->

importPrice[t][h]*365;
139 }
140 }
141 }
142

143 };
144

145 }
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A.7 Objective function class

1 #include "ObjectiveFunc.hpp"
2

3

4 namespace decomposition
5 {
6 ObjectiveFunction :: ObjectiveFunction(EnergySystem* enrg , double

setBudget =100000000): numScen{enrg ->getNumScen ()}, numTimeSteps{
enrg ->getNumTimeSteps ()}, linkToSystem{enrg}, budget{setBudget}

7 {
8 objFunc.resize(numScen);
9 budgetCon.resize(numScen);

10 for(int h=0;h<numScen ;++h)
11 {
12 objFunc[h]=0;
13 budgetCon[h]=-budget;
14 };
15 };
16

17

18 void ObjectiveFunction :: addOPEX(EndUser* user)
19 {
20 user ->getUtilityExport(objFunc);
21 user ->getUtilityImport(objFunc);
22 };
23

24 void ObjectiveFunction :: addCAPEX(Conversion* technology)
25 {
26 technology ->addCAPEX(objFunc , budgetCon);
27 };
28

29 void ObjectiveFunction :: setObjective ()
30 {
31 for(int h=0;h<numScen ;++h)
32 {
33 objFunc[h]. setDependentVariable(linkToSystem ->addConstraint (),

compgraph ::OBJ ,true ,h+1);
34 budgetCon[h]. setDependentVariable(linkToSystem ->addConstraint (),

compgraph ::LEQ ,true ,h+1);
35 };
36 };
37

38 };
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B

SCENARIO PROFILES

B.1 Probabilities
Scenario Probability
1 0.125
2 0.125
3 0.125
4 0.125
5 0.0625
6 0.0625
7 0.0625
8 0.0625
9 0.0625
10 0.0625
11 0.0625
12 0.0625
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B.2 Wind speed
h 1 2 3 4 5 6 7 8 9 10 11 12
t W Spr Sum Fa W Spr Sum Fa W Spr Sum Fa
1 11.31 14.01 4.02 9.02 7.35 9.11 0 5.87 15.27 18.91 5.43 12.18
2 12.17 11.56 5.07 7.7 7.91 7.52 0 5.01 16.43 15.61 6.84 10.4
3 10.47 14.86 5.07 9.71 6.81 9.66 0 6.31 14.14 20.06 6.84 13.11
4 11.31 14.01 5.07 11.86 7.35 9.11 0 7.71 15.27 18.91 6.84 16.01
5 12.17 10.02 6.19 9.71 7.91 6.52 4.02 6.31 16.43 13.53 8.35 13.11
6 11.31 6.51 5.07 9.02 7.35 4.23 0 5.87 15.27 8.79 6.84 12.18
7 10.47 8.56 5.62 11.86 6.81 5.56 0 7.71 14.14 11.55 7.58 16.01
8 12.17 7.86 7.38 9.71 7.91 5.11 4.8 6.31 16.43 10.6 9.97 13.11
9 10.47 5.87 8.01 9.02 6.81 3.82 5.21 5.87 14.14 7.93 10.81 12.18
10 11.31 7.17 9.98 9.02 7.35 4.66 6.49 5.87 15.27 9.68 13.47 12.18
11 11.31 5.87 10.67 11.86 7.35 3.82 6.93 7.71 15.27 7.93 14.4 16.01
12 8.09 6.51 12.09 9.02 5.26 4.23 7.86 5.87 10.93 8.79 16.32 12.18
13 8.09 5.25 12.82 9.71 5.26 3.41 8.33 6.31 10.93 7.09 17.31 13.11
14 10.47 3.54 12.82 11.86 6.81 2.3 8.33 7.71 14.14 4.78 17.31 16.01
15 10.47 7.17 10.67 11.13 6.81 4.66 6.93 7.23 14.14 9.68 14.4 15.02
16 8.09 5.87 9.98 9.71 5.26 3.82 6.49 6.31 10.93 7.93 13.47 13.11
17 6.63 7.17 10.67 9.71 4.31 4.66 6.93 6.31 8.94 9.68 14.4 13.11
18 9.66 5.87 10.67 7.7 6.28 3.82 6.93 5.01 13.04 7.93 14.4 10.4
19 11.31 6.51 5.07 6.46 7.35 4.23 0 4.2 15.27 8.79 6.84 8.72
20 10.47 10.78 4.02 6.46 6.81 7.01 0 4.2 14.14 14.56 5.43 8.72
21 11.31 13.18 4.02 5.28 7.35 8.56 0 0 15.27 17.79 5.43 7.13
22 11.31 13.18 5.62 5.28 7.35 8.56 0 0 15.27 17.79 7.58 7.13
23 10.47 14.01 4.53 5.28 6.81 9.11 0 0 14.14 18.91 6.12 7.13
24 12.17 13.18 4.02 7.7 7.91 8.56 0 5.01 16.43 17.79 5.43 10.4
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B.3 Solar radiation
h 1 2 3 4 5 6 7 8 9 10 11 12
t W Spr Sum Fall W Spr Sum Fall W Spr Sum Fall
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 4 11 0 0 5 15 0 0 3 7 0
7 0 25 42 1 0 34 57 1 0 16 27 1
8 5 100 123 25 7 135 166 34 3 65 80 16
9 51 219 243 109 69 296 328 147 33 142 158 71
10 141 357 380 218 190 482 513 294 92 232 247 142
11 211 461 497 312 285 622 671 421 137 300 323 203
12 255 511 569 368 344 690 768 497 166 332 370 239
13 257 520 586 387 347 702 791 522 167 338 381 252
14 230 508 588 354 311 686 794 478 150 330 382 230
15 173 466 558 299 234 629 753 404 112 303 363 194
16 89 388 484 219 120 524 653 296 58 252 315 142
17 24 296 395 136 32 400 533 184 16 192 257 88
18 2 190 281 71 3 257 379 96 1 124 183 46
19 0 92 165 21 0 124 223 28 0 60 107 14
20 0 28 67 2 0 38 90 3 0 18 44 1
21 0 5 20 0 0 7 27 0 0 3 13 0
22 0 0 2 0 0 0 3 0 0 0 1 0
23 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0
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B.4 Electricity and heat demand
h 1 2 3 4 5 6 7 8 9 10 11 12
t W Spr Sum Fall W Spr Sum Fall W Spr Sum Fall
1 3.93 3.07 2.53 2.97 3.93 3.07 2.53 2.97 3.93 3.07 2.53 2.97
2 3.86 3 2.49 2.89 3.86 3 2.49 2.89 3.86 3 2.49 2.89
3 3.78 2.93 2.45 2.83 3.78 2.93 2.45 2.83 3.78 2.93 2.45 2.83
4 3.7 2.91 2.48 2.86 3.7 2.91 2.48 2.86 3.7 2.91 2.48 2.86
5 3.58 3.17 2.81 3.16 3.58 3.17 2.81 3.16 3.58 3.17 2.81 3.16
6 3.61 3.66 3.32 3.68 3.61 3.66 3.32 3.68 3.61 3.66 3.32 3.68
7 3.96 4 3.68 4.04 3.96 4 3.68 4.04 3.96 4 3.68 4.04
8 4.41 4.19 3.89 4.22 4.41 4.19 3.89 4.22 4.41 4.19 3.89 4.22
9 4.68 4.28 3.97 4.33 4.68 4.28 3.97 4.33 4.68 4.28 3.97 4.33
10 4.93 4.31 4.02 4.37 4.93 4.31 4.02 4.37 4.93 4.31 4.02 4.37
11 5.04 4.31 4.03 4.39 5.04 4.31 4.03 4.39 5.04 4.31 4.03 4.39
12 5.09 4.25 3.97 4.34 5.09 4.25 3.97 4.34 5.09 4.25 3.97 4.34
13 5.11 4.19 3.91 4.29 5.11 4.19 3.91 4.29 5.11 4.19 3.91 4.29
14 5.06 4.14 3.88 4.26 5.06 4.14 3.88 4.26 5.06 4.14 3.88 4.26
15 5.03 4.18 3.94 4.35 5.03 4.18 3.94 4.35 5.03 4.18 3.94 4.35
16 5.04 4.26 3.97 4.57 5.04 4.26 3.97 4.57 5.04 4.26 3.97 4.57
17 5.31 4.25 3.85 4.72 5.31 4.25 3.85 4.72 5.31 4.25 3.85 4.72
18 5.58 4.29 3.72 4.68 5.58 4.29 3.72 4.68 5.58 4.29 3.72 4.68
19 5.52 4.29 3.63 4.47 5.52 4.29 3.63 4.47 5.52 4.29 3.63 4.47
20 5.29 4.15 3.6 4.18 5.29 4.15 3.6 4.18 5.29 4.15 3.6 4.18
21 5.01 3.82 3.42 3.8 5.01 3.82 3.42 3.8 5.01 3.82 3.42 3.8
22 4.66 3.41 3.03 3.4 4.66 3.41 3.03 3.4 4.66 3.41 3.03 3.4
23 4.29 3.09 2.74 3.09 4.29 3.09 2.74 3.09 4.29 3.09 2.74 3.09
24 3.94 3.1 2.62 3.05 3.94 3.1 2.62 3.05 3.94 3.1 2.62 3.05
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B.5 Electricity import price
h 1 2 3 4 5 6 7 8 9 10 11 12
t W Spr Sum Fall W Spr Sum Fall W Spr Sum Fall
1 41 27 26 33 41 27 26 33 41 27 26 33
2 39 25 25 31 39 25 25 31 39 25 25 31
3 37 23 23 29 37 23 23 29 37 23 23 29
4 35 22 22 28 35 22 22 28 35 22 22 28
5 36 23 23 29 36 23 23 29 36 23 23 29
6 40 26 26 33 40 26 26 33 40 26 26 33
7 52 40 34 43 52 40 34 43 52 40 34 43
8 66 51 44 54 66 51 44 54 66 51 44 54
9 69 52 47 57 69 52 47 57 69 52 47 57
10 65 49 44 54 65 49 44 54 65 49 44 54
11 61 46 41 51 61 46 41 51 61 46 41 51
12 60 46 40 50 60 46 40 50 60 46 40 50
13 56 43 38 46 56 43 38 46 56 43 38 46
14 54 42 37 45 54 42 37 45 54 42 37 45
15 53 42 36 45 53 42 36 45 53 42 36 45
16 54 43 37 45 54 43 37 45 54 43 37 45
17 56 44 39 47 56 44 39 47 56 44 39 47
18 64 50 44 53 64 50 44 53 64 50 44 53
19 70 54 47 58 70 54 47 58 70 54 47 58
20 71 55 47 58 71 55 47 58 71 55 47 58
21 64 50 42 52 64 50 42 52 64 50 42 52
22 57 44 38 46 57 44 38 46 57 44 38 46
23 52 40 35 43 52 40 35 43 52 40 35 43
24 44 33 29 36 44 33 29 36 44 33 29 36
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C

ITERATIVE ATTEMPT 1

Ensure OOP-formulation compatible with GOSSIP

C.1 Main program

1 #include <iostream >
2 #include <string >
3 #include <vector >
4 #include "definitions.hpp"
5 #include "CompGraph.hpp"
6 #include "GenerateScenarios.hpp"
7 #include "inputmodel.hpp"
8 #include "RES_classes.hpp"
9

10 using namespace std;
11

12

13

14 int inputmodel(vector <double > &weights)
15 {
16 /*
17 1. initalize scenarios and realisations
18 2. initialize 1st stage choices
19 3. initalize 2nd stage choices
20 4. initialize constraints
21 5. initialize objective function
22 */
23 cout <<"OOP optimization of flexible RES version three"<<endl;
24 int num_scen =0;
25 int num_design_days =0;
26

27 vector <double > means {100 ,15.0}; //mean values demand and grid price
OCgrid

28 vector <double > std_devs {0.1*100 ,0.1*15}; //std deviation demand and
grid price OCgrid
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29 vector <int > num_reals {3,3}; // number of realisations demand and grid
price OCgrid

30

31 vector <Energy_source*> sources; // vector of pointers to all energy
sources , this to create one scenario -tree

32

33 Energy_source solar_radiance (0.00015 ,0.000015 ,3 , sources);
34 Energy_source wind_speed (7.5 ,0.75 ,3 , sources);
35

36 Scenario scen(sources ,means ,std_devs ,num_reals); //merge all
uncertain params , sources of energy as well as demand and oc_gric

37 vector <double > scenarios=scen.initiate_scenarios(weights ,num_scen);
// initates scenarios from automatically generate scenarios GOSSIP
function

38

39 for(int n=0;n<num_scen ;++n)
40 {
41 cout <<scenarios[n]<<"-----"<<scenarios[n+num_scen]<<"----"<<

scenarios[n+num_scen *2]<<"----"<<scenarios[n+num_scen *3]<<endl;
42 }
43

44 vector <Energy_convert*> conversion;
45

46 Energy_convert solar_PV(true ,false ,121, conversion); // create solar
PV panels with 10 discrete size and cost intervals

47 Energy_convert wind_turbine(false ,true ,121, conversion); // create
wind turbine with 10 discrete size and cost intervals

48

49 int varcount = -1;
50 int concount =-1;
51

52 vector <Variables > design;// vector to store 1st stage design decision
variables

53

54 solar_PV.set_design_decision(design , varcount);
55 wind_turbine.set_design_decision(design , varcount);
56

57

58 vector <Variables > energy_import;
59 vector <Variables > energy_export;
60

61 Energy_balance balance(energy_import ,energy_export , num_scen ,
varcount);

62

63 vector <Constraints > design_lim;
64 vector <Constraints > produced;
65 vector <Constraints > demand;
66

67 solar_PV.set_design_constraint(design_lim ,design ,concount);
68 wind_turbine.set_design_constraint(design_lim ,design ,concount);
69

70 balance.get_production(produced , demand , num_scen , scenarios ,
conversion , design , energy_import , energy_export , concount);

71

72 // Declaring objective function
73 vector <Objective > minimize_cost(num_scen);//[$]
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C.2 Inclusion file headers

74 Cost cost_func(minimize_cost , design , energy_import ,energy_export ,
num_scen , scenarios ,conversion , concount);

75

76 cout <<"End of program"<<endl;
77 return num_scen;
78 };

C.2 Inclusion file headers

1 #pragma once
2 #include <iostream >
3 #include <string >
4 #include <vector >
5 #include "definitions.hpp"
6 #include "CompGraph.hpp"
7 #include "GenerateScenarios.hpp"
8 #include "inputmodel.hpp"
9 #include "Energy_source.hpp"

10 #include "Scenario.hpp"
11 #include "Energy_conversion.hpp"
12 #include "Scenario.hpp"
13 #include "Energy_balance.hpp"
14 #include "Cost.hpp"
15

16 using namespace std;

C.3 Energy source class

1 #pragma once
2

3 #include "RES_classes.hpp"
4

5 // Energy source class
6

7 using namespace std;
8

9 class Energy_source
10 {
11 private:
12 // Nominal power model params
13 double const Inom {0.00015}; //[MW/ M ] solar radiance intensity
14 double const Wnom {7.5}; //[m/s] wind speed
15 public:
16 double mean , std_dev;
17 int num_realisations;
18

19 Energy_source(double m, double s, int num , vector <Energy_source*> &
src): mean{m}, std_dev{s}, num_realisations{num}{

20 src.push_back(this);
21 };
22 Energy_source (): mean{0}, std_dev {0}, num_realisations {0}{};
23

24 };
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C.4 Energy conversion class

1 #pragma once
2

3 #include "RES_classes.hpp"
4

5

6 // Energy conversion class
7 class Energy_convert
8 {
9 private:

10 // Technology cost parameteres ={PV,WT}
11 vector <double > C0 ={27000 ,49840000}; //$
12 vector <int > Smax ={1200000 ,120}; //Area PV and number of wind

turbines;
13 vector <int > S0={180 ,1}; // Reference value for cost function
14 vector <double > xi ={0.05 ,0.05}; // Maintenance cost (factor)
15 vector <double > sfi ={0.7 ,0.7}; //Cost scaling factor
16

17 public:
18 bool solar , wind;
19 int num_discrete;
20

21 vector <double > sizes;//list of discrete sizes 1st stage var
22 vector <double > cost;//list of discrete associated cost 1st stage var
23

24 Energy_convert(bool s, bool w, int num , vector <Energy_convert*> &
conv): solar{s}, wind{w}, num_discrete{num}

25 {
26 sizes.resize(num);
27 cost.resize(num);
28 if(s)
29 {
30 cout <<"Solar panel sizes and costs: \n";
31 for(int n=0;n<num;++n)
32 {
33 int i=0;
34 this ->sizes[n]=n*Smax[i]/(num -1);
35 this ->cost[n]=(1+xi[i])*C0[i]*pow(this ->sizes[n]/S0[i],sfi[i])

;
36 cout <<this ->sizes[n]<<"--"<<this ->cost[n]<<endl;
37 }
38 cout <<"Constructed solar panel \n";
39 }
40 if(w)
41 {
42 cout <<"Wind turbine sizes and costs: \n";
43 for(int n=0;n<num;++n)
44 {
45 int i=1;
46 this ->sizes[n]=n*Smax[i]/(num -1);
47 this ->cost[n]=(1+xi[i])*C0[i]*pow(this ->sizes[n]/S0[i],sfi[i])

;
48 cout <<this ->sizes[n]<<"--"<<this ->cost[n]<<endl;
49 }
50 cout <<"Constructed wind turbine\n";
51 }
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52 conv.push_back(this);
53

54 };
55

56 void set_design_decision(vector <Variables > &z,int &varcount)
57 {
58 char clabel [30];
59 z.resize(z.size()+num_discrete);
60 for(int n=(z.size()-num_discrete);n<z.size();++n)
61 {
62 sprintf(clabel ,"z[%d]",n+1);
63 z[n]. setIndependentVariable (++ varcount ,compgraph ::BINARY ,I

(0,1) ,0.,-1,clabel); // first stage variable , does not belong to
specific scenario

64 }
65 };
66

67 void set_design_constraint(vector <Constraints > &z_lim , const vector
<Variables >& z, int& concount)

68 {
69 z_lim.resize(z_lim.size()+1);
70 z_lim[z_lim.size() -1]=-1;
71 for(int n=( z_lim.size() -1)*num_discrete; n<( num_discrete*z_lim.

size());++n)
72 {
73 z_lim[z_lim.size() -1]+=z[n];
74 }
75 z_lim[z_lim.size() -1]. setDependentVariable (++ concount ,compgraph ::

EQUALITY ,false ,-1);
76 };
77 };

C.5 Scenario class

1 #pragma once
2

3 #include "RES_classes.hpp"
4

5 // Scenario class
6

7 class Scenario
8 {
9 public:

10 vector <double > mean_vector , std_dev_vector;
11 vector <int > num_realisations_vector;
12 vector <double > realisations;
13

14 Scenario(vector <Energy_source*> energy_sources , vector <double >
mean_params ,vector <double > std_dev_params , vector <int >
num_realisations_params ,bool seasonal=false)

15 {
16 mean_vector.resize(mean_params.size()+energy_sources.size());
17 std_dev_vector.resize(std_dev_params.size()+energy_sources.size())

;
18 num_realisations_vector.resize(num_realisations_params.size()+

energy_sources.size());
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19

20 for(int i=0;i<mean_params.size();++i)
21 {
22 mean_vector[i]= mean_params[i];
23 std_dev_vector[i]= std_dev_params[i];
24 num_realisations_vector[i]= num_realisations_params[i];
25 }
26 for(int j=mean_params.size();j<mean_vector.size();++j)
27 {
28 int i=j-mean_params.size();
29 mean_vector[j]= energy_sources[i]->mean;
30 std_dev_vector[j]= energy_sources[i]->std_dev;
31 num_realisations_vector[j]= energy_sources[i]->num_realisations;
32 }
33 };
34

35 vector <double > initiate_scenarios(vector <double > &weights , int&
num_scen)

36 {
37

38 num_scen=decomposition :: generateScenarios(decomposition ::NORMAL ,
this ->mean_vector.size(),this ->num_realisations_vector ,this ->
mean_vector ,this ->std_dev_vector , weights ,this ->realisations);//
need weights to be taken in from inputmodel

39 return realisations;
40 };
41

42 void add_seasonal_variation(vecto <double >& realisations , int&
num_scen , , int& num_design_days , double seasonal_sun {0.2}, double
seasonal_wind {0.2})

43 {
44 num_design_days =4; //spring , summer , fall , winter
45 struct season
46 {
47 double sun , wind;
48 int count;
49 };
50 struct season spring {}
51

52

53 };
54

55 Scenario (){};
56

57 };

C.6 Energy balance class

1 #pragma once
2

3 #include "RES_classes.hpp"
4

5

6 // Energy balance
7

8 class Energy_balance
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9 {
10 private:
11 //Wind power model params
12 double Wmin =3.5; // [m/s]
13 double Wmax =25;
14 double Wd=13;
15 double qd=8; //[MW] for one wind turbine
16

17 // Efficiencies
18 double etaPV =0.15; //[-]
19 double etaWT =0.85;
20 public:
21

22 Energy_balance(vector <Variables >& imp , vector <Variables >& exp , const
int& num_scen , int& varcount)

23 {
24 char clabel [30];
25 imp.resize(num_scen);
26 exp.resize(num_scen);
27 for(int s=0;s<num_scen ;++s)
28 {
29 sprintf(clabel ,"f_import [%d]",s+1);
30 imp[s]. setIndependentVariable (++ varcount ,compgraph :: CONTINUOUS ,I

(0 ,10000) ,0.,s+1,clabel);
31 sprintf(clabel ,"f_export [%d]",s+1);
32 exp[s]. setIndependentVariable (++ varcount ,compgraph :: CONTINUOUS ,I

(0 ,100000) ,0.,s+1,clabel);
33 }
34 };
35

36 Energy_balance (){};
37

38 void get_production(vector <Constraints > &produced ,
39 vector <Constraints > &demand ,
40 const int& num_scen ,
41 const vector <double >& scenarios ,
42 vector <Energy_convert*> &conv ,
43 vector <Variables >& z,
44 vector <Variables >& imp ,
45 vector <Variables >& exp ,
46 int& concount)
47 {
48 produced.resize(num_scen);
49 demand.resize(num_scen);
50 for(int s=0;s<num_scen ;++s)
51 {
52 produced[s]=0;
53 for(int i=0;i<conv.size();++i)
54 {
55 for(int n=0;n<conv[i]->num_discrete ;++n)
56 {
57 int j=n+(conv[i]->num_discrete)*i;
58 if(conv[i]->solar==true)
59 {
60 produced[s]+=this ->etaPV*scenarios[s+num_scen *2]* conv[i]->

sizes[n]*z[j]*5; // approx 5 hours of sun each day
61 }
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62 if(conv[i]->wind==true)
63 {
64 if(scenarios[s+num_scen *3]>this ->Wmin && scenarios[s+

num_scen *3]<this ->Wd)
65 {
66 produced[s]+=this ->etaWT*this ->qd*((pow(scenarios[s+

num_scen *3],3)-pow(this ->Wmin ,3))/(pow(this ->Wd ,3))-pow(this ->Wmin
,3))*conv[i]->sizes[n]*z[j]*24;

67 }
68 if(scenarios[s+num_scen *3]>=this ->Wd && scenarios[s+

num_scen *3]<=this ->Wmax)
69 {
70 produced[s]+=this ->etaWT*this ->qd*scenarios[s+num_scen

*3]* conv[i]->sizes[n]*z[j]*24;
71 }
72 else //if(scenarios[s+num_scen *3]<this ->Wmin || scenarios[

s+num_scen *3]>this ->Wmax)
73 {
74 produced[s]+=0;
75 }
76 }
77 }
78 }
79 produced[s]-=exp[s];
80 produced[s]. setDependentVariable (++ concount ,compgraph ::EQUALITY ,

true ,s+1);
81 demand[s]= scenarios[s]-exp[s]-imp[s];
82 demand[s]. setDependentVariable (++ concount ,compgraph ::LEQ ,true ,s

+1);
83 }
84 };
85 };

C.7 Cost and objective class

1 #pragma once
2

3 #include "RES_classes.hpp"
4

5 //Cost class , where objective function is set
6 class Cost
7 {
8 public:
9 //Grid parameters

10 double const FiT_nom =1.45; //feed -in tariff [$/MWh]
11

12 Cost(vector <Objective >& obj ,
13 vector <Variables >& z,
14 vector <Variables >& imp ,
15 vector <Variables >& exp ,
16 const int& num_scen , const vector <double >& scen ,
17 vector <Energy_convert*> conv ,
18 int& concount)
19 {
20 for(int s=0;s<num_scen ;++s)
21 {
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22 obj[s]=0;
23 for(int i=0;i<conv.size();++i)
24 {
25 for(int n=0;n<(conv[i]->num_discrete);++n)
26 {
27 int j=n+i*conv[i]->num_discrete;
28 obj[s]+= conv[i]->cost[n]*z[j];
29 }
30 }
31 obj[s]+=imp[s]*scen[s+num_scen ]*365*30; //[$]
32 obj[s]-=exp[s]* FiT_nom *365*30; //[$]
33 obj[s]. setDependentVariable (++ concount ,compgraph ::OBJ ,true ,s

+1);
34 }
35 };
36

37 Cost(){};
38

39 };
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APPENDIX

D

ITERATIVE ATTEMPT 2

OOP-formulation with linked lists and ESvector class

D.1 Main program

1 #include "RES_classes_2.hpp"
2

3 #include "inputmodel.hpp"
4

5 using namespace std;
6

7 /*
8 1. initalize scenarios and realisations
9 2. initialize 1st stage choices

10 3. initalize 2nd stage choices
11 4. initialize constraints
12 5. initialize objective function
13 */
14

15 int inputmodel(vector <double > &weights)
16 {
17

18 Scenario scenarios("Examples/GOSSIP_library/RES_master/Petter/
UncertaintyData/probabilities.csv","Examples/GOSSIP_library/
RES_master/Petter/UncertaintyData/", 24, 4,3);

19 scenarios.set_probabilities(weights);
20

21 Conversion_technology CT1(&scenarios ,"IR_PV","SOLAR");
22

23 Conversion_technology CT2(&scenarios ,"W_WT","WIND",CT1.get_pointer ()
);

24

25 CT1.set_cost_function (1000 ,1 ,10 ,50);
26 CT2.set_cost_function (1000,1, 10, 50);
27 CT1.set_conversion_function(’L’);
28 CT2.set_conversion_function(’L’);
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D.2 Inclusion file

29

30 // End_user factory ()
31 Energy_system RES(&CT1);
32

33 RES.set_FiT ();
34

35 RES.set_demand (&scenarios ,"L_DEM");
36 RES.set_import_cost (&scenarios ,"OC_GRID");
37 RES.set_objective("COST" ,30);
38

39

40 return scenarios.num_scen;
41 };

D.2 Inclusion file

1 #pragma once
2 #include <iostream >
3 #include <cstdio >
4 #include <string >
5 #include <vector >
6 #include <map >
7 #include <fstream >
8 #include <sstream >
9 #include "definitions.hpp"

10 #include "CompGraph.hpp"
11 #include "GenerateScenarios.hpp"
12 #include "inputmodel.hpp"
13 #include "counter.hpp"
14 #include "Scenario.hpp"
15 #include "conversion_technology.hpp"
16 #include "energy_system.hpp"
17 //#include "energy_system.cpp"
18 //#include "ES_vector.hpp"
19 //#include "ES_vector_2D.hpp"
20 #include "end_user.hpp"
21 #include "grid.hpp"
22 //#include "energy_storage.hpp"
23

24

25 using namespace std;
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D.3 Scenario class

1 #pragma once
2 #include <iostream >
3 #include <cstdio >
4 #include <string >
5 #include <vector >
6 #include "RES_classes_2.hpp"
7

8 // Scenario class
9

10 class Scenario
11 {
12 public:
13 int num_t , num_p , num_s;
14 int num_scen {0};
15

16 vector <double > probabilities;
17 map <string ,vector <vector <double >>> uncertain_params;
18 bool print_file{false};
19

20 Scenario(const string probabilities_filepath , const string
user_filepath , int num_time_steps =1, int num_params =0, int
num_scenarios =0): num_t{num_time_steps}, num_p{num_params}, num_s{
num_scenarios}

21 {
22 if(num_time_steps ==0)
23 {
24 cout <<"Invalid time format , specify number of time -steps to be

larger than 0.\n";
25 }
26 else
27 {
28 vector <vector <double >> temp(num_t ,vector <double >(num_s));
29 string param = "param0";
30 string param_name;
31 int t=0;
32 int it_line =0; int it_cell =0;
33 ifstream file;
34 string filepath;
35 string cell;
36 string line;
37

38 // Scenario probabilities from csv to program
39 file.open(probabilities_filepath);
40 if (!file.is_open ())
41 {
42 cout <<"Error opening file for probabilities"<<endl;
43 }
44 while(getline(file , line))
45 {
46 if(print_file){ cout <<line <<endl;}
47 if(it_line !=0)
48 {
49 stringstream ss(line);
50 while (getline(ss,cell ,’;’))
51 {

105



D.3 Scenario class

52 if(it_cell == 1)
53 {
54 probabilities.push_back(stod(cell));
55 num_scen ++;
56 }
57 it_cell ++;
58 }
59 }
60 it_line ++;
61 it_cell =0;
62

63 }
64 file.close();
65 if (file.is_open ())
66 {
67 cout <<"Error closing file for probabilities"<<endl;
68 }
69 // uncertain parameter values from csv to program
70 for (int i=0;i<num_p;i++)
71 {
72 it_line =0;
73 // opening file
74 param.pop_back ();
75 param += to_string(i+1);
76 filepath = user_filepath+param+".csv";
77 file.open(filepath);
78 if (!file.is_open ())
79 {
80 cout <<"Error opening file for "<<param <<endl;
81 }
82

83 // reading file and updating map
84 if (print_file){cout << param <<":"<<endl;}
85

86 while(getline(file , line))
87 {
88 if (print_file){cout <<line <<endl;}
89 if(it_line !=1)
90 {
91 stringstream ss(line);
92 while (getline(ss,cell ,’;’))
93 {
94

95 if(it_line ==0 && it_cell ==1)
96 {
97 param_name=cell;
98 uncertain_params.insert(pair <string ,

vector <vector <double >>>(param_name ,temp));
99 }

100 else if (it_line >1 && it_cell ==0)
101 {
102 t = stoi(cell);
103 }
104 else if(it_line >1 && it_cell >0 )
105 {
106 uncertain_params[param_name ][t-1][

it_cell -1] = stod(cell);

106



D.3 Scenario class

107 }
108 it_cell ++;
109 }
110 }
111 it_line ++;
112 it_cell =0;
113 }
114 file.close();
115 if (file.is_open ())
116 {
117 cout <<"Error closing file for "<< param_name <<endl;
118 }
119 }
120

121 cout <<"-------printing data ---------"<<endl;
122 cout <<"probabilities: "<< probabilities.size()<<endl;
123 for (int h=0;h<num_s;h++){
124 cout << "scen "<< h<<": "<< probabilities[h]<<endl;
125 }
126

127 map <string ,vector <vector <double >>>:: iterator it_map;
128 for (it_map = uncertain_params.begin(); it_map !=

uncertain_params.end(); it_map ++)
129 {
130 cout << it_map ->first << ":"<<endl; // string (key)
131 for (int h=0;h<num_s;h++)
132 {
133 cout << " scen: "<<h+1<<endl;
134 for (int t=0;t<num_t;t++)
135 {
136 cout <<" "<< it_map ->second[t][h]<< " "; //

string ’s value
137 }
138 cout << endl;
139 }
140 }
141

142 }
143 };
144

145 Scenario* get_this ()
146 {
147 return this;
148 };
149

150 map <string ,vector <vector <double >>>& get_scenarios ()
151 {
152 return uncertain_params;
153 };
154

155 vector <vector <double >>* get_param_pointer(string map_key)
156 {
157 return &uncertain_params.at(map_key);
158 };
159

160 void set_probabilities(vector <double >& probability_weights)
161 {
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162 for(int s=0; s<num_scen ;++s)
163 {
164 probability_weights.push_back(probabilities[s]);
165 };
166 };
167

168 int get_num_scen ()
169 {
170 return num_scen;
171 };
172 };
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D.4 Uncertain parameter class

1 #pragma once
2 #include <iostream >
3 #include <cstdio >
4 #include <string >
5 #include <vector >
6 #include "std_lib_facilities.h"
7 #include "Uncertain_param.hpp"
8 #include "Scenario.hpp"
9 //#include "RES_classes_2.hpp"

10

11 using namespace std;
12

13 class Uncertain_param
14 {
15 friend class Scenario;
16 vector <vector <vector <vector <double >>>> param_values;
17 string name;
18

19 public:
20 Uncertain_param(const Scenario& scen , int param_number , string

param_name): name{param_name}
21 {
22 param_values.resize(scen.seasons);
23 for(int ss=0;ss<scen.seasons ;++ss)
24 {
25 param_values[ss]. resize(scen.days);
26 for(int d=0;d<scen.days ;++d)
27 {
28 param_values[ss][d]. resize(scen.time_steps);
29 for(int t=0; t<scen.time_steps ;++t)
30 {
31 param_values[ss][d][t]. resize(scen.num_scen);
32 for(int s=0;s<scen.num_scen ;++s)
33 {
34 param_values[ss][d][t][s]=scen.realisations[param_number

-1][ss][d][t][s];
35 //cout <<param_values[ss][d][t][s];
36 }
37 }
38

39 }
40 }
41 cout <<"Uncertain parameter "<<this ->name << " created. \n";
42 };
43

44 Uncertain_param* get_pointer ()
45 {return this ;};
46

47 };
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D.5 ES_vector and ES_vector_2D class

1 #pragma once
2 #include "RES_classes_2.hpp"
3 using namespace std;
4

5 class ES_vector
6 {
7 public:
8

9 int num_discrete;
10

11 vector <Variables > array_var;
12 vector <Constraints > array_con;
13

14 Energy_system* system_link{NULL};
15

16 ES_vector(Energy_system* enrg): num_discrete{enrg ->CT ->n_d},
system_link{enrg }{};

17

18 virtual void set_variable(string name , double max_val)
19 {
20 Conversion_technology* temp=system_link ->CT;
21 char clabel [30];
22 while(temp ->next!= nullptr)
23 {
24 int j=array_var.size();
25 array_var.resize(array_var.size()+num_discrete);
26 for(int i=j;i<(j+num_discrete);++i)
27 {
28 sprintf(clabel ,"%s[%d]",name ,i+1);
29 array_var[i]. setIndependentVariable(system_link ->

varcount_ptr ++,compgraph ::BINARY , I(0,1) ,0.,-1,clabel);
30 };
31 temp=temp ->next;
32 }
33

34 };
35

36 virtual void set_constraint ()
37 {
38 Conversion_technology* temp=system_link ->CT;
39 while(temp ->next!= nullptr)
40 {
41 array_con.resize(array_con.size()+1);
42 array_con[array_con.size() -1]=-1;
43 for(int i=( array_con.size() -1)*num_discrete;i<( num_discrete*

array_con.size());++i)
44 {
45 array_con[array_con.size() -1]+= array_var[i];
46 };
47 array_con[array_con.size() -1]. setDependentVariable(

system_link ->concount_ptr ++, compgraph ::EQUALITY ,false ,-1);
48 temp=temp ->next;
49 };
50

51 };
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52

53 ES_vector* get_pointer ()
54 {
55 return this;
56 };
57

58 };

1 #pragma once
2 #include "RES_classes_2.hpp"
3 using namespace std;
4

5 class ES_vector_2D : public ES_vector
6 {
7 public:
8

9 int num_s , num_t;
10

11 ES_vector_2D(Energy_system* enrg): ES_vector{enrg}, num_s{enrg ->CT ->
s}, num_t{enrg ->CT ->t}

12 {
13 vector <vector <Variables >> array_var(num_t ,array_var{num_s});
14 vector <vector <Constraints >> array_con(num_t ,array_con{num_s});
15 };
16

17 void set_variable(string name , double max_val) override
18 {
19 char clabel [30];
20 array_var.resize(enrg ->t);
21 for(int i=0;i<enrg ->t;++i)
22 {
23 array_var[i]. resize(enrg ->s);
24 for(int j=0;j<enrg ->s;++j)
25 {
26 sprintf(clabel ,"%s[%d][%d]",name ,i+1,j+1);
27 array_var[i][j]. setIndependentVariable(system_link ->

varcount_ptr ++,CONTINUOUS , I(0,max_val) ,0.,j+1,clabel);
28 };
29 };
30

31 };
32

33 void set_constraint () override
34 {
35 array_var.resize(enrg ->t);
36 for(int i=0;i<enrg ->t;++i)
37 {
38 array_var[i]. resize(enrg ->s);
39 for(int j=0;j<enrg ->s;++j)
40 {
41 array_con[i][j]. setDependentVariable(system_link ->concount_ptr

++, compgraph ::EQUALITY ,false ,j+1);
42 };
43 };
44 };
45

46 };
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D.6 Energy conversion class

1 #pragma once
2 #include "RES_classes_2.hpp"
3 // Energy conversion class
4

5 class Conversion_technology
6 {
7

8 private:
9 double a, b;

10

11 public:
12 friend Scenario;
13 char function;
14 int t,s,n_d;
15

16 Scenario* related_scenario;
17

18 double C0, cap_0 , cap_n {100} , econ_scale {0.7}, maint_fac {0.05} ,
efficiency {0.99};

19 vector <double > sizes;
20 vector <double > cost;
21

22 Conversion_technology* next=nullptr;
23 Conversion_technology* prev;
24

25 string input_param; // pointer to param value from scenario
26 vector <vector <double >> output; // vector with output values energy
27

28 string unit_name , par;
29

30 Conversion_technology(Scenario* scen , string related_param , string
name="noname", Conversion_technology* link=nullptr): t{scen ->num_t
},s{scen ->num_s}, related_scenario{scen},input_param{related_param
} ,unit_name{name}, par{related_param}

31 {
32 output.resize(t);
33 for(int i=0;i<t;++i)
34 {
35 output[i]. resize(s);
36 }
37 cout <<"Created conversion technology "<<unit_name <<" with

efficiency "<<efficiency <<", and associated uncertainty "<<par <<
endl;

38

39 if(link!= nullptr)
40 {
41 this ->prev=link;
42 link ->next=this;
43 this ->next=nullptr;
44

45 }
46 else
47 {
48 this ->prev=nullptr;
49 }
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50 };
51

52 Conversion_technology* get_pointer ()
53 {
54 return this;
55 };
56

57 void set_cost_function(double base_cost , double base_cap , double
maximum_cap , int num_discrete)

58 {
59 C0=base_cost;
60 cap_0=base_cap;
61 cap_n=maximum_cap;
62 n_d=num_discrete;
63

64 sizes.resize(n_d);
65 cost.resize(n_d);
66 for(int n=0;n<n_d;++n)
67 {
68 sizes[n]=n*cap_n/(n_d -1);
69 cost[n]=C0*pow(sizes[n]/cap_0 ,econ_scale);
70 cout <<unit_name <<" cost & capacity " <<cost[n]<< ", "<<sizes[n

]<<endl;
71 }
72 };
73

74 void set_conversion_function(char function_type=’L’, double const_a
=1, double const_b =0)

75 {
76 //case/switch statements here
77 a=const_a;
78 b=const_b;
79 map <string ,vector <vector <double >>>:: iterator it_map;
80 for (it_map = related_scenario ->uncertain_params.begin(); it_map

!= related_scenario ->uncertain_params.end(); it_map ++)
81 {
82

83 if(it_map ->first== input_param)
84 {
85 cout <<"Import param: "<<it_map ->first <<endl;
86 for (int i=0;i<s;i++)
87 {
88 for (int j=0;j<t;j++)
89 {
90 output[j][i]=it_map ->second[j][i]*a+b;
91

92 }
93 }
94 }
95 else
96 {
97 cout << it_map ->first <<" is not imported .\n";
98 }
99 };

100 switch(function_type)
101 {
102 case ’L’:
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103 cout <<"Linear energy conversion model for "<<this ->unit_name <<".
\n";

104 break;
105 case ’P’:
106 cout <<"Polynomial model not possible atm.\n";
107 break;
108

109 case ’E’:
110 cout <<"Exponential model not possible atm.\n";
111 break;
112 }
113 };
114

115

116 };
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D.7 Energy system class

1 #pragma once
2 #include "RES_classes_2.hpp"
3 using namespace std;
4

5 class Energy_system
6 {
7 public:
8 // ----------------------------------------------------------
9 class ES_vector

10 {
11 public:
12

13 int num_discrete;
14

15 vector <Variables > array_var;
16 vector <Constraints > array_con;
17

18 Energy_system* system_link;
19

20 ES_vector (){};
21

22 void set_params(Energy_system* enrg)
23 {
24 system_link=enrg;
25 num_discrete=enrg ->CT->n_d;
26

27 };
28

29 void set_variable(char name[], double max_val =0)
30 {
31 Conversion_technology* temp=system_link ->CT;
32 while(temp!= nullptr)
33 {
34 int j=array_var.size();
35 array_var.resize(array_var.size()+num_discrete);
36 for(int i=j;i<(j+num_discrete);++i)
37 {
38 sprintf(system_link ->clabel ,"%s[%d]",name ,i+1);
39 system_link ->varcount +=1;
40 array_var[i]. setIndependentVariable(system_link ->varcount ,

compgraph ::BINARY , I(0,1) ,0.,-1,system_link ->clabel);
41 };
42 temp=temp ->next;
43 }
44

45 };
46

47 void set_constraint ()
48 {
49 Conversion_technology* temp=system_link ->CT;
50 while(temp!= nullptr)
51 {
52 array_con.resize(array_con.size()+1);
53 array_con[array_con.size() -1]=-1;
54 for(int i=( array_con.size() -1)*num_discrete;i<( num_discrete*
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array_con.size());++i)
55 {
56 array_con[array_con.size() -1]+= array_var[i];
57 };
58 system_link ->concount +=1;
59 array_con[array_con.size() -1]. setDependentVariable(system_link

->concount ,compgraph ::EQUALITY ,false ,-1);
60 temp=temp ->next;
61 };
62

63 };
64

65 ES_vector* get_pointer ()
66 {
67 return this;
68 };
69

70 };
71 // ----------------------------------------------------------
72

73 class ES_vector_2D
74 {
75 public:
76

77 int num_s , num_t;
78 Energy_system* system_link;
79

80 vector <vector <Variables >> array_var;
81 vector <vector <Constraints >> array_con;
82

83 ES_vector_2D (){};
84

85 void set_params(Energy_system* enrg)
86 {
87 num_s=enrg ->CT->related_scenario ->num_s;
88 num_t=enrg ->CT->related_scenario ->num_t;
89 system_link=enrg;
90 };
91

92 void set_2D_variable(char name[], double max_val)
93 {
94 array_var.resize(num_t);
95 for(int i=0;i<num_t ;++i)
96 {
97 array_var[i]. resize(num_s);
98 for(int j=0;j<num_s ;++j)
99 {

100 sprintf(system_link ->clabel ,"%s[%d][%d]",name ,i+1,j+1);
101 system_link ->varcount +=1;
102 array_var[i][j]. setIndependentVariable(system_link ->varcount

,compgraph ::CONTINUOUS , I(0,max_val) ,0.,j+1,system_link ->clabel);
103 };
104 };
105 };
106

107 void set_2D_constraint ()
108 {

116



D.7 Energy system class

109 array_con.resize(num_t);
110 for(int i=0;i<num_t ;++i)
111 {
112 array_con[i]. resize(num_s);
113 for(int j=0;j<num_s ;++j)
114 {
115 array_con[i][j]=0;
116 };
117 };
118 };
119

120 };
121 // ----------------------------------------------------------
122

123 int num_scen ,time ,num;
124

125 int varcount =-1;
126 int concount =-1;
127 char clabel [70];
128

129 Conversion_technology* CT;
130

131 double FiT , FiT_extra;
132

133 ES_vector des;
134 ES_vector_2D prod;
135 ES_vector_2D dem;
136

137 vector <vector <double >> price;
138

139 double constant_demand , constant_price , project_lifetime;
140

141 vector <Objective > obj;
142

143 Energy_system(Conversion_technology* conv_link) : num_scen{conv_link
->related_scenario ->num_s}, time{conv_link ->related_scenario ->
num_t}, num{conv_link ->n_d}, CT{conv_link}

144 {
145

146 // initialize first stage variables
147 des.set_params(this);
148 prod.set_params(this);
149 dem.set_params(this);
150

151 des.set_variable("z" ,0.0);
152 // initialize 2nd stage variables
153

154 prod.set_2D_variable("energy_export" ,1000);
155

156 dem.set_2D_variable("energy_deficit" ,1000);
157 // initialize constraints
158 des.set_constraint ();
159 prod.set_2D_constraint ();
160 dem.set_2D_constraint ();
161

162 cout <<"Initialized energy system with conversion units: \n";
163
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164 Conversion_technology* temp=CT;
165 while(temp!= nullptr)
166 {
167 cout <<temp ->unit_name <<endl;
168 temp=temp ->next;
169 };
170

171 };
172

173 void set_demand(Scenario* scen , string related_param="", int
const_val =0)

174 {
175 Conversion_technology* temp=CT;
176 int count =0;
177 /*cout <<"Size of con:" <<prod.array_con.size() <<" -- " <<prod.

array_con [0]. size()<<endl;
178 cout <<"Size of var "<<prod.array_var.size() << " --"<<prod.

array_var [0]. size()<<endl;
179 cout <<"Size of con:" <<dem.array_con.size() <<" -- " <<dem.

array_con [0]. size()<<endl;
180 cout <<"Size of des: "<<des.array_var.size()<<endl;
181 cout <<"Size of temp: "<<temp ->output.size() << "--"<<temp ->output

[0]. size()<<endl;
182 cout <<"Size of sizes: "<<temp ->sizes.size()<<endl;
183 */
184 while(temp!= nullptr)
185 {
186 //cout <<"Counter: "<<count <<endl;
187 for(int i=0; i<scen ->num_t ;++i)
188 {
189 for(int j=0;j<scen ->num_s ;++j)
190 {
191 int k=0;
192 for(int n=count*num;n<(num*(count +1));++n)
193 {
194 //cout << i<<" " << j<<" "<< k<<" "<< n<<endl;
195 prod.array_con[i][j]+=(temp ->output[i][j]*temp ->sizes[k]*

des.array_var[n]);
196 k+=1;
197 };
198 };
199 };
200 count +=1;
201 temp=temp ->next;
202 };
203

204

205 for (int i=0;i<scen ->num_s;i++)
206 {
207 for (int j=0;j<scen ->num_t;j++)
208 {
209 map <string ,vector <vector <double >>>:: iterator it_map;
210 for (it_map =scen ->uncertain_params.begin (); it_map !=scen ->

uncertain_params.end(); it_map ++)
211 {
212

213 if(it_map ->first== related_param)
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214 {
215 dem.array_con[j][i]-=it_map ->second[j][i];
216 };
217 };
218 concount +=1;
219 prod.array_con[j][i]-=prod.array_var[j][i];
220 prod.array_con[j][i]. setDependentVariable(concount ,compgraph

::EQUALITY ,false ,j+1);
221 concount +=1;
222 dem.array_con[j][i]+= prod.array_var[j][i]+dem.array_var[j][i

];
223 dem.array_con[j][i]. setDependentVariable(concount ,compgraph ::

EQUALITY ,false ,j+1);
224 };
225 };
226 };
227

228 void set_import_cost(Scenario* scen=nullptr , string related_param=""
, int const_val =0)

229 {
230 if(scen!= nullptr && related_param !="")
231 {
232 price.resize(time);
233 for(int i=0;i<time ;++i)
234 {
235 price[i]. resize(num_scen);
236 };
237 map <string ,vector <vector <double >>>:: iterator it_map;
238 for (it_map =CT->related_scenario ->uncertain_params.begin();

it_map !=CT->related_scenario ->uncertain_params.end(); it_map ++)
239 {
240 if(it_map ->first== related_param)
241 {
242 for (int i=0;i<num_scen;i++)
243 {
244 for (int j=0;j<time;j++)
245 {
246 price[j][i]=it_map ->second[j][i];
247 }
248 }
249 }
250 }
251 }
252 else
253 {
254 constant_price=const_val;
255 };
256

257 };
258

259 void set_FiT(double tariff =150, double tariff_extra =0)
260 {
261 FiT=tariff;
262 if(tariff_extra ==0)
263 {
264 FiT_extra=tariff;
265 }
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266 else
267 {
268 FiT_extra=tariff_extra;
269 };
270 };
271

272 void set_objective(string objective="", double lifetime =10)
273 {
274 // initialize objective function
275 project_lifetime=lifetime;
276 obj.resize(num_scen);
277 if(objective =="COST" || "")
278 {
279 for(int i=0;i<num_scen ;++i)
280 {
281 obj[i]=0;
282 Conversion_technology* temp=CT;
283 int count=des.array_var.size()/num;
284 int it=0;
285 while(temp!= nullptr)
286 {
287 int k=0;
288 for(int n=it*num;n<des.array_var.size()/count ;++n)
289 {
290 obj[i]+=des.array_var[n]*temp ->cost[k];
291 k+=1;
292 };
293 temp=temp ->next;
294 count -=1;
295 it+=1;
296 }
297 for(int j=0;j<time ;++j)
298 {
299 obj[i]-=prod.array_var[j][i]*FiT*project_lifetime *365;
300 obj[i]+=dem.array_var[j][i]* price[j][i]* project_lifetime

*365;
301

302 };
303 concount +=1;
304 obj[i]. setDependentVariable(concount , compgraph ::OBJ ,true ,i+1)

;
305 };
306 };
307 };
308

309 };
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