
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

Agnes Camilla Tysland

Optimal Operation and Design of a
Thermal Energy Storage Tank

Master’s thesis in Chemical Engineering and Biotechnology
Supervisor: Johannes Jäschke
Co-supervisor: Caroline Satye Nakama

June 2021

M
as

te
r’s

 th
es

is





Agnes Camilla Tysland

Optimal Operation and Design of a
Thermal Energy Storage Tank

Master’s thesis in Chemical Engineering and Biotechnology
Supervisor: Johannes Jäschke
Co-supervisor: Caroline Satye Nakama
June 2021

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemical Engineering





Summary

Thermal energy storage (TES) provides an opportunity of reducing energy waste and
a possibility of increasing network flexibility in district heating systems. Sensible TES
systems in the form of pressurized hot water tanks may be used for short-term local energy
storage. For efficient utilization of such systems, the sizing of the tank is crucial. In
addition, the optimal size will dependent on waste heat availability and the corresponding
energy demand. In this work, a simplified process is defined, and a nonlinear dynamic
optimization problem is formulated. Formulations including complementarity constraints
are contemplated.

This thesis focuses on the combined optimal operation and optimal design of a TES
tank in a district heating network located in northern Norway, utilizing waste heat from
a nearby ferrosilicon production plant. Electricity and CO gas are normally used as peak
heating sources when demand is too high, and are considered as two different case stud-
ies for the economic evaluation in this work. Based on historical data, optimal operation
and optimal sizing of the tank were obtained. The optimal volume of the TES tank was
found to be 6322.95 m3 for both cases, causing a decrease in peak heating of 421 MW
for the 30 day-period investigated. The payback period for this investment is expected
to be 13.74/12.18 years when using electricity/CO gas, respectively. However, if the an-
nounced tax increase from the Norwegian government is resolved in the parliament, this
payback period is decreased to 5.7 years for the CO gas case. Sensitivity analyses have
been conducted for both cases, considering a relative change in various factors affecting
the payback time, such as interest rate, emission taxes and price of the energy source. The
analyses suggest the active period of the TES tank throughout a year to be the most im-
pactful parameter, closely followed by the price of the respective energy source and the
interest rate. For CO gas, the payback period is prone to changes in the CO2 tax as well.
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Sammendrag

Lagring av termisk energi (TES) gir en mulighet for å redusere energisvinn og mu-
lighet for å øke nettverksfleksibiliteten i fjernvarmesystemer. Fornuftige TES-systemer i
form av varmtvannsbeholdere under trykk kan brukes til kortsiktig lokal energilagring. For
effektiv utnyttelse av slike systemer er størrelsen på tanken avgjørende. I tillegg vil den op-
timale størrelsen avhenge av tilgjengeligheten av spillvarme og tilhørende energibehov. I
denne oppgaven defineres en forenklet prosess, og det formuleres et ikke-lineært dynamisk
optimeringsproblem. Formuleringer inkludert komplementaritet er overveid.

Denne oppgaven fokuserer på kombinert optimal drift og optimalt design av en TES-
tank i et fjernvarmenett i Nord-Norge, som tar i bruk spillvarme fra et nærliggende ferrosil-
isium produksjonsanlegg. Elektrisitet og CO-gass brukes normalt som energikilder når
etterspørselen er for høy, og betraktes som to forskjellige case-studier for den økonomiske
evalueringen i dette arbeidet. Basert på historisk data ble optimal drift og optimal dimen-
sjonering av tanken oppnådd. Optimalt volum ble funnet til å være 6322,95 m3 for begge
tilfeller, som med optimal drift forårsaket en reduksjon i energiforbruket på 421 MW for de
30 dagene undersøkt. Tilbakebetalingsperioden for denne investeringen er forventet å være
henholdsvis 13,74/12,18 år ved bruk av strøm/CO-gass. Dersom skatteøkningen varslet fra
den norske regjeringen blir vedtatt i Stortinget, vil imidlertid tilbakebetalingsperioden re-
duseres til 5,7 år for CO-gass tilfellet. Sensitivitetsanalyser er gjort for begge tilfeller. En
relativ endring i ulike faktorer som påvirker tilbakebetalingsperioden, slik som rentesats,
utslippsavgifter og pris på energikilden, er inkludert. Analysene tyder på at mengden ak-
tiv tid TES-tanken har gjennom et år er den mest avgjørende parameteren, tett etterfulgt
av prisen på den respektive energikilden og renten. CO-gass tilfellet påvirkes også av
endringer i CO2-avgiften.
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CHAPTER 1

Introduction

Increasing energy demand in the world in combination with the desire to reduce global
emissions of greenhouse gases has brought on many debates and groundbreaking ways of
generating energy [2]. As of today, there are several ways of generating renewable energy,
and improvement of these methods are still in focus [3]. However, an inconvenience with
many of these renewable energy sources is that they are intermittent, and cannot be dis-
patched on demand [4]. Therefore, in addition to generate renewable energy and increase
the share of renewable energy in global consumption, ways of utilizing energy already gen-
erated but not yet exploited are equally important. This will reduce energy waste, whilst
feeding more energy into the power grid. District heating (DH) plays an increasing role
in the operation of low-carbon energy systems. Studies have shown that district heating
in urban areas has great potential for reducing primary energy supply and carbon dioxide
emissions, in addition to being more affordable [5]. The flexibility of DH systems enables
possibilities of integrating various energy sources, in addition to more efficient use of these
sources. Consequently, this may maximize the benefits of co-generation and economy of
scale [6].

An important contribution to utilize energy more efficiently is to find and exploit smart
ways of conserving energy. Thermal energy storage (TES) is an efficient solution for local
storage, using the thermal properties of a medium by for example charging and discharging
a pressurized tank with excess heat from process industry or similar. When TES is to be
used, designing the storage tank may be a challenging task. It is desirable to make the
tank small to lessen capital investment and avoid occupying unnecessary space. However,
the volume of the tank should be large enough to store amounts of heat that can provide
significant savings. Therefore, when designing a TES tank, the volume should be chosen
based on an optimal point that is just large enough to facilitate operation but also avoids
overinvestment. In addition, for the utilization of DH systems to be of interest, a positive
investment incentive is an important factor. If both smaller companies and larger-scale
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Chapter 1. Introduction

industries are expected to green-light such financial investments, they must be profitable.
The potential savings and benefits of introducing a TES tank should surpass the expected
fixed investment and operational cost, within a reasonable amount of time.

1.1 Previous Work
This work is based on the recent studies by Knudsen et al. [7]. A different approach is ex-
plored in this work, but the waste heat supplier and district heating network considered is
the same. Knudsen et al. proposed a combined dynamic simulation and model predictive
control approach, accounting for dynamic and optimal control of the heating plant includ-
ing the TES. An iterative, parametric evaluation of various TES volumes was carried out,
while evaluating the effective peak heating reduction and energy-to-heat-flow-ratio.

Another study based on the same data was conducted by Thombre et al. [8]. They
formed a scenario-tree formulation based on principal component analysis of the histor-
ical data. A methodology for a multistage nonlinear model predictive control algorithm
was presented, optimizing energy storage and discharging decisions while handling the
uncertainties of the daily operation.

Two more studies are based on the same data [9, 10].
Various TES technologies have been thoroughly reviewed and compared by Sarbu and

Sebarchievici [1]. They state that water is the most popular and commercial heat storage
medium when considering Sensible Heating Systems (SHS), and conclude that SHS is
applicable to district heating and industrial needs. However, for TES overall, they empha-
sise that investment incentives and support for research and development are essential for
deployment to be fostered.

More specific studies also underline the potential of TES, and the importance of fur-
ther investigating such tachnologies. The effect of applying a hot water storage tank into
a network supplied with geothermal energy to minimize the use of peak heating boilers
was studied by Kyriakis and Younger [11]. They develop a model for sizing the system, in
addition to a model studying the daily and annual operation of the system, concluding that
based on the results, introduction of the tank is financially beneficial. Simeoni et al. [12]
developed a multi-objective optimization model to perform a sustainable evaluation of a
district heating network. The network utilized waste heat from a nearby industrial facil-
ity, considering the conflicting objectives related to various stakeholders, e.g. waste heat
source, residential consumers, DHN provider and public authorities. Their model allows
for analysis of the trade-off between various stakeholders’ perspectives. Usage of TES
in district heating and cooling systems (DHC) have been thoroughly reviewed by Guelpa
and Verda [13]. They conclude that a common unique best solution for thermal storage
to DH is not possible to identify, as DHC systems may depend on several case-specific
configurations, such as network topology, possible connection to plants, control strategies
etc. However, they underline fields to be more investigated in future research, such as
possibilities in long-term TES storage and installation of alternating hot and cold storage
between seasons. Wang et al. [14] estimated TES tank volumes by running simulation
of different boiler capacities, in combination with various heat demand profiles. Consid-
ering a combination of discharge efficiency, boiler on- and off-time and maximum output
temperature, linear correlations between boiler capacities and optimum TES tank volume
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1.2 Motivation & Objective

were obtained. The smallest sizing factor for the TES tank was obtained when average
building heat demand was 45 % of boiler nominal capacity. Benefits of using TES tank
were discovered to significantly decrease if the average building heat demand exceeded
60% of boiler nominal capacity.

1.2 Motivation & Objective
This thesis focuses on a district heating network in northern Norway, including the city of
Mo i Rana and Mo Industrial Park. Waste heat from a ferrosilicon production plant in Mo
Industrial Park is currently the main heating source in the district heating network (DHN),
supplying heat to the city of Mo i Rana. The remaining heat is supplied by boilers driven
by either fossil fuel, biofuel, CO-gas or electricity [9, 15]. In total, the amount of waste
heat available surmounts the DH demand, but still, peak heating boilers (PHB) are often
used. This is due to fluctuations in waste heat availability and variational DH demand. For
example, an unexpected halt in the production of ferrosilicon or a sudden wave of cold
weather affecting the city’s demand will increase the discrepancy causing a need for peak
heating. Contrarily, during periods of lower demand, excess waste heat will arise and be
discarded.

The aim is to reduce the need for peak heating, by introducing thermal energy storage
to the DHN. When the nearby process plant provides heat in excess, the heat may be stored
in a TES tank and utilized at later occasions when the waste heat is not sufficient. Expected
natural benefits of installing a TES tank are therefore energy savings, as optimal operation
of the TES tank will lead to better utilization of the surplus heat currently being discarded,
and reduced operational costs since less peak heating will be used. Furthermore, reducing
the amount of peak heating now covered by fossil fuel, biofuel, CO gas and electricity will
reduce the amount of greenhouse gas emissions.

Nonetheless, installing a TES tank needs to be a desirable investment, hence, the pos-
sible savings must be greater than the capital investment cost of the tank in the long run.
Therefore, the objective of this study is to determine an optimal TES tank size for the
district heating network supplying heat to Mo i Rana, taking into account both operational
and economic aspects in a single model, using historical data. To determine the optimal
tank size, a model yielding optimal operation should first be obtained and applied using
historical data. Thereafter, the model must be adapted to consider economic aspects whilst
obtaining optimal control. Various economic parameters, such as CO2 emission taxes, in-
terest rates and price of peak heating sources, may have a great impact on the designing
decisions of the tank. The significance of these factors should therefore be analyzed.

1.3 Outline
In Chapter 2 relevant theory and explanation of concepts is presented. Thermal energy
storage is briefly explained, followed by dynamic optimization including differential al-
gebraic equations and the implicit Euler approach. Since the construction of the optimal
operation model led to exploring the use of complementarity constraints, mathematical
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Chapter 1. Introduction

programs with complementarity constraints (MPCCs) are discussed. A methodology of
how to reformulate MPCCs as continuous nonlinear optimization problems is included.

The following chapter includes the process description and introduces the mathemat-
ical model used to represent the system. In addition, historical heat data provided by Mo
Fjernvarme is presented and discussed. Chapter 4 addresses the optimal operation prob-
lem. The optimization problem and relevant parameters are stated, and the problem is
optimized for different heat input profiles. The problem is then optimized using historical
data.

After the optimal operation model is obtained, the next chapter deals with optimal siz-
ing of the TES tank. Investment costs and operational costs are considered, and the prob-
lem is optimized with respect to payback time, while simultaneously maintaining optimal
operation. A sensitivity analysis is carried out, considering various economic factors such
as the price of the peak heating source, greenhouse gas emission taxes and interest rate.
Finally, Chapter 6 concludes the thesis, summarizing the main findings and discussing
possibilities for future work.
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CHAPTER 2

Theoretical Background

This chapter provides theory and explanation of basic concepts relevant to this thesis. First,
the concepts of thermal energy storage and sensible heat are briefly explained. Thereafter,
dynamic optimization and an introduction to basic optimization problems are given. This
includes dynamic system representation and discretization. This is important as the DHN
is expressed as differential algebraic equations. A continuous nonlinear program express
the model behavior and objective, which must be discretized in order to be handled by the
optimizer. Lastly, mathematical programs with complementarity constraints and how they
can be handled are presented. Logic constraint are present in the system, and are primarily
approached as complementarity constraints. Such constraints exhibits non-smoothness
and needs reformulation to be handled by a nonlinear solver.

2.1 Thermal Energy Storage
Thermal energy storage (TES) is a technology that utilizes the thermal properties of a
medium in order to store energy. TES technologies may vary with respect to the phase and
characterization of the medium used, and may be further divided into sensible heat storage
(SHS), latent heat storage (LHS) and thermo-chemical heat storage[1]. In this thesis, SHS
in a pressurized hot-water tank is considered.

2.1.1 Sensible Heat Storage
SHS is amongst the simplest and safest TES technologies. In addition, water is commonly
used as heat storage medium, which is both cheap and, not to mention, thoroughly re-
searched. Water requires minimum treatment and is usually readily available, making it
a great substance to work with. Energy is stored by raising the temperature of a chosen
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Chapter 2. Theoretical Background

medium (charging), and may be used at a later occasion (discharging). The temperature in-
crease in the storage medium is due to increasing internal energy, i.e. the energy is stored
as sensible heat and no change in phase or composition occurs, as illustrated in Figure
2.1.1.

Figure 2.1.1: Illustration of sensible heat[1]

Specific heat, amount of storage material and temperature difference are thus important
parameters when deciding the amount of stored heat[16]. The correlation is given by the
heat equation,

Qstored =

Z
Tf

T0

mCpdT, (2.1.1)

where Qstored represents the amount of heat stored, m the amount of storage medium, Cp

is the specific heat capacity, and T0 and Tf the initial and final temperature, respectively.
Assuming specific heat capacity is independent of temperature, Equation 2.1.1 yields

Qstored = mCp(Tf � T0) (2.1.2)
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2.2 Dynamic Optimization

2.2 Dynamic Optimization

Dynamic optimization is the optimization of dynamic systems, i.e. systems changing with
time. For such systems to be optimized, they must first be formulated as an optimiza-
tion problem, or a nonlinear program (NLP). Optimization problems consist of three main
parts, namely an objective function, decision variables and constraints. In the objective
function a scalar variable or property, for example constituting the system cost, is mini-
mized or maximized. Decision variables can be integers, binary variables, real variables or
belong to other spaces[17]. Constraints may consist of equality and inequality constraints,
and represent the system. An optimization problem may thus be formulated:

min
z2Rn

f(y) (2.2.1a)

s.t. c
j(y) = 0, j 2 E (2.2.1b)

c
j(y) � 0, j 2 I (2.2.1c)

where E and I are equality and inequality constraint index sets, respectively, and y is
the vector of decision variables. Equation 2.2.1a is the objective function, subject to con-
straints in Equations 2.2.1b and 2.2.1c. If either the objective function or some of the
constraints are nonlinear, Equation 2.2.1 yields an NLP.

Dynamic systems may be modeled in different ways. Mathematically, they can be rep-
resented using differential equations. A dynamic system consisting of a fully implicit set
of differential algebraic equations (DAEs), can be formulated as an initial value problem
with initial conditions at zero, as follows

F

⇣
y(t), dy(t)

dt
, p, t

⌘
= 0, (2.2.2a)

h(y(0)) = 0, (2.2.2b)

where t � 0, y(t) 2 Rny denotes the variables as functions of time, dy(t)
dt

is the time
derivative of these variables and p 2 Rnp are remaining, time-independent parameters.

A simpler way of formulating the implicit DAE in Equation 2.2.2, is obtained by split-
ting the variables into two groups; differential variables, x(t), and algebraic variables, z(t).
The DAE system may then be given on the semi-explicit form,

dx
dt

= f(x(t), z(t), p), (2.2.3a)

x(t0) = x0, (2.2.3b)

g(x(t), z(t), p) = 0. (2.2.3c)

By taking a dynamic model, e.g. a DAE system, as constraints, the dynamic optimiza-
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Chapter 2. Theoretical Background

tion problem may thus be formulated as

min

Z
tf

t0

�(x(t), z(t), p) (2.2.4a)

s.t.
dx
dt

= f(x(t), z(t), p), x(t0) = x0, (2.2.4b)

g(x(t), z(t), p) = 0, (2.2.4c)
xL  x(t)  xU , (2.2.4d)
zL  z(t)  zU (2.2.4e)
p
L
 p  p

U
(2.2.4f)
(2.2.4g)

Here, the objective function is minimizing a certain cost, subject to the dynamic model
equations and boundaries. The differential equations with initial conditions at time equal to
zero is given in Equation 2.2.4b and the algebraic equations in Equation 2.2.4c. Equations
2.2.4d-2.2.4f gives the system bounds, i.e. process specifications or constraints for feasible
operation.

2.2.1 Index of DAEs
Dynamic models may be divided into two groups based on their index. DAEs of low index
has an index of 0 or 1, while high index is considered to be 2 or higher. Many commercial
solvers can only handle low index DAEs. The higher the index of the DAE, the more
difficulties are expected for the solver converge. Hence, it is desired to develop models
consisting of lower index DAEs when possible. The index of the problem is determined by
the number of differentiation steps it is required to obtain an implicit ODE from the DAE
system [18]. Thus, an ODE have index 0. A semi-explicit DAE as the one considered
above has index 1 if g is solvable for z. That is, if by differentiation of the algebraic
equations

0 = @xg(x(t), z(t), p)x0 + @zg(x(t), z(t), p)z0, (2.2.5)

@zg is nonsingular,
det(@zg(x(t), z(t), p)) 6= 0, (2.2.6)

the system is an implicit ODE and has index 1. This is also known as the index-1 property.

2.2.2 Solving Dynamic Optimization Problems
A dynamic optimization problem may be translated into an NLP using a direct method.
The given time period is discretized into multiple smaller finite elements, and, by using
parameterization, the state trajectory is obtained. The resulting discretized system may be
solved using a sequential or simultaneous approach. In general, simultaneous approaches
are better suited when the NLP becomes large[19]. Using a simultaneous approach, the dy-
namic state variables may be discretized in time using Radau collocation with the Runge-
Kutta polynomial representation. This method is equal to an implicit Euler approach with

8



2.3 Mathematical Programs with Complementarity Constraints (MPCC)

first order accuracy when only one collocation point is chosen[20], also known as one
stage Runge-Kutta method.

Consider the semi-explicit DAE

dx
dt

= f(x(t), z(t), p), x(t0) = x0 (2.2.7)

for a known function f , with initial value data t0 and x0. As previously defined, x contains
the time-dependent state variables, z the algebraic variables and p the time-independent
parameters. The implicit Euler approximation is calculated using the expression[21]

x(ti) = x(ti�1) + hf(x(ti), z(ti), p), (2.2.8)

where h is the size of the finite element, i, and i = 1, ..., NT , for NT number of finite
elements.

Applying the implicit Euler approach with a fixed time step h, the discretized dynamic
optimization problem from Equation 2.2.4 becomes

min
NTX

i=1

�(xi, zi, p) (2.2.9a)

s.t. xi = xi�1 + hf(xi, zi, p), x(t0) = x0, (2.2.9b)
g(xi, zi, p) = 0, (2.2.9c)
xL,i  xi  xU,i, (2.2.9d)
zL,i  zi  zU,i, (2.2.9e)
p
L
 p  p

U
, (2.2.9f)

(2.2.9g)

for NT number of finite elements and i = 1, ..., NT .

2.3 Mathematical Programs with Complementarity Con-
straints (MPCC)

The relationship between variables where one or both of the variables must be at a bound-
ary is called a complementarity. A complementarity problem is an optimization problem
in which at least one constraint is a complementarity, e.g. if x complements y, then at least
one of them must be equal to zero in the solution of the problem [22]. A mathematical
program with complementarity constraints (MPCC) may be formulated as [23]

min f(x, y, z) (2.3.1a)
s.t. h(x, y, z) = 0, (2.3.1b)

g(x, y, z) � 0, (2.3.1c)
0  x ? y � 0, (2.3.1d)

9



Chapter 2. Theoretical Background

where Equation 2.3.1d is the complementarity constraint with the complementarity opera-
tor ?, implying

xi = 0 or yi = 0 for i = 1,...,NT

x, y � 0

This complementarity is a logical condition, which makes the problem nonsmooth. If a
nonlinear solver is to be used, the MPCC needs to be reformulated. A common formulation
is [24]

min f(x, y, z) (2.3.2a)
s.t. h(x, y, z) = 0, (2.3.2b)

g(x, y, z) � 0, (2.3.2c)
x, y � 0, (2.3.2d)

xT y  0. (2.3.2e)

This way, the solution set of the MPCC remains the same, but the problem is ill-conditioned
as it may lead to inconsistency due to violation of constraint qualifications. Interior meth-
ods, e.g. IPOPT, may prove to be inefficient when solving such problems, as they are fed
conflicting goals of enforcing the complementarity in Equation 2.3.2e, bringing the prod-
uct of the variables to zero, while striving to keep the variables away from their bounds.

In order to deal with these inefficiencies, relaxation approaches, such as

xi · yi  ✓, i = 1, ..., NT (2.3.3)

may be applied [24]. Here, ✓ is a relaxation parameter which is driven to zero.
Another approach that can enhance the efficiency of the nonlinear solver, is to refor-

mulate the MPCC such that the inequality constraint in Equation 2.3.2e is given a penalty
parameter and is moved to the objective function:

f(x, y, z) + ⇡xT y. (2.3.4)

This is also known as an l1-penalty term, where the value of the penalty parameter ⇡ must
be above zero. The value of this parameter may not be easy to tune. However, algorithms
have been proposed that estimate its value during the course of the optimization calculation
[24].
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CHAPTER 3

Model Development

This chapter includes a description of the thermal energy storage system and a presen-
tation of the mathematical model and the nonlinear programming (NLP) problem. The
main challenge is to obtain a desired behavior for the charging and discharging of the TES
tank, considering the main objective of minimizing the peak heating and wasting as little
energy as possible. The model developed is a semi-explicit DAE consisting of a differen-
tial equation describing the temperature in the TES tank, and algebraic equations for the
remaining heat equations and mass balances. Notations presented in this chapter will be
used consistently throughout the thesis.

3.1 Process Description

For the purpose of investigating the potential benefits of introducing a TES tank into the
district heating network in northern Norway, a simplified process is defined and modelled,
presented in Figure 3.1.1. The district itself is not included in the simplified flow diagram,
as the district demand is given by historical data and included in the model through the
flow rate to the district, return temperature and supply temperature.

11



Chapter 3. Model Development

Figure 3.1.1: Flow diagram of thermal energy storage problem.

The volumetric flow rate to and from the district is denoted qdh. It is assumed that
there is no mass accumulation in the system, hence, flows in and out of the system are
instantaneously the same. The district return and supply temperatures are represented by
Tdh,Ret and Tdh,Sup, respectively, the latter being equal to the temperature exiting the
peak heating boiler (PHB), Tphb. Part of the inlet flow will pass on to node A, as qsys.
The flow qsys has temperature equal to the return temperature, and will either go through
the waste heat boiler (WHB) or into the TES tank if the tank is to be discharged, qA > 0.
On the other hand, if the tank is charged, qB > 0, qB at temperature Ttes and qsys at
temperature Tdh,Ret will go from node A to the WHB, with inlet temperature TA. As the
tank is considered to be bidirectional, qA and qB may not be non-zero simultaneously. The
remaining inlet flow may bypass to node C, as qbp, if the temperature from node B is higher
than the desired supply temperature. Qwhb represents the excess heat available from the
ferrosilicon plant, and Qwhb,used denotes the amount of the available heat exploited by the
TES system. The remaining excess heat is dumped, illustrated by Qdump. The volumetric
flow rate through the WHB is denoted by qwhb, and the boiler outlet temperature is Twhb.
The TES tank is assumed to be perfectly-mixed, i.e. with homogeneous temperature, Ttes,
throughout the tank. In addition, no mass accumulation is assumed for the tank, and the
system over-all. In node B, the flow from the WHB is respectively mixed or split with the
discharge or charging flow from the TES. The resulting flow is at temperature TB and has
volumetric flow rate qsys. This flow merges with the bypass flow at node C, resulting in
a flow at temperature TC going to the PHB. If the temperature TC is not at the desired
supply temperature, additional heat must be added, Qphb.

3.2 Mathematical Model
In order to solve the optimal operation problem, a dynamic model of the process must
be established. For the system in general, all fluid streams are assumed to have constant
properties, i.e. density and specific heat capacity do not change with temperature. Heat
losses to the surroundings are disregarded and no mass accumulation is assumed, hence
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3.2 Mathematical Model

dV

dt
= 0.
The total mass balance, for the system presented in Figure 3.1.1 is given by

q
dh = q

sys + q
bp
. (3.2.1)

The interior mass balance, showing the charging and discharging, is

q
sys = q

whb + q
A � q

B
. (3.2.2)

As no mass accumulation is assumed, charging and discharging cannot occur simultane-
ously. This logic constraint may be enforced through the complementarity

0  q
A ? q

B � 0. (3.2.3)

The energy balance over point A may be expressed as

⇢
dh
q
sys

C
dh

p
T

dh,Ret + ⇢
dh
q
B
C

dh

p
T

tes = ⇢
dh
q
whb

C
dh

p
T

A + ⇢
dh
q
A
C

dh

p
T

A
, (3.2.4)

where ⇢dh is the density of the flow through the DHN, and C
dh
p

is the specific heat capacity.
Equivalently, temperature from point A is given by

T
A =

q
sys

T
dh,Ret + q

B
T

tes

qwhb + qA
(3.2.5)

Likewise, the energy balance over point B is

⇢
dh
q
whb

C
dh

p
T

whb + ⇢
dh
q
A
C

dh

p
T

tes = ⇢
dh
q
sys

C
dh

p
T

B + ⇢
dh
q
B
C

dh

p
T

B
, (3.2.6)

yielding temperature at point B,

T
B =

q
whb

T
whb + q

A
T

tes

qsys + qB
. (3.2.7)

Finally, the energy balance over point C is then

⇢
dh
q
bp
C

dh

p
T

dh,Ret + ⇢
dh
q
sys

C
dh

p
T

B = ⇢
dh
q
dh
C

dh

p
T

C
, (3.2.8)

giving temperature T
C at the entrance of the PHB

T
C =

q
bp
T

dh,Ret + q
sys

T
B

qdh
. (3.2.9)

Heat transferred through the heat exchangers may be obtained using the heat equation,

Q = ṁCp�T. (3.2.10)

Considering that ṁ = ⇢q, the equation for the waste heat boiler becomes

Q
whb = ⇢

dh
q
whb

C
dh

p
(Twhb � T

A) (3.2.11)
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and, equivalently for the peak heating exchanger

Q
phb = ⇢

dh
q
dh
C

dh

p
(T phb � T

C). (3.2.12)

Additionally, the available waste heat from the nearby process industry minus the heat
utilized in the TES system, yields the amount of heat dumped. This may be mathematically
expressed as the heat balance

Q
available waste heat = Q

whb = Q
whb,used +Q

whb,dump
. (3.2.13)

Equation 3.2.10 may also be used to calculate the total heat demand for the TES system,
Q

demand, as follows

Q
demand = ⇢

dh
q
dh
C

dh

p
(T phb � T

dh,Ret). (3.2.14)

Assuming the TES tank is well-mixed, i.e. the spatial temperature gradient throughout
the tank is zero, the dynamic mass balance may be expressed as

d

dt
(⇢dhV tes) = ⇢

dh(qA � q
B). (3.2.15)

No mass accumulation and constant density are assumed, yielding the energy balance

d

dt
(⇢dhV tes

C
dh

p
T

tes) = ⇢
dh
C

dh

p
(qA(T tes � T

A)� q
B(T tes � T

B)) (3.2.16)

Rearranging this expression results in the ODE

dT
tes

dt
=

q
A

V tes
(TA � T

tes) +
q
B

V tes
(TB � T

tes). (3.2.17)

3.3 Historical Data

One year of historical data from Mo Fjernvarme is used. Heat data from various boilers,
in addition to return and supply temperatures were used for obtaining optimal operation
and designing the TES tank. Figure 3.3.1 shows three subplots; available waste heat and
heat demand at the top, mass flow through the district heating network in the middle and
temperatures of the flow returned and supplied to the district at the bottom. The data is
collected hourly, throughout the year.
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3.3 Historical Data

Figure 3.3.1: Data from Mo Fjernvarme for the period April 30th 2018 to April 29th 2019. Avail-
able waste heat and heat demand is shown in the top plot, mass flow through the DH system in the
middle plot and return and supply temperature from and to the district in the bottom plot.

An outlier is clearly present on August 22nd 2018, probably due to measurement error.
The mass flow rate is calculated using the heat demand, return temperature and supply
temperature, using the equation

q
dh =

Q
demand

⇢dhCdh
p

(T dh,Sup � T dh,Ret)
. (3.3.1)

The bottom plot in Figure 3.3.1 shows that the supply temperature is below the return
temperature at this specific hour, causing an irregularly high mass flow rate. The measure-
ments for this hour at this date is therefore neglected.

For the purpose of sizing a TES tank to minimize the need for peak heating, time
periods presenting alternating highs of demanded heat and waste heat are of interest. A
representative period with this behaviour is March 2019, which will be used for further
investigation of optimal operation and optimal sizing. Figure 3.3.2 displays the relevant
information for March 2019.

15



Chapter 3. Model Development

Figure 3.3.2: Data from Mo Fjernvarme for March 2019. Available waste heat and heat demand is
shown in the top plot, mass flow through the DH system in the middle plot and return and supply
temperature from and to the district in the bottom plot.
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CHAPTER 4

Optimal Operation

Considering the district heating system with a TES tank in Mo i Rana, a dynamic opti-
mization model must first be defined, in order to obtain optimal operation. As mentioned
in Section 2.2, an optimization problem consists of an objective function, decision vari-
ables and constraints. The process and model equations representing the system, were
defined in the previous chapter. These will constitute the constraints of the optimization
problem, together with the decision variable bounds. Moreover, the logic constraint pre-
sented previously will be included as complementarity constraints in the model, converting
the problem to a mathematical program with complementarity constraints (MPCC). The
optimization model objective is to minimize the amount of peak heating needed in the
system and maximize utilization of waste heat from the ferrosilicon production process.

The dynamic model will first be simulated using test data, to ensure that the model
behaves as desired. After this, historical data will be applied over an increasing time
horizon. First, periods of 24 hours will be simulated, followed by seven days and, finally,
a total period of one month. The obtained optimal operation for this month, will form the
basis for the optimal design problem and economic evaluations in the next chapter.

As mentioned in the previous chapter, the notation used in this chapter is as stated
before.

4.1 Mathematical Formulation
The mathematical model of the system presented in Section 3.2 may be formulated as a
set of DAEs:

dx(t)
dt

= f(x(t), z(t), p) (4.1.1a)

0 = g(x(t), z(t), p) (4.1.1b)

17



Chapter 4. Optimal Operation

where x is a vector containing the differential variables, here the temperature of the TES
tank

x = [T tes], (4.1.2)

vector z contains the algebraic variables

z = [TA
, T

B
, T

C
, T

whb
, Q

whb,used
, Q

whb,dump
, Q

phb
, q

whb
,

q
A
, q

B
, q

bp
, q

sys
, q

dh
, T

dh,ret
, T

dh,sup
, Q

whb
, Q

demand],
(4.1.3)

and p is a vector of the known, time-independent variables

p = [⇢dh, Cdh

p
, V

tes]. (4.1.4)

The optimal operations problem may thus be expressed as the following dynamic op-
timization problem

min
x,u,z

Z
(Qphb(t))2 + (Qdump(t))2dt (4.1.5a)

s.t.
dT

tes(t)

dt
=

q
A(t)

V tes
(TA(t)� T

tes(t)) +
q
B(t)

V tes
(TB(t)� T

tes(t)) (4.1.5b)

q
dh(t) = q

bp(t) + q
sys(t) (4.1.5c)

q
sys(t) = q

whb(t) + q
A(t)� q

B(t) (4.1.5d)

T
A(t) =

T
dh,Ret(t) · qsys(t) + T

tes(t) · qB(t)
qwhb(t) + qA(t)

(4.1.5e)

T
B(t) =

T
whb(t) · qwhb(t) + T

tes(t) · qA(t)
qsys(t) + qB(t)

(4.1.5f)

T
C(t) =

T
B(t) · qsys(t) + T

dh,Ret(t) · qbp(t)
qdh(t)

(4.1.5g)

Q
whb(t) = Q

whb,used(t) +Q
whb,dump(t) (4.1.5h)

Q
whb,used(t) = ⇢

dh
C

dh

p
q
whb(t)(Twhb(t)� T

A(t)) (4.1.5i)

Q
phb(t) = ⇢

dh
C

dh

p
q
dh(t)(T phb(t)� T

C(t)) (4.1.5j)

Q
demand(t) = ⇢

dh
C

dh

p
q
dh(t)(T dh,Sup(t)� T

dh,Ret(t)) (4.1.5k)

0  q
A(t) ? q

B(t) � 0 (4.1.5l)
xL  x(t)  xU (4.1.5m)
zL  z(t)  zU (4.1.5n)

As the intention is to minimize the amount of peak heating needed in the DHN and utilize
as much of the waste heat available as possible, the objective function in Equation 4.1.5a
is set to minimize the variable for peak heating and waste heat dumped. The temperature
change in the TES tank is accounted for in the model through the differential equation in
Equation 4.1.5b. Mass and energy balances are present through equations 4.1.5c-4.1.5k,
and the logic constraint to avoid simultaneous charging and discharging of the TES tank

18



4.1 Mathematical Formulation

is enforced through the complementarity constraint in Equation 4.1.5l. Equations 4.1.5m-
4.1.5n enforces physical bounds to the differential and algebraic variables. The numerical
values of these bounds are given in Table 4.1. Table 4.2 presents the values of all the
time-independent parameters used.

Table 4.1: Variable bounds for optimal operations problem.

Description Lower bound Variable Upper bound Unit
Temperature in TES tank 40.0 T

tes 120.0 [°C]
Temperature after node A 40.0 T

A 120.0 [°C]
Temperature after node B 40.0 T

B 120.0 [°C]
Temperature after node C 40.0 T

C 120.0 [°C]
Temperature after WHB 40.0 T

whb 120.0 [°C]
Peak heating applied 0.0 Q

phb - [MW]
Waste heat utilized 0.0 Q

whb,used 22 [MW]
Waste heat dumped 0.0 Q

whb,dumped
Q

whb [MW]
Flow through WHB 0.0 q

whb 333.33 [kg
s

]
TES charging flow 0.0 q

A 1388.89 [kg
s

]
TES discharging flow 0.0 q

B 1388.89 [kg
s

]
Bypass flow 0.0 q

bp
q
dh [kg

s
]

System flow (not bypassing) 0.0 q
sys

q
dh [kg

s
]

Table 4.2: Description and value of known time-independent parameters.

Variable Description Value Unit
⇢
dh Density 1000.00 [ kg

m3 ]
Cp Specific heat 4.18 [ kJ

kg·K ]
V

tes Volume TES tank 5000.00 m3

In order to be solved as an NLP problem, the continuous formulation in Equation 4.1.5
is discretized using Eulers method, as described in Section 2.2.2. The ODE in Equation
4.1.5b is approximated using

xi = xi�1 + hf(xi, zi, p) (4.1.6)

where h is the step length of one finite element, in this study corresponding to one hour,
and i = 1, ..., NT for NT number of finite elements.
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The resulting discretized operations problem is formulated as follows

min
x,z

NTX

i=1

10�6(Qphb

i
)2 + 10�6(Qwhb,dump

i
)2 (4.1.7a)

s.t. xi = xi�1 + hf(xi, zi, p) i = 1, ..., NT (4.1.7b)
x0 = x(0) (4.1.7c)
g
i
(xi, zi, p) = 0 i = 1, ..., NT (4.1.7d)

xL,i  xi  xU,i i = 1, ..., NT (4.1.7e)
zL,i  zi  zU,i i = 1, ..., NT (4.1.7f)

0  q
A

i
? q

B

i
� 0 i = 1, ..., NT (4.1.7g)

The MPCC in Equation 4.1.7 is reformulated as an NLP using the algorithm proposed
in [24] and presented in Section 2.3. The l1-penalty term formulation is used, adding
a penalty term to the objective function and gradually increasing the associated weight
parameter. The NLP is implemented in ulıa[25], using JuMP[26] as mathematical pro-
gramming language and optimization solver IPOPT[27] with linear solver MA97. The
script tes_logic.jl contains the implementation, presented in Appendix D.7.

4.2 Implementation Using Test Data
To ensure that the model behaves as desired, the system is first simulated using the test
data presented in Figure 4.2.1 as input.

Figure 4.2.1: Waste heat profile given as input.
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The given waste heat profile together with fixed return and supply temperatures at
T

dh,ret=55°C and T
dh,sup=95°C, respectively, and district flow rate of qdh = 80.83 kg/s

are given to the optimizer. The result is presented in Figure 4.2.2. The top left plot shows
the temperature from the TES tank in blue, temperature from the WHB in green and tem-
perature from the PHB in orange. The mass flow from the PHB is the mass flow supplied
to the district, hence T

phb = T
dh,Sup. The plot to the top right gives the waste heat avail-

able in blue and demand in orange. Next, the plot in the middle left position presents the
flow through the WHB in blue, discharging flow in orange and charging flow in green. The
middle right plot shows peak heating in blue, dumped waste heat in orange and waste heat
utilized in green. At the bottom left, the plot gives the bypass stream in blue and the total
district heating network stream in orange. Lastly, the flow temperatures from each of the
nodes, A, B and C are given in blue, orange and green, respectively.

Figure 4.2.2: Optimal operation model simulated using test data with initial tank temperature at 95
°C.

The waste heat available in the first 10 hours of the test data is the exact amount of
heat the system needs to heat the district flow from 55 °C to 95 °C. Part of the district flow
is sent through the WHB, exploiting all of the heat available, mixing the flow with the
bypass, yielding the desired supply temperature of 95 °C. No peak heating is needed and
no waste heat is dumped the first 10 hours, as seen in the middle right plot. Intuitively, it
was expected that the entire district flow would pass through the waste heat boiler, resulting
in a temperature out of the WHB at 95 °C and no charging, discharging or bypass would
be needed. However, these results are mathematically equivalent, and the situation of
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Q
demand exactly matching Q

whb is highly unlikely when considering actual values. After
10 hours the waste heat exceeds the required amount, as seen in the top, right plot in Figure
4.2.2. The surplus heat is therefore stored in the tank. This is seen from the middle plot
to the left as qB is positive, and from the top left plot, where there is an increase in the
temperature of the tank, Ttes. After 20 hours, the waste heat alone is not sufficient, and
the tank is discharged. The amount of heat stored from 10-20 hours is the exact amount
of heat needed for 20-30 hours. The heat is drained from the tank, and no further peak
heating is needed. The system behaves as desired for the given input.

Next, the influence of the initial tank temperature is to be examined. The system will
be simulated using the same waste heat profile as previously considered, but with initial
tank temperatures of 60 and 115 °C. The results are presented in Figure 4.2.3 and Figure
4.2.4.

Figure 4.2.3: Optimal operation model simulated using test data with initial tank temperature at 60
°C.

For this scenario when the tank temperature is initially lower than the supply tempera-
ture, it is seen from the middle right plot in Figure 4.2.3 that some peak heating is needed.
This is as expected as the test data provided equals the exact amount of the heat demanded
for the 30 hours considered. As the previous scenario, some heat is stored from 10-20
hours, but as the volume of the tank is large, and the temperature is relatively cold, the
system is not able to retrieve all the heat stored, and some peak heating is needed for the
last 10 hours.
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Figure 4.2.4: Optimal operation model simulated using test data with initial tank temperature at 115
°C.

Contrarily, for the scenario shown in Figure 4.2.4 where the initial tank temperature is
high, it is seen from the top left plot that the tank is charged and reaches max capacity when
the temperature of the tank is at 120 °C. Consequently, some heat is dumped, visible in
the middle right plot. However, even though the amount of waste heat available is exactly
equal to the total amount demanded and some waste heat is dumped, no peak heating is
needed for the last 10 hours. This is because the tank initially was stored with surplus heat
available to the district.

It is thus concluded that the starting temperature of the tank may affect the result of
the testing quite significantly, as the time period for now is 30 hours. The energy initially
stored in the tank may constitute a significant share of the overall heat transferred in the
DHN. However, the impact of this uncertainty is expected to lessen as the time horizon
expands, especially after a long period of excess or shortage of available energy, as this
will bring the TES to its upper or lower bounds, respectively. It is therefore important to
obtain optimal operation for a significant amount of hours, in order for this system to yield
a representative time horizon to be used for the optimal sizing in the next chapter.

23



Chapter 4. Optimal Operation

4.3 Applying Historical Data
In this section, the impact of using a TES tank in an existing district heating network
is investigated. The optimal operations problem in Equation 4.1.7 is to be solved, using
historical data provided by Mo Fjernvarme presented in Section 3.3.

4.3.1 24 Hour-Scenarios
To ensure that the model is sturdy and able to handle various initial tank temperatures and
availability of waste heat, three different 24 hours scenarios are investigated. One period of
alternating waste heat surplus and shortage, one period with majority of waste heat surplus
and one with majority of waste heat shortage. The starting temperature of the TES tank is
varied between T = 60°C, T = 95°C and T = 115°C.

Optimal operation result after applying historical data from February 1st 2019, a day
of waste heat shortage, is presented in Figure 4.3.1. The initial tank temperature is here 95
°C, as seen from the upper left plot. The waste heat trajectory in the upper right plot shows
a dip after approximately 11 hours, and peak heating is needed, as seen in the middle right
plot. At this time, the bypass is zero, and the entire district flow is either going through the
WHB or to the tank which is being discharged. As the tank initially starts at a temperature
above the return temperature of 55 °C, it is being discharged throughout the majority of
the period, and little peak heating is needed, despite the shortage.

Figure 4.3.1: Optimal operations problem solved using historical heat data from Ferbruary 1st 2019,
with initial tank temperature at 95 °C.

24



4.3 Applying Historical Data

March 30th 2019 contains heat data consisting of mostly waste heat surplus. The
optimized result is shown in Figure 4.3.2. The tank is charged for the majority of the time
period, indicated by the middle left plot when q

B > 0. No peak heating is needed and no
heat is dumped as the tank does not reach max capacity.

Figure 4.3.2: Optimal operations problem solved using historical heat data from March 30th 2019,
with initial tank temperature at 95 °C.

A day exhibiting alternating energy surplus and shortage is March 15th 2019, pre-
sented in Figure 4.3.3. The tank is charged at hours when there is energy surplus and
discharged when there is shortage. No peak heating is needed and no heat is dumped.
Some bypass occurs during the shortage as the tank is discharged, and the remaining mass
flow goes to the WHB yielding an outlet temperature from the boiler above the desired
district supply temperature.
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Figure 4.3.3: Optimal operations problem solved using historical heat data from March 15th 2019,
with initial tank temperature at 95 °C.

The results for initial tank temperatures of 60 °C and 115 °C for all three dates are
shown in Appendix A. The solver was able to converge to local solutions for all three initial
temperatures and for the variety of waste heat availability, and the optimal operations
model presented in Equation 4.1.7 is used for further expansion of the time horizon.

4.3.2 7 Days
The optimal operations model presented in the previous section is used for further appli-
cation of historical data. While the solver converges for up to six days, it is experienced
that whether the NLP converges to a local solution or not greatly depends on the initial
guesses. Therefore, it is decided to create separate functions to ensure that the initial
guesses for the variables lies within the solutions feasible region. Instead of only creating
one model for optimization, an additional model is created to be used only for simula-
tion of one finite element. This simulation model will be given input data and guesses
are provided for the free variables. The simulation model is then simulated at each finite
element, for only one hour. The results of all of the short simulations are used as initial
guesses in the optimization model, to be solved over the entire time horizon. This way,
mostly feasible initial guesses are ensured, facilitating local convergence for the solver.
The scripts main_operation.jl, tes_create_model.jl, tes_sim.jl, tes_bounds.jl and
read_file.jl contains the implementation and are given in Appendix D.

Using the implementation as described above, the optimal operations problem is solved
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for 7 days. To obtain local convergence, l1-regularization terms for qbp and qwhb were
added.

Figure 4.3.4: Optimal operations problem simulated for the first week of March 2019, with initial
tank temperature at 95 °C.

The model successfully converges to a local optimum for the 7 day-time horizon. How-
ever, it is seen that the optimizer chooses to charge the tank even though the tank is warmer
than the flow out of the WHB. This is not ideal as the temperature in the tank falls, and
unnecessary amounts of water have to be pumped through the system instead of simply
discharging the tank. In contrast, for different initial temperatures of the tank, this prob-
lem was not as prominent for the solutions obtained, as seen in Figure 4.3.5 and Figure
4.3.6.
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Figure 4.3.5: Optimal operations problem simulated for the first week of March 2019, with initial
tank temperature at 60 °C.

Figure 4.3.6: Optimal operations problem simulated for the first week of March 2019, with initial
tank temperature at 115 °C.
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However, as this behaviour is not desired, various complementarity constraints and
regularization terms were tested to account for this, though none were able to converge for
more than a few of days. The MPCC becomes too large, and the complementarities are
not necessarily strict, which can present challenges for the NLP formulation [24, 28, 20].
Considering this fact in combination with the possibility of recycling in the system, the
solver is not able to find a solution, despite good initial guesses. Therefore, to continue
expanding the time horizon using historical data and obtain optimal operation for a longer
representative time period which may be applied in the optimal design of the tank, it is
decided to modify the formulation of the problem. The complementarity constraints are
replaced with regular equality constraints that is defined for each finite element separately.
As the availability of waste heat and the heat demand at each finite element is given, this
information will be used to decide the possibility of charging and discharging the tank.
In other words, the complementarity constraints previously present to avoid simultaneous
charging and discharging will be replaced by specified constraints at each finite element,
fixing either qA

i
or qB

i
to zero. In addition, two regularization terms with small penalties

in the objective function were necessary to ensure convergence. The updated model used
for obtaining optimal operation is thus formulated as

min
x,u,z

NTX

i=1

(Qphb

i
)2 + (Qwhb,dump

i
)2 + ↵q

bp

i
+ �q

whb

i
(4.3.1a)

s.t. xi = xi�1 + hf(xi, zi, p) i = 1, ..., NT (4.3.1b)
x0 = x(0) (4.3.1c)
g
i
(xi, zi, ui, p

i
) = 0 i = 1, ..., NT (4.3.1d)

xL,i  xi  xU,i i = 1, ..., NT (4.3.1e)
zL,i  zi  zU,i i = 1, ..., NT (4.3.1f)
uL,i  ui  uU,i i = 1, ..., NT (4.3.1g)

q
A

i
= 0 if Qwhb

i
< Q

demand

i
i = 1, ..., NT (4.3.1h)

q
B

i
= 0 if Qwhb

i
� Q

demand

i
i = 1, ..., NT (4.3.1i)

This formulation yields the result shown in Figure 4.3.7, when an initial tank temper-
ature of 95 °C is used.
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Figure 4.3.7: Optimal operations problem simulated for the first week of March 2019, with initial
tank temperature at 95 °C, using the updated optimal operations model.

When comparing Figure 4.3.4 and Figure 4.3.7 it can be seen that the obtained results
using the two models are quite similar, except less recycling occurs in the updated for-
mulation. Still, with less recycling the updated formulation is able to utilize all the waste
heat available, and no heat is dumped using either of the models. However, it is also seen
from the middle right plot that more peak heating is used with the original formulation,
especially after 125 hours have passed. This is because the updated formulation discharges
the tank and the final tank temperature after simulating for the whole week is lower than
for the original formulation, but as this causes less peak heating, it is the desired scenario.
The updated model utilizes all of the heat available and demands less peak heating. The
updated optimal operations model thus yields desired results, and will be used for further
expansion of the time horizon.
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4.4 Expanding the Horizon
Using the optimal operations model as formulated in Equation 4.3.1, a larger horizon is
considered. As the order of magnitude between the mass flows and the heat is large, the
weights of the regularization terms are increased so that the regularization terms influence
the objective function.

As stated in Section 3.3 March 2019 is considered to be a representative month for
utilization of the tank. Applying the data for this month, the NLP in Equation 4.3.1 is
optimized for different initial values of the tank, using 720 finite elements. The results
are shown in Figure 4.4.1, Figure 4.4.2 and Figure 4.4.3, for initial values Ttes,0 = 60°C,
Ttes,0 = 95°C and Ttes,0 = 115°C, respectively.

Figure 4.4.1: Optimal operations problem simulated using historical data from March 2019, with
initial tank temperature at 60 °C.

31



Chapter 4. Optimal Operation

Figure 4.4.2: Optimal operations problem simulated using historical data from March 2019, with
initial tank temperature at 95 °C.

Figure 4.4.3: Optimal operations problem simulated using historical data from March 2019, with
initial tank temperature at 115 °C.
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When comparing the results after optimizing with the three different initial guesses,
clear trends are visible. The three scenarios all have active bypass streams and peak heat-
ing at the same points in time, however of different magnitude. The scenario starting with
the highest initial temperature yields the results needing the least amount of peak heating,
as expected. This tank initially holds more energy to be drained than the other scenarios.
Corroborative, the scenario with the lowest initial tank temperature requires the highest
amount of peak heating. Moreover, less bypass is used for this scenario, than for the
other two. This too, is as expected, as the mass flow primarily passes through the waste
heat boiler and less recycling occurs. The tank is colder, so recycling with the lower ini-
tial temperature demands more heat as the inlet temperature to the WHB decreases when
recycling occurs in this scenario. Contrarily, when recycling occurs at high initial tempera-
tures of the tank, the inlet temperature to the WHB increases, hence the outlet temperature
may be heated up to a higher final temperature. When the outlet temperature of the WHB
is above the desired supply temperature to the district, bypass is needed. This effect is
therefore more prominent for the two latter cases. Furthermore, from approximately 300
hours until the end of the horizon, the solution of all three cases are quite similar. It is
seen that all three cases dump approximately the same amount of heat, and the final tank
temperature is approximately the same.

Thus, it is concluded that for longer horizons, the initial temperature indeed loses
influence as the results are similar. Initial temperature does however affect the total peak
heating and potential for heat dumping. As the average district supply temperature is
approximately 95 °C, this may be viewed as an equilibrium, and will therefore be used as
the initial temperature when considering the optimal design study in the next chapter.
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CHAPTER 5

Optimal Design

Once a model providing optimal operation using historical data is obtained, the system
is also optimized with respect to the tank volume. As mentioned in the introduction, a
smaller tank is beneficial both economically and physically. Moreover, for the investment
to be of interest to the plant owners, in this case Mo Fjernvarme, it needs to be profitable in
the long run. Therefore, the payback period is an interesting metric to consider. The size
of the tank may thus be found through minimizing the payback period as a function of the
investment cost and potential savings, while simultaneously obtaining optimal operation
of the tank. This chapter first explains the cost calculations and present the optimal sizing
problem. As mentioned in the introduction, Mo Fjernvarme’s main source of energy is the
off-gases from the ferrosilicon production process, while the remaining energy is obtained
through electricity, fossil fuel, biofuel and CO gas. However, as the amount of fossil
fuel and bio fuel are rarely used in practice [15], these energy sources are not considered.
Accordingly, two cases are studied, one where electricity is used as peak heating source
and, in the other, CO gas as peak heating source. The results are analyzed with respect to
payback time and carbon emissions. Lastly, sensitivity analyses of the payback period for
the two cases are conducted, considering various impact factors, such as emission taxes,
tank size, interest rate and tank operating time throughout a year.

5.1 Cost Calculations and Problem Formulation
For a TES tank the payback period can be calculated by[9]

N0 =
ln(B/(B � I(V )r))

ln(1 + r)
, (5.1.1)

where B denotes the savings, I(V ) is the investment cost for a tank of a certain volume,
V , and r indicates the yearly interest rate. The savings for this particular case is considered
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to be the total reduction in operating cost, namely the difference in peak heating expenses
for the base case, i.e. no TES tank at all, and the optimized case,

B = C
peak

nfeX

i=1

(Qphb,noTES

i
�Q

phb

i
). (5.1.2)

C
peak is the total peak heating cost given in NOK/kWh, which includes cost of the energy

source and emission taxes. Qphb

i
and Q

phb,noTES

i
is the peak heating needed at each finite

element, with and without a TES tank installed, respectively. Q
phb

i
is obtained from the

model output, while Q
phb,noTES

i
is obtained from the given data from Mo Fjernvarme,

equal to the red bars in Figure 5.1.1. The figure shows historical heat data (district demand
in green and waste heat available in yellow), in addition to peak heating in red and heat
dumped in blue, for the base case.

Figure 5.1.1: Historical heat data for March 2019. Heat demand in green, available waste heat in
yellow. For the base case the waste heat dumped is shown in blue and peak heating needed in red.

For the investment cost, Haoran Li et al. [29] established a relationship between initial
investment and water tank size based on previous projects. The investment cost of the
water tank is thus given by the following power function approximation

I(V ) = 0.0047(V )0.6218 (5.1.3)

for I(V ) given in million euros and V given in m3.
Total price per kWh for using either electricity or CO gas as peak heating sources is

simply price of the fuel itself in addition to the emission fees on the fuel used,

C
peak = C

fuel(electric/CO�gas) + C
tax

. (5.1.4)
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The price of electricity depends on the electricity price from the distributor at that time of
year, hence it is volatile. For the case studied, the electricity price for March 2019 is used,
which is 0.8721 NOK/kWh [30, 31, 32]. It is here considered that Mo i Rana is in a county
granted VAT exemption[31]. As the tank is expected to be operational mainly during the
transitional months, electricity prices for March are assumed to be representative [32].
However, electricity prices in 2019 was higher than the average of past years [31]. The
impact of these uncertainties is further investigated in the sensitivity analysis.

CO gas is a byproduct from Mo Industrial Park and used in varying extent for peak
heating, depending on the availability, demand from other plants in the park and other
aspects [9]. The price is confidential.

As stated in Equation 5.1.4, the price of the government taxes on greenhouse gas emis-
sions is needed in addition to the price of the energy source itself, to obtain the total cost
per kWh. The Norwegian carbon tax rate is currently set to NOK 590 per tonne CO2

equivalents, and is announced to increase significantly, to a value of NOK 2,000 per tonne
CO2 equivalents in the year 2030[33]. For NOx-emission, the tax is currently set to 23,480
NOK per tonne NOx[34]. According to The Norwegian Water Resources and Energy Di-
rectorate (NVE), the calculated CO2-factor for power consumption in Norway is 17 gram
CO2 equivalents per kilowatt hour[35]. For CO gas 574 gCO2 equivalents per kilowatt
hour and 0.55 g NOx per kWh is used[9].

The CO2 tax per kilowatt hour is thereby given,

C
tax(elec/COgas) = Tax on emission


NOK

tonnes CO2

�
· Emission


tonnes CO2

kWh

�
, (5.1.5)

and likewise for the NOx tax,

C
tax(elec/COgas) = Tax on emission


NOK

kg NOx

�
· Emission


kg NOx

kWh

�
. (5.1.6)

The cost of electricity and CO gas is calculated using Equations 5.1.4-5.1.6 and values
in Table 5.1. The resulting cost values used for optimization are summarized in Table 5.2.

Table 5.1: Values used for calculating parameters.

Description Value Unit
Interest rate[36] 5.00 [%]
CO2 tax 2021[33] 590.00 [NOK/tonne CO2e]
NOx tax 2021[34] 23,480.00 [NOK/tonne NOx]
Conversion rate EUR to NOK 10.03 [NOK/EUR]
Estimated electricity price March 2019 0.8721 [NOK/kWh]
Estimated price for CO-gas *1 [NOK/kWh]
CO2-factor for power consumption[35] 17 [g CO2e/kWh]
NOx-factor for power consumption 0 [g NOxe/kWh]
CO2-factor for CO gas[9] 574 [g CO2e/kWh]
NOx-factor for CO gas[9] 0.55 [g NOxe/kWh]

1The price of CO gas is confidential.
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Table 5.2: Parameters used for optimization.

Variable Description Value Unit
C

elec Cost of electricity 0.8721 [NOK/kWh]
C

elec,tax Emission tax on electricity 0.0100 [NOK/kWh]
C

elec,total Total cost of using electricity 0.0.8821 [NOK/kWh]
C

COgas Cost of CO gas *2 [NOK/kWh]
C

COgas,tax Emission tax on CO gas 0.3516 [NOK/kWh]
C

COgas,total Total cost of using CO gas *3 [NOK/kWh]

Considering the presented cost equations and relevant parameters, a new optimization
problem that incorporates operational and economic aspects is formulated for obtaining
the optimal size of the TES tank. The discretized optimal sizing problem is presented in
the following equation.

min
x,u,z

N0 +
nfeX

i=1

C
dump

Q
whb,dump

i
+ 10�5

q
bp

i
+ 10�7

q
whb

i
(5.1.7a)

s.t. N0 =
ln(B/(B � (I(V tes)r)))

ln(1 + r)
(5.1.7b)

B = C
peak(Qphb,noTES �Q

phb) (5.1.7c)

I(V tes) = 0.0047(V tes)0.6218 (5.1.7d)
xi = xi�1 + hf(xi, zi, p

i
) i = 1, ..., nfe (5.1.7e)

x0 = x(0) (5.1.7f)
g
i
(xi, zi, p

i
) = 0 i = 1, ..., nfe (5.1.7g)

xL,i  xi  xU,i i = 1, ..., nfe (5.1.7h)
zL,i  zi  zU,i i = 1, ..., nfe (5.1.7i)

q
A

i
= 0 if Qwhb

i
< Q

demand

i
i = 1, ..., nfe (5.1.7j)

q
B

i
= 0 if Qwhb

i
� Q

demand

i
i = 1, ..., nfe (5.1.7k)

The objective function, Equation 5.1.7a, is minimizing the payback period with respect
to savings, investment cost and tank volume, while regularization terms and a weighted
penalty for total amount of waste heat dumped are added to maintain optimal operation.
Equations 5.1.7e-5.1.7k are the differential and algebraic equations and constraints as pre-
sented in the previous chapter. Bounds used for tank volume, payback time and savings
are given in Table 5.3. A lower bound for savings of above zero was enforced to avoid
numerical issues, as the payback period is a logarithmic expression, Equation 5.1.1.

2The price of CO gas is confidential.
3The price of CO gas is confidential.
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Table 5.3: Dependant variables

Description Lower bound Variable Upper bound Unit
TES volume 0.0 V

tes 50,000.0 [m3]
Payback time 0.0 N0 - [years]
Savings 100.0 B - [ NOK

30days ]

The TES optimization problem is solved for 30 days using historical data from Mo
Fjernvarme, as presented in Section 3.3. The sampling time is one hour and an initial
tank temperature of 95 °C is used. As for the optimal operations problem, the imple-
mentation is done in ulıa[25], using JuMP[26] as mathematical programming language
and optimization solver IPOPT[27] with linear solver MA97. The scripts main_cost.jl,
tes_create_model.jl, tes_sim.jl, tes_bounds.jl and read_file.jl contains the imple-
mentations, presented in Appendix D.

5.2 Results
The optimal design problem in Equation 5.1.7 has been solved using historical data from
Mo Fjernvarme for the time period March 1st 2019 to March 30th 2019. The output for
both cases is presented through six different plots in Figure 5.2.1 and Figure 5.2.2 for
electricity and CO gas, respectively. The positioning and contents of each plot are similar
to those in the previous chapter.

Figure 5.2.1: Optimal sizing result using electricity as peak heating source.
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Optimizing the NLP in Equation 5.1.7 using electricity as peak heating source yielded
a payback time of N0 = 13.74 years, and an optimal volume for the TES tank of V tes =
6322.95m3. Total peak heating, i.e. the sum of all Qphb in the middle right plot of Figure
5.2.1, is found to be 455.46 MW. Similarly, the total heat dumped, Qwhb,dump, also in the
middle right plot, is found to be 0 MW.

Figure 5.2.2: Optimal sizing result using CO gas as peak heating source.

Equivalently, when using CO gas as peak heating source the payback time was found to
be 12.18 years, while the optimal size of the tank is equal for the two cases, i.e. 6322.95m3.
Total peak heating and waste heat dumped is also identical, as the operation and size of
the tank was found to be the same.

The difference in available waste heat and heat demanded for the first 30 days of March
2019 is -280.40 MW. It is therefore expected at least 280 MW of peak heating for this
month. However, it is seen from the top right plot in Figure 5.2.1 and Figure 5.2.2 that
heat demanded is greater than waste heat available more or less throughout the first 300
hours of the month, approximately. Thus, it is expected that demanded peak heating must
exceed 280 MW, and the optimized total peak heating result of 455.46 MW is as presumed.

The peak heating is reduced from 876.40 MW to 455.46 MW after introducing the
TES tank. Considering the first case using electric peak heating, this yields a reduction in
peak heating costs of NOK 371,323 for the investigated 30 days. For the CO gas case the
reduction in tax expenses alone constitutes NOK 148,003 for the 30 days. These savings
further increases when the price of CO is also considered. Amount of peak heating used
and operating costs have thus decreased by 48%, regardless of the case, as they operate
identically. Furthermore, Qwhb,dump for the base case is 596.00 MW. For the optimized
cases 420.94 MW of the peak heating is covered by the waste heat and there is no waste

40



5.2 Results

heat dumped. Hence, at least 175.06 MW of the waste heat is stored in the tank at the end
of the optimization to be used at later convenience. This is confirmed by the top left plots
in both figures as the final value for T tes is approximately 25 °C higher than the initial
value.

As discussed in Section 3.3 it is the periods throughout the year of alternating waste
heat surplus and deficit that are interesting operational periods for the tank. This is ex-
pected to be the case at least during transitional seasons, when the climate is neither very
hot nor very cold. However, this is grounds for uncertainties in the payback time, and is
investigated in the sensitivity analysis in the next section.

A summary of the numerical results are presented in Table 5.4, for both energy sources.
Reduction are calculated with respect to the base case.

Table 5.4: Selected numerical results from optimization.

Description Electricity CO
Payback period, N0 13.74 years 12.18 years
Tank size, V tes 6322.95 m3 6322.95 m3

Peak heating, Qphb 455.46 MW 455.46 MW
Peak heating reduction 420.94 MW 420.94 MW
Peak heating reduction 48 % 48 %
Waste heat dumped, Qwhb,dump 0 MW 0 MW
Waste heat savings 100 % 100 %
Peak heating CO2 emission 23.23 tonnes CO2e/year 784.30 tonnes CO2e/year
Reduction in CO2 emission 21.47 tonnes CO2e/year 724.86 tonnes CO2e/year
Reduction in CO2 emission 48 % 48 %
Peak heating NOx emission 0.00 kg NOx/year 751.51 kgNOx/year
Reduction in NOx emission 0.00 kg NOx/year 694.55 kgNOx/year
Reduction in NOx emission 0.00 % 48 %

Figure 5.2.3 illustrates the expected yearly amount of tonnes CO2e, with and without
the TES tank, assuming that there are three such periods corresponding to the 30 days
considered. The blue bars represents the amount of CO2 expected to be emitted while
utilizing the TES tank, and the orange bars represents the amount of CO2 expected to be
emitted for the base case. The series to the left is for the scenario of using CO gas as peak
heating source, the middle is the amount using 50 % CO gas and 50 % electricity and the
series to the right is the emissions if the peak heating is covered by only electricity boilers.
Similarly, Figure 5.2.4 illustrates the yearly amount of kg NOx expected emitted, with and
without the TES tank. The colors and placements of the series is as described above.
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Figure 5.2.3: Comparison of the yearly calculated emission of CO2 with and without the TES tank.
Case 1 using electricity to the left, case 2 using CO gas to the right and a mix of the two in the
middle.

Figure 5.2.4: Comparison of the yearly calculated emission of NOx with and without the TES tank.
Case 1 using electricity to the left, case 2 using CO gas to the right and a mix of the two in the
middle.

The yearly emissions are clearly lower for the optimized cases as they demand less
supplementary energy. Furthermore, emission rates are evidently higher for the CO gas
case. It is thus expected that this case is more prone to changes in tax rates than electricity.
With increasing greenhouse gas emission taxes, it is expected that this case will yield the
lowest payback period.

5.3 Sensitivity Analysis
To investigate the impact various factors have on the payback time, sensitivity analyses
have been conducted. One analysis considering the first case using electricity as peak
heating source and one considering the second case, where CO gas is used as peak heating
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source. The two sensitivity plots are presented in Figure 5.3.1 and Figure 5.3.2, for case 1
and case 2, respectively. The payback period is plotted against relative change in various
parameters. One parameter is changed at a time, while the rest is held constant. The pa-
rameters selected were based on inherent uncertainties they might present. The numerical
results are given in Appendix C.

Figure 5.3.1: Sensitivity analysis when using electricity as peak heating source. Payback period
plotted against the relative change in various parameters.

Figure 5.3.2: Sensitivity analysis when using CO gas as peak heating source. Payback period plotted
against the relative change in various parameters.

For both cases it is clear that the presumed active period of the tank is the most promi-
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nent factor when it comes to payback period sensitivity. In this work it is assumed that the
tank is active for three months during a year. However, had this value been increased by
40 % till an active period of just over four months, the payback period for the two cases
would have decreased from 13.74/12.18 till 8.80/7.90 years for cases 1/2.

The price of the peak heating source itself also greatly affects the value of the payback
time, especially for the case considering electricity. As mentioned previously, electricity
prices are volatile, giving this parameter high uncertainty.

Naturally, interest rate also affects the payback period for both cases. As mentioned, in
this work the interest rate is assumed to be 5 %. This rate will depend on the policy rate, the
lender and on the liquidity of the borrower. An interest rate of 5 % may be a conservative
value. Thus, the result of 11.74/10.59 years from the sensitivity analysis when using the
40 % lower estimate may also be interesting.

Regarding changes in the tank volume, this factor is shown to be of less impact. A
larger tank saves more energy and uses less peak heating, thus increasing the total savings
for the period. However, the investment cost increases as well. Contrarily, the expenses
saved on reducing the tank size are settled by the decreased savings of the waste heat not
stored. Further, the smaller tank sizes discards large amount of heat which is heat lost for
future shortages. The plotted results for various tank sizes are shown in Appendix B.

As the emissions from electricity is low, changes in the CO2 tax does not greatly affect
the payback period for the electricity case. In contrast, for the case considering CO gas,
it is seen that a small change in the CO2 tax impacts the payback period significantly.
As stated in Section 5.1 this tax is expected to increase heavily over the upcoming years.
Table 5.5 shows the expected payback time for various CO2 taxes in the interval proposed
by the Norwegian Government[33].

Table 5.5: Payback time for CO gas case with respect to various possible CO2 taxes.

CO2 tax Calculated Payback time
[NOK/tonnes CO2] CO gas [years]

590 12.18
872 9.91
1154 8.37
1436 7.24
1718 6.39
2000 5.71

Changing the CO2 tax from the current level of 590 NOK/tonnes CO2e to the an-
nounced price of 2000 NOK/tonnes CO2e, will cause a reduction in the payback time of
approximately 6 years, as shown in Table 5.5. That is equal to half the payback time using
the current tax level, for the case investigated.
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CHAPTER 6

Final Remarks

Optimal operation and optimal design of a thermal energy storage tank have been obtained,
based on historical data from a district heating network located in northern Norway. The
operational objective was to minimize the need for peak heating supplied by boilers using
either electricity or CO gas as energy sources, in addition to maximize the utilization of
waste heat from a nearby ferrosilicon production plant. A simplified process of the DHN
with a TES tank was defined, and after a model yielding optimal operation was obtained,
historical data over an increasing time horizon was applied. Considering bidirectional
flows using an MPCC formulation, optimal operation was obtained for a week. When
trying to expand the time horizon past the seven days, convergence issues were met. For
this reason it was decided to replace the complementarity constraints with equality con-
straints specified at each finite element, in order to obtain optimal operation for 30 days of
historical data.

The obtained results after considering both the operational and economic aspects yielded
a tank volume of 6322.95 m3. This tank volume in combination with the optimal oper-
ation of the TES lead to a 48 % reduction in the amount of peak heating needed for the
30 days investigated, constituting a cut-back of NOK 371,323 using electricity as peak
heating source, and a cut-back of NOK 148,003 in emission costs alone, when using en-
ergy from CO gas. Furthermore, all of the available waste heat for the period was utilized,
i.e. no energy was discarded. The payback period using electricity as peak heating source
was found to be 13.74 years, however very prone to changes in the electricity price. Sim-
ilarly, for the case using CO gas as energy source, the optimized payback period is 12.18
years. It must be emphasized that this value is expected to significantly decrease should
the announced CO2 tax increase accede. The sensitivity analysis for both cases reveals the
yearly assumed operational time of the TES system to be the variable introducing the high-
est uncertainty to the calculated payback time, followed by the cost of the energy source
and interest rate.
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It is concluded that introducing a thermal energy storage into the district heating net-
work in northern Norway indeed decreases the amount of peak heating needed signifi-
cantly. An expected payback time of 12-14 years is reasonable, and is additionally ex-
pected to decrease with increasing CO2 tax.

6.1 Suggestion for Future Work
The model aims to optimize the payback period while optimally operating the tank. Future
work could include modeling the thermal storage tank in a different way, such that the
physical dynamics in the tank are taken into consideration. The tank may for example
be modelled as several layers instead of perfectly mixed. Considering various types of
insulation and heat loss from the tank and/or the pipes in the district heating network can
also be a useful addition.

As discussed in Section 5.3 the price of the peak heating source greatly affects the
value of the payback time, especially for the case considering electricity. Considering
this fact, in addition to electricity prices being volatile, implementations considering live-
electricity prices and taking advantage of this source when prices are low could be very
interesting to consider.

Another approach could be to consider a variety of months. Had another month other
than March 2019 been chosen for this study, the results would have been altered. For this
scenario there was energy shortage in the beginning of the month, and later on a surplus.
Hence, had it been the opposite, the amount of peak heating would have decreased, and
the optimal volume would have been dependent on the inlet temperature, since this is
crucial as to when the tank reaches max capacity. Considering several different months
and evaluating how probable they each are, may yield a result based on a broader data
foundation.

Chance-constrained optimization is also a suitable formulation for an optimization
problem under uncertainty, such as this. A chance-constrained problem may be formu-
lated for various scenarios each with different probabilities, ensuring profitable investment
within a certain amount of years.
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APPENDIX A

Supplementing Results of Optimal Operation

Here, the results of the optimal operations problem in Equation 4.1.7 using initial tank
temperatures of 60 °C and 115 °C for February 1st 2019, March 30th and March 15th are
presented.

Figure A.0.1: Optimal operations problem from Equation 4.1.7 solved using historical heat data
from February 1st 2019, with initial tank temperature at 60 °C.
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Figure A.0.2: Optimal operations problem from Equation 4.1.7 solved using historical heat data
from March 30th 2019, with initial tank temperature at 60 °C.

Figure A.0.3: Optimal operations problem from Equation 4.1.7 solved using historical heat data
from March 15th 2019, with initial tank temperature at 60 °C.
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Figure A.0.4: Optimal operations problem from Equation 4.1.7 solved using historical heat data
from February 1st 2019, with initial tank temperature at 115 °C.

Figure A.0.5: Optimal operations problem from Equation 4.1.7 solved using historical heat data
from March 30th 2019, with initial tank temperature at 115 °C.
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Figure A.0.6: Optimal operations problem from Equation 4.1.7 solved using historical heat data
from March 15th 2019, with initial tank temperature at 115 °C.
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APPENDIX B

Results of Various Tank Volumes

Optimal operation results when fixing the tank volume to 3794 m3, 5058 m3, 6323 m3,
7588 m3 and 8852 m3, respectively.

Figure B.0.1: Optimal operation when V tes=3794 m3.
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Figure B.0.2: Optimal operation when V tes=5058 m3.

Figure B.0.3: Optimal operation when V tes=6323 m3.
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Figure B.0.4: Optimal operation when V tes=7588 m3.

Figure B.0.5: Optimal operation when V tes=8852 m3.
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APPENDIX C

Numerical Results of the Sensitivity Analyses

This chapter presents the numerical results from the sensitivity analyses conducted, pre-
sented in Section 5.3.

Table C.1: Numerical result of sensitivity analysis for electricity case.

Relative
change CO2 tax NOx tax Tank size TES active

time
Interest
rate

Electricity
price

0.6 13.83 13.74 12.61 34.50 11.74 33.84
0.8 13.79 13.74 13.37 19.34 12.64 19.24
1.0 13.74 13.74 13.74 13.74 13.74 13.74
1.2 13.70 13.74 13.91 10.71 15.15 10.74
1.4 13.65 13.74 13.98 8.80 17.03 8.83

Table C.2: Numerical result of sensitivity analysis for CO gas case.

Relative
change CO2 tax NOx tax Tank size TES active

time
Interest
rate

Electricity
price

0.6 15.10 12.27 11.21 28.14 10.59 18.80
0.8 13.48 12.22 11.86 16.82 11.31 14.75
1.0 12.18 12.18 12.18 12.18 12.18 12.18
1.2 11.11 12.13 12.32 9.58 13.24 10.39
1.4 10.22 12.09 12.38 7.90 14.58 9.06
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APPENDIX D

Julia Codes

This section presents files for the implementation of the optimal operations and optimal
design problem. The code is written in ulıa using JuMP[26] as mathematical language
and solver IPOPTs MA97[27].

D.1 "main_operation.jl"
This script contains the implementation for running the optimal operations problem. The
functions read_file(), tes_create_model(), simulation() and setbounds() are called,
and the model is optimized.

⌥ ⌅
using PyPlot, LaTeXStrings

include("tes_create_model.jl");
include("tes_sim.jl");
include("tes_bounds.jl");
include("read_file.jl");

default = Dict(
:⇢_dh => 1000, #kg/m3
:Cp_dh => 4.18, #kJ/(kg-K)
:T_dh_minSup => 92.5, #minimum for supply
:T_dh_maxSup => 95, #maximum for supply
:T_whb_max => 120,
:V_tes => 5000, #m3
:Tlb => 40,
:Tub => 120,
:Q_used_ub => 22e3*3600, # kJ/hr
:q_whb_init => 291, # [m3/hr]
:T_tes_init => 95, # Starting value T_tes
:nfe => 720,
:ncp => 1,
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:h => 1.0,
:S => ["T_tes"],
:C => ["q_whb", "q_A", "q_B", "q_bp", "q_sys"],
:A => ["T_A", "T_B", "T_C", "T_phb", "T_whb"],
:A2 => ["Q_phb", "Q_whb_used", "Q_whb_dump", "Q_need"]

);
nfe = default[:nfe];
ncp = default[:ncp];
S = default[:S];
C = default[:C];
A = default[:A];
A2 = default[:A2];

Q_whb = [];
q_dh = [];
T_dh_ret = [];

file1 = "15032019.csv";
file2 = "data_jan_18.csv";
file3 = "march19.csv";
Q_whb, q_dh, T_dh_ret, T_dh_sup, dates = read_file(file3, nfe);

initial_guesses = ["Ttes_guess","Tphb_guess","Twhb_guess","qwhb_guess","qA_guess",
"qB_guess","Qphb_guess","Qdump_guess","Qused_guess",
"qbp_guess","TA_guess","TB_guess","TC_guess"];

sim_mod = tes_create_mod(Q_whb[1],q_dh[1],T_dh_ret[1],T_dh_sup[1],printlevel=0);
opt_mod = tes_create_mod(Q_whb,q_dh,T_dh_ret,T_dh_sup, printlevel=5);
opt_mod, guesses = simulation(sim_mod,opt_mod,Q_whb,q_dh,T_dh_ret,T_dh_sup);
opt_mod = set_bounds(opt_mod,Q_whb,q_dh,T_dh_ret,T_dh_sup);
init_guess = Dict(initial_guesses .=> guesses);

@NLobjective(opt_mod, Min, sum(opt_mod[:y]["Q_phb",i]ˆ2 for i in 1:nfe)
+ 1e10*sum(opt_mod[:u]["q_A",i]*opt_mod[:u]["q_B",i] for i in 1:nfe)
+ sum(opt_mod[:y]["Q_whb_dump",i]ˆ2 for i in 1:nfe)
+ sum(1e4*opt_mod[:u]["q_bp",i]ˆ2 for i in 1:nfe)
+ sum(1e4*opt_mod[:u]["q_whb",i] for i in 1:nfe)
);

optimize!(opt_mod);
println(termination_status(opt_mod));

######################
### PLOTTING
######################
Q_units = 1/3600/1000; # [kJ/hr] -> [MW]
q_units = 1/3600*1000; # [m3/hr] -> [kg/s]

tspan = (0.0, length(Q_whb));
tot_Q_phb = sum(value.(opt_mod[:y]["Q_phb",:])[i] for i in 1:nfe)*Q_units;
tot_Q_dump = sum(value.(opt_mod[:y]["Q_whb_dump",:])[i] for i in 1:nfe)*Q_units;

fig = figure(figsize = (12,12));

PyPlot.subplot(321);
ax1 = PyPlot.plot(tspan[1]:tspan[2], vcat(value.(opt_mod[:x0]["T_tes"]),

value.(opt_mod[:x]["T_tes",:,end])), label = L"T^{tes}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], value.(opt_mod[:z]["T_phb",:,end]),

label = L"T^{phb}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], value.(opt_mod[:z]["T_whb",:,end]),

label = L"T^{whb}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], T_dh_ret, label = L"T^{dh,Ret}");
PyPlot.ylabel(L"Temperature [$ $C]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(322);
ax6 = PyPlot.step(tspan[1]:tspan[2]-1, Q_whb*Q_units, label = L"Q^{whb}");
ax6 = PyPlot.step(tspan[1]:tspan[2]-1, value.(opt_mod[:y]["Q_need",:])*Q_units,
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label = L"Q^{demand}");
PyPlot.ylim([0.0, 30]);
PyPlot.ylabel("Duty [MW]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(323);
ax2 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:u]["q_whb",:])*q_units,

label = L"q^{whb}");
ax2 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:u]["q_A",:])*q_units,

label = L"q^A");
ax2 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:u]["q_B",:])*q_units,

label = L"q^B");
PyPlot.ylabel("Flow [kg/s]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(324);
ax3 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:y]["Q_phb",:])*Q_units,

label = L"Q^{phb}");
ax3 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:y]["Q_whb_dump",:])

*Q_units, label = L"Q^{dump}");
ax3 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:y]["Q_whb_used",:])

*Q_units, label = L"Q^{wbh,used}");
PyPlot.ylim([0.0, 30]);
PyPlot.ylabel("Duty [MW]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(325);
ax4 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:u]["q_bp",:])*q_units,

label = L"q^{bypass}");
ax4 = PyPlot.step(tspan[1]+1:tspan[2], q_dh*q_units, label = L"q^{dh}");
PyPlot.xlabel("Time [hrs]",fontsize=14);
PyPlot.ylabel("Flow [kg/s]",fontsize=14)
PyPlot.ylim([0.0, 200.0]);
PyPlot.legend();

PyPlot.subplot(326);
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], value.(opt_mod[:z]["T_A",:,end]),

label = L"T^A");
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], value.(opt_mod[:z]["T_B",:,end]),

label = L"T^B");
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], value.(opt_mod[:z]["T_C",:,end]),

label = L"T^C");
PyPlot.xlabel("Time [hrs]",fontsize=14);
PyPlot.ylabel(L"Temperature [$ $C]",fontsize=14);
PyPlot.ylim([0.0, 120.0]);
PyPlot.legend();

fig.show();

#########################################
# Plotting initial guesses
#########################################

fig2 = figure(figsize = (12,12));

PyPlot.subplot(321);
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["Ttes_guess"][:,end],

label = L"T_{tes,guess}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["Tphb_guess"][:,end],

label = L"T_{phb,guess}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["Twhb_guess"][:,end],

label = L"T_{whb,guess}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], T_dh_ret, label = L"T_{dh,Ret,given}");
PyPlot.ylabel(L"Temperature [$ $C]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(322);
ax6 = PyPlot.step(tspan[1]:tspan[2]-1, Q_whb*Q_units, label = L"Q_{whb,given}");
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ax6 = PyPlot.step(tspan[1]:tspan[2]-1, value.(opt_mod[:y]["Q_need",:])*Q_units,
label = L"Q_{need,given}");

PyPlot.ylim([0.0, 30]);
PyPlot.ylabel("Duty [MW]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(323);
ax2 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["qwhb_guess"]*q_units,

label = L"q_{whb,guess}");
ax2 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["qA_guess"]*q_units,

label = L"q_{A,guess}");
ax2 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["qB_guess"]*q_units,

label = L"q_{B,guess}");
PyPlot.ylabel("Flow [kg/s]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(324);
ax3 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["Qphb_guess"]*Q_units,

label = L"Q_{phb,guess}");
ax3 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["Qdump_guess"]*Q_units,

label = L"Q_{dump,guess}");
ax3 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["Qused_guess"]*Q_units,

label = L"Q_{wbh,used,guess}");
PyPlot.ylim([0.0, 30]);
PyPlot.ylabel("Duty [MW]",fontsize=14);
PyPlot.legend();

PyPlot.subplot(325);
ax4 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["qbp_guess"]*q_units,

label = L"q_{bypass,guess}");
ax4 = PyPlot.step(tspan[1]+1:tspan[2], q_dh*q_units, label = L"q_{dh,given}");
PyPlot.xlabel("Time [hrs]",fontsize=14);
PyPlot.ylabel("Flow [kg/s]",fontsize=14);
PyPlot.legend();

PyPlot.subplot(326);
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["TA_guess"][:,end],

label = L"T_{A,guess}");
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["TB_guess"][:,end],

label = L"T_{B,guess}");
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["TC_guess"][:,end],

label = L"T_{C,guess}");
PyPlot.xlabel("Time [hrs]",fontsize=14);
PyPlot.ylabel(L"Temperature [$ $C]",fontsize=14);
PyPlot.legend();

fig2.show();⌃ ⇧
D.2 "main_cost.jl"
This script contains the implementation for running the optimal operations problem. The
functions read_file(), tes_create_mod_cost(), simulation_cost() and set_bounds_cost()
are called, and the model is optimized.

⌥ ⌅
# using Revise;
using MPCCLibrary;
using PyPlot, LaTeXStrings

include("tes_create_model.jl");
include("tes_sim.jl");
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include("tes_bounds.jl");
include("read_file.jl");

default = Dict(
:⇢_dh => 1000, #kg/m3
:Cp_dh => 4.18, #kJ/(kg-K)
:T_dh_minSup => 92.5, #minimum for supply
:T_dh_maxSup => 95, #maximum for supply
:T_whb_max => 120,
:V_tes => 5000, #m3
:Tlb => 40,
:Tub => 120,
:Q_used_ub => 22e3*3600, # kJ/hr
:q_whb_init => 291, # [m3/hr] Q_used_ub/rho*Cp*(120-55)
:T_tes_init => 95, # Starting value T_tes
#:nfe => length(Q_whb),
:nfe => 720,
:ncp => 1,
:h => 1.0,
:t_active => 3, # Months tank is expected to be active
:S => ["T_tes"],
:C => ["q_whb", "q_A", "q_B", "q_bp", "q_sys"],
:A => ["T_A", "T_B", "T_C", "T_phb", "T_whb"],
:A2 => ["Q_phb", "Q_whb_used", "Q_whb_dump", "Q_need"],
:r => 0.05, # interest rate pr year
:Q_phb_noTES => 876398422/1000*3600, # kJ/hr ACTUAL DATA 30 days march 2019
:USDtoNOK => 8.22, # NOK/USD
:EURtoNOK => 10.03, # NOK/USD
:C_peak => 0.9620440/3600,
:C_dump => 0.6104700/3600

);

nfe = default[:nfe];
ncp = default[:ncp];
S = default[:S];
C = default[:C];
A = default[:A];
A2 = default[:A2];

Q_whb = [];
q_dh = [];
T_dh_ret = [];
T_dh_sup = [];

file1 = "15032019.csv";
file2 = "data_jan_18.csv";
file3 = "march19.csv";
Q_whb, q_dh, T_dh_ret, T_dh_sup, dates = read_file(file3, nfe);

initial_guesses = ["Ttes_guess","Tphb_guess","Twhb_guess","qwhb_guess","qA_guess",
"qB_guess","Qphb_guess","Qdump_guess","Qused_guess",
"qbp_guess","TA_guess","TB_guess","TC_guess"];

sim_mod = tes_create_mod_cost(Q_whb[1],q_dh[1],T_dh_ret[1],T_dh_sup[1],
printlevel=0);

opt_mod = tes_create_mod_cost(Q_whb,q_dh,T_dh_ret,T_dh_sup, printlevel=5);
opt_mod, guesses = simulation_cost(sim_mod,opt_mod,Q_whb,q_dh,T_dh_ret,T_dh_sup);
opt_mod = set_bounds_cost(opt_mod,Q_whb,q_dh,T_dh_ret,T_dh_sup);
init_guess = Dict(initial_guesses .=> guesses);

C_peak = default[:C_peak];
C_dump = default[:C_dump];

@NLobjective(opt_mod, Min, opt_mod[:N_0]
+ sum(C_dump*opt_mod[:y]["Q_whb_dump",i] for i in 1:nfe)
+ 1e-5*sum(opt_mod[:u]["q_bp",i] for i in 1:nfe)
+ 1e-7*sum(opt_mod[:u]["q_whb",i] for i in 1:nfe)
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);

optimize!(opt_mod);
println(termination_status(opt_mod));

######################
### PLOTTING
######################
Q_units = 1/3600/1000; # [kJ/hr] -> [MW]
q_units = 1/3600*1000; # [m3/hr] -> [kg/s]

tspan = (0.0, length(Q_whb));
tot_Q_phb = sum(value.(opt_mod[:y]["Q_phb",:])[i] for i in 1:nfe)*Q_units;
tot_Q_dump = sum(value.(opt_mod[:y]["Q_whb_dump",:])[i] for i in 1:nfe)*Q_units;

fig = figure(figsize = (12,12));

PyPlot.subplot(321);
ax1 = PyPlot.plot(tspan[1]:tspan[2], vcat(value.(opt_mod[:x0]["T_tes"]),

value.(opt_mod[:x]["T_tes",:,end])), label = L"T^{tes}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], value.(opt_mod[:z]["T_phb",:,end]),

label = L"T^{phb}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], value.(opt_mod[:z]["T_whb",:,end]),

label = L"T^{whb}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], T_dh_ret, label = L"T^{dh,Ret}");
PyPlot.ylabel(L"Temperature [$ $C]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(322);
ax6 = PyPlot.step(tspan[1]:tspan[2]-1, Q_whb*Q_units, label = L"Q^{whb}");
ax6 = PyPlot.step(tspan[1]:tspan[2]-1, value.(opt_mod[:y]["Q_need",:])*Q_units,

label = L"Q^{need}");
PyPlot.ylim([0.0, 30]);
PyPlot.ylabel("Duty [MW]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(323);
ax2 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:u]["q_whb",:])*q_units,

label = L"q^{whb}");
ax2 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:u]["q_A",:])*q_units,

label = L"q^A");
ax2 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:u]["q_B",:])*q_units,

label = L"q^B");
PyPlot.ylabel("Flow [kg/s]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(324);
ax3 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:y]["Q_phb",:])*Q_units,

label = L"Q^{phb}");
ax3 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:y]["Q_whb_dump",:])*Q_units,

label = L"Q^{dump}");
ax3 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:y]["Q_whb_used",:])*Q_units,

label = L"Q^{wbh,used}");
PyPlot.ylim([0.0, 30]);
PyPlot.ylabel("Duty [MW]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(325);
ax4 = PyPlot.step(tspan[1]+1:tspan[2], value.(opt_mod[:u]["q_bp",:])*q_units,

label = L"q^{bypass}");
ax4 = PyPlot.step(tspan[1]+1:tspan[2], q_dh*q_units, label = L"q^{dh}");
PyPlot.xlabel("Time [hrs]",fontsize=14);
PyPlot.ylabel("Flow [kg/s]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(326);
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], value.(opt_mod[:z]["T_A",:,end]),
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label = L"T^A");
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], value.(opt_mod[:z]["T_B",:,end]),

label = L"T^B");
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], value.(opt_mod[:z]["T_C",:,end]),

label = L"T^C");
PyPlot.xlabel("Time [hrs]",fontsize=14);
PyPlot.ylabel(L"Temperature [$ $C]",fontsize=14);
PyPlot.legend();
fig.show();

#########################################
# Plotting initial guesses
#########################################
fig2 = figure(figsize = (12,12));
PyPlot.subplot(321);
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["Ttes_guess"][:,end],

label = L"T_{tes,guess}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["Tphb_guess"][:,end],

label = L"T_{phb,guess}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["Twhb_guess"][:,end],

label = L"T_{whb,guess}");
ax1 = PyPlot.plot(tspan[1]+1:tspan[2], T_dh_ret, label = L"T_{dh,Ret,given}");

PyPlot.ylabel(L"Temperature [$ $C]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(322);
ax6 = PyPlot.step(tspan[1]:tspan[2]-1, Q_whb*Q_units, label = L"Q_{whb,given}");
ax6 = PyPlot.step(tspan[1]:tspan[2]-1, value.(opt_mod[:y]["Q_need",:])*Q_units,

label = L"Q_{need,given}");

PyPlot.ylim([0.0, 30]);
PyPlot.ylabel("Duty [MW]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(323);
ax2 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["qwhb_guess"]*q_units,

label = L"q_{whb,guess}");
ax2 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["qA_guess"]*q_units,

label = L"q_{A,guess}");
ax2 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["qB_guess"]*q_units,

label = L"q_{B,guess}");
PyPlot.ylabel("Flow [kg/s]",fontsize=14)
PyPlot.legend();

PyPlot.subplot(324);
ax3 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["Qphb_guess"]*Q_units,

label = L"Q_{phb,guess}");
ax3 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["Qdump_guess"]*Q_units,

label = L"Q_{dump,guess}");
ax3 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["Qused_guess"]*Q_units,

label = L"Q_{wbh,used,guess}");
PyPlot.ylim([0.0, 30]);
PyPlot.ylabel("Duty [MW]",fontsize=14);
PyPlot.legend();

PyPlot.subplot(325);
ax4 = PyPlot.step(tspan[1]+1:tspan[2], init_guess["qbp_guess"]*q_units,

label = L"q_{bypass,guess}");
ax4 = PyPlot.step(tspan[1]+1:tspan[2], q_dh*q_units, label = L"q_{dh,given}");
PyPlot.xlabel("Time [hrs]",fontsize=14);
PyPlot.ylabel("Flow [kg/s]",fontsize=14);
PyPlot.legend();

PyPlot.subplot(326);
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["TA_guess"][:,end],

label = L"T_{A,guess}");
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["TB_guess"][:,end],
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label = L"T_{B,guess}");
ax5 = PyPlot.plot(tspan[1]+1:tspan[2], init_guess["TC_guess"][:,end],

label = L"T_{C,guess}");
PyPlot.xlabel("Time [hrs]",fontsize=14);
PyPlot.ylabel(L"Temperature [$ $C]",fontsize=14);
PyPlot.legend();

fig2.show();⌃ ⇧
D.3 "tes_create_model.jl"
The script tes_create_model.jl contains two functions. The functions tes_create_model()
and tes_create_mod_cost() are similar. They take as input waste heat available, district
flow, return and supply temperature and return a model for optimal operation and optimal
sizing, respectively.

⌥ ⌅
function tes_create_mod(Q_whb_in, q_dh_in, T_dh_ret_in, T_dh_sup_in; kwargs...)

V_tes = get(kwargs, :V_tes, default[:V_tes]);
⇢_dh = get(kwargs, :⇢_dh, default[:⇢_dh]); #kg/m3
Cp_dh = get(kwargs, :Cp_dh, default[:Cp_dh]); #kJ/(kg-K)
T_dh_minSup = get(kwargs, :T_dh_minSup, default[:T_dh_minSup]);
T_dh_maxSup = get(kwargs, :T_dh_maxSup, default[:T_dh_maxSup]);
T_whb_max = get(kwargs, :T_whb_max, default[:T_whb_max]);
Tlb = get(kwargs, :Tlb, default[:Tlb]);
Tub = get(kwargs, :Tub, default[:Tub]);
T_tes_init = get(kwargs, :T_tes_init, default[:T_tes_init]);
Q_used_ub = get(kwargs, :Q_used_ub, default[:Q_used_ub]);
ncp = get(kwargs, :ncp, default[:ncp]);
h = get(kwargs, :h, default[:h]);
printlevel = get(kwargs, :printlevel, 0)

nfe = length(Q_whb_in);

### Defining model
model = create_model(linear_solver = "ma97", max_iter = 5000, print_level

= printlevel);

### Defining sets for variables
S = get(kwargs, :S, default[:S]);
C = get(kwargs, :C, default[:C]);
A = get(kwargs, :A, default[:A]);
A2 = get(kwargs, :A2, default[:A2]);

adot = collocation_matrix(ncp,"Radau");

### Variables
@variable(model, 0 <= x[S, 1:nfe, 1:ncp+1] <= Tub, start = 95);
@variable(model, rk[S, 1:nfe, 2:ncp+1], start = 0);
@variable(model, 0 <= u[C, 1:nfe] <= 5000, start = 0);
@variable(model, 0 <= z[A, 1:nfe, 2:ncp+1] <= Tub, start = 95);
@variable(model, 0 <= y[A2, 1:nfe]);
@variable(model, x0[S]);

@variable(model, 0 <= Q_whb[1:nfe]);
@variable(model, 0 <= q_dh[1:nfe]);
@variable(model, 0 <= T_dh_ret[1:nfe]);

set_start_value.(x["T_tes",:,:], T_tes_init);
set_start_value.(z["T_A",:,:], 55.0);
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@expression(model, ODE[k in S, i in 1:nfe, j in 2:ncp+1], u["q_A",i]/V_tes
*(z["T_A",i,j] - x["T_tes",i,j]) + u["q_B",i]
/V_tes*(z["T_B",i,j] - x["T_tes",i,j]));

### Model constraints
# discrtized ODE model
@constraint(model, rkConstr[k in S, i in 1:nfe, j in 2:ncp+1], 0 == rk[k,i,j]

- sum(x[k,i,l] * adot[l,j] for l in 1:ncp+1))

@constraint(model, dODE[k in S, i in 1:nfe, j in 2:ncp+1], rk[k,i,j]
- h*ODE[k,i,j] == 0)

# initial condition
@constraint(model, initConstrs[k in S], x[k,1,1] - x0[k] == 0)
# Closing shooting gap
@constraint(model, gapConstrs[k in S, j in 1:nfe-1], x[k,j,end]

- x[k,j+1,1] == 0)

# algebraic constraints (balances)
@constraint(model, split[i in 1:nfe], 0 == u["q_bp",i]+u["q_sys",i]-q_dh[i]);
@constraint(model, mass[i in 1:nfe], 0 == u["q_whb",i] + u["q_A",i]

- (u["q_sys",i] + u["q_B",i]));
@constraint(model, energ1[i in 1:nfe, j in 2:ncp+1], 0 == u["q_sys",i]

*T_dh_ret[i] + u["q_B",i]*x["T_tes",i,j]
- z["T_A",i,j]*(u["q_whb",i] + u["q_A",i]));

@constraint(model, energ2[i in 1:nfe, j in 2:ncp+1], 0 == (u["q_whb",i]
*z["T_whb",i,j] + u["q_A",i]*x["T_tes",i,j])
- z["T_B",i,j]*(u["q_sys",i] + u["q_B",i]));

@constraint(model, energ3[i in 1:nfe, j in 2:ncp+1], 0 == u["q_sys",i]
*z["T_B",i,j] + u["q_bp",i]*T_dh_ret[i]
- z["T_C",i,j]*q_dh[i]);

@constraint(model, excess[i in 1:nfe], 0 == Q_whb[i] - (y["Q_whb_used",i]
+ y["Q_whb_dump",i]));

@constraint(model, WHB[i in 1:nfe, j in 2:ncp+1], 0 == y["Q_whb_used",i]
- ⇢_dh*Cp_dh*u["q_whb",i]*(z["T_whb",i,j] - z["T_A",i,j]));

@constraint(model, PHB[i in 1:nfe, j in 2:ncp+1], 0 == y["Q_phb",i]
- ⇢_dh*Cp_dh*q_dh[i]*(z["T_phb",i,j] - z["T_C",i,j]));

@constraint(model, demand[i in 1:nfe], 0 == y["Q_need",i] - q_dh[i]
*Cp_dh*⇢_dh*(T_dh_sup_in[i]-T_dh_ret[i]))

return model
end

##############################
# COST MODEL
##############################

function tes_create_mod_cost(Q_whb_in, q_dh_in, T_dh_ret_in,T_dh_sup_in; kwargs...)
V_tes_init = get(kwargs, :V_tes, default[:V_tes]);
⇢_dh = get(kwargs, :⇢_dh, default[:⇢_dh]); #kg/m3
Cp_dh = get(kwargs, :Cp_dh, default[:Cp_dh]); #kJ/(kg-K)
T_dh_minSup = get(kwargs, :T_dh_minSup, default[:T_dh_minSup]);
T_dh_maxSup = get(kwargs, :T_dh_maxSup, default[:T_dh_maxSup]);
T_whb_max = get(kwargs, :T_whb_max, default[:T_whb_max]);
Tlb = get(kwargs, :Tlb, default[:Tlb]);
Tub = get(kwargs, :Tub, default[:Tub]);
T_tes_init = get(kwargs, :T_tes_init, default[:T_tes_init]);
Q_used_ub = get(kwargs, :Q_used_ub, default[:Q_used_ub]);
ncp = get(kwargs, :ncp, default[:ncp]);
h = get(kwargs, :h, default[:h]);
printlevel = get(kwargs, :printlevel, 0);
tolerance = get(kwargs, :tolerance, 1e-8);
r = get(kwargs, :r, default[:r]);
Q_phb_noTES = get(kwargs, :Q_phb_noTES, default[:Q_phb_noTES]);
C_peak = get(kwargs, :C_peak, default[:C_peak]);
EURtoNOK = get(kwargs, :EURtoNOK, default[:EURtoNOK]);
USDtoNOK = get(kwargs, :USDtoNOK, default[:USDtoNOK]);

69



Chapter D. Julia Codes

t_active = get(kwargs, :t_active, default[:t_active]);

nfe = length(Q_whb_in);

### Defining model
model = create_model(linear_solver = "ma97", max_iter = 5000, print_level

= printlevel, tol = tolerance);

### Defining sets for variables
S = get(kwargs, :S, default[:S]); # state variables
C = get(kwargs, :C, default[:C]); # control variables
A = get(kwargs, :A, default[:A]); # algebraic variables
A2 = get(kwargs, :A2, default[:A2]); # algebraic variables

adot = collocation_matrix(ncp,"Radau");

### Variables
@variable(model, 0 <= x[S, 1:nfe, 1:ncp+1] <= Tub, start = 95);
@variable(model, rk[S, 1:nfe, 2:ncp+1], start = 0);
@variable(model, 0 <= u[C, 1:nfe] <= 5000, start = 0);
@variable(model, 0 <= z[A, 1:nfe, 2:ncp+1] <= Tub, start = 95);
@variable(model, 0 <= y[A2, 1:nfe]);
@variable(model, x0[S]);

@variable(model, 0 <= Q_whb[1:nfe]);
@variable(model, 0 <= q_dh[1:nfe]);
@variable(model, 0 <= T_dh_ret[1:nfe]);

@variable(model, 0 <= V_tes, start = V_tes_init);

@variable(model, 0 <= N_0, start = 10);
@variable(model, 0 <= B, start = 350000);

set_start_value.(x["T_tes",:,:], T_tes_init);
set_start_value.(z["T_A",:,:], 55.0);

@expression(model, ODE[k in S, i in 1:nfe, j in 2:ncp+1], u["q_A",i]
*(z["T_A",i,j] - x["T_tes",i,j]) + u["q_B",i]
*(z["T_B",i,j] - x["T_tes",i,j]));

### Model constraints
# discrtized ODE model
@constraint(model, rkConstr[k in S, i in 1:nfe, j in 2:ncp+1], 0

== rk[k,i,j] - sum(x[k,i,l] * adot[l,j]
for l in 1:ncp+1))

@constraint(model, dODE[k in S, i in 1:nfe, j in 2:ncp+1], rk[k,i,j]
*V_tes - h*ODE[k,i,j] == 0)

# initial condition
@constraint(model, initConstrs[k in S], x[k,1,1] - x0[k] == 0)
# Closing shooting gap
@constraint(model, gapConstrs[k in S, j in 1:nfe-1], x[k,j,end] - x[k,j+1,1] ==

0)

# algebraic constraints (balances)
@constraint(model, split[i in 1:nfe], 0 == u["q_bp",i]+u["q_sys",i]-q_dh[i]);
@constraint(model, mass[i in 1:nfe], 0 == u["q_whb",i] + u["q_A",i]

- (u["q_sys",i] + u["q_B",i]));
@constraint(model, energ1[i in 1:nfe, j in 2:ncp+1], 0 == u["q_sys",i]

*T_dh_ret[i] + u["q_B",i]*x["T_tes",i,j]
- z["T_A",i,j]*(u["q_whb",i] + u["q_A",i]));

@constraint(model, energ2[i in 1:nfe, j in 2:ncp+1], 0 == (u["q_whb",i]
*z["T_whb",i,j] + u["q_A",i]*x["T_tes",i,j])
- z["T_B",i,j]*(u["q_sys",i] + u["q_B",i]));

@constraint(model, energ3[i in 1:nfe, j in 2:ncp+1], 0 == u["q_sys",i]
*z["T_B",i,j] + u["q_bp",i]*T_dh_ret[i]
- z["T_C",i,j]*q_dh[i]);
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@constraint(model, excess[i in 1:nfe], 0 == Q_whb[i] - (y["Q_whb_used",i]
+ y["Q_whb_dump",i]));

@constraint(model, WHB[i in 1:nfe, j in 2:ncp+1], 0 == y["Q_whb_used",i]
- ⇢_dh*Cp_dh*u["q_whb",i]*(z["T_whb",i,j] - z["T_A",i,j]));

@constraint(model, PHB[i in 1:nfe, j in 2:ncp+1], 0 == y["Q_phb",i]
- ⇢_dh*Cp_dh*q_dh[i]*(z["T_phb",i,j] - z["T_C",i,j]));

@constraint(model, demand[i in 1:nfe], 0 == y["Q_need",i] - q_dh[i]
*Cp_dh*⇢_dh*(T_dh_sup_in[i]-T_dh_ret[i]));

@NLexpression(model, tank_cost, (0.0047*V_tesˆ0.6218)*1e6*EURtoNOK);

@NLconstraint(model, payback, 0 == log(1+r)*N_0 - (log(t_active*B)
- log(t_active*B-tank_cost*r)));

@constraint(model, savings, 0 == B - C_peak*(Q_phb_noTES - sum(y["Q_phb",i]
for i in 1:nfe )));

return model
end⌃ ⇧

D.4 "tes_bounds.jl"
The script tes_bounds.jl contains two functions. The functions set_bounds() and set_bounds_cost()
are similar. They take as input a model, the optimal operations model or the optimal design
model, respectively, waste heat available, district flow, return and supply temperature and
return the model updated with applicable bounds for optimal operation or optimal design.

⌥ ⌅
function set_bounds(model, Q_whb_in, q_dh_in, T_dh_ret_in, T_dh_sup_in; kwargs...)

Q_used_ub = get(kwargs, :Q_used_ub, default[:Q_used_ub]);
T_dh_maxSup = get(kwargs, :T_dh_maxSup, default[:T_dh_maxSup]);
⇢_dh = get(kwargs, :⇢_dh, default[:⇢_dh]);
Cp_dh = get(kwargs, :Cp_dh, default[:Cp_dh]);
T_dh_minSup = get(kwargs, :T_dh_minSup, default[:T_dh_minSup]);
T_dh_maxSup = get(kwargs, :T_dh_maxSup, default[:T_dh_maxSup]);
T_whb_max = get(kwargs, :T_whb_max, default[:T_whb_max]);
Tlb = get(kwargs, :Tlb, default[:Tlb]);
Tub = get(kwargs, :Tub, default[:Tub]);
T_tes_init = get(kwargs, :T_tes_init, default[:T_tes_init]);

fix.(model[:Q_whb][:],Q_whb_in[:], force=true);
fix.(model[:q_dh][:],q_dh_in[:], force=true);
fix.(model[:T_dh_ret][:],T_dh_ret_in[:], force=true);

fix.(model[:x0], T_tes_init, force=true);

set_upper_bound.(model[:x]["T_tes",:,:], Tub);
set_lower_bound.(model[:x]["T_tes",:,:], Tlb);
set_upper_bound.(model[:z][:,:,:], Tub);
set_lower_bound.(model[:z][:,:,:], Tlb);

set_lower_bound.(model[:z]["T_phb",:,:], T_dh_minSup);
set_upper_bound.(model[:z]["T_phb",:,:], T_dh_maxSup);
set_upper_bound.(model[:z]["T_whb",:,:], T_whb_max);

set_upper_bound.(model[:u]["q_whb",:], 1200);
set_upper_bound.(model[:y]["Q_whb_used",:], Q_used_ub);

for i in 1:length(Q_whb)
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excess = Q_whb[i] - ⇢_dh*Cp_dh*q_dh[i]*(T_dh_sup_in[i]-T_dh_ret[i]);
if excess > 0

fix.(model[:u]["q_A",i], 0., force=true);
else

fix.(model[:u]["q_B",i], 0., force=true);
end

end

for i in 1:length(Q_whb)
set_upper_bound.(model[:u]["q_sys",i], q_dh[i]);
set_upper_bound.(model[:u]["q_bp",i], q_dh[i]);
set_upper_bound.(model[:y]["Q_whb_dump",i], Q_whb[i]);

fix.(model[:z]["T_phb",i,:],T_dh_sup_in[i], force=true)
end
return model

end

function set_bounds_cost(model, Q_whb_in, q_dh_in, T_dh_ret_in, T_dh_sup_in; kwargs...)
Q_used_ub = get(kwargs, :Q_used_ub, default[:Q_used_ub]);
T_dh_maxSup = get(kwargs, :T_dh_maxSup, default[:T_dh_maxSup]);
⇢_dh = get(kwargs, :⇢_dh, default[:⇢_dh]);
Cp_dh = get(kwargs, :Cp_dh, default[:Cp_dh]);
T_dh_maxSup = get(kwargs, :T_dh_maxSup, default[:T_dh_maxSup]);
T_whb_max = get(kwargs, :T_whb_max, default[:T_whb_max]);
Tlb = get(kwargs, :Tlb, default[:Tlb]);
Tub = get(kwargs, :Tub, default[:Tub]);
T_tes_init = get(kwargs, :T_tes_init, default[:T_tes_init]);
fix_tes= get(kwargs, :fix_tes, true);

fix.(model[:Q_whb][:],Q_whb_in[:], force=true);
fix.(model[:q_dh][:],q_dh_in[:], force=true);
fix.(model[:T_dh_ret][:],T_dh_ret_in[:], force=true);

fix.(model[:x0], T_tes_init, force=true);

set_upper_bound.(model[:V_tes], 50000);
#fix.(model[:V_tes], 6322.9517512*1.4, force = true)
#fix.(model[:V_tes], 5000, force = true)

set_lower_bound.(model[:B], 100);
set_upper_bound.(model[:x]["T_tes",:,:], Tub);
set_lower_bound.(model[:x]["T_tes",:,:], Tlb);
set_upper_bound.(model[:z][:,:,:], Tub);
set_lower_bound.(model[:z][:,:,:], Tlb);

set_upper_bound.(model[:z]["T_whb",:,:], T_whb_max);

set_upper_bound.(model[:u]["q_whb",:], 1200);
set_upper_bound.(model[:y]["Q_whb_used",:], Q_used_ub);

if fix_tes
for i in 1:length(Q_whb)

excess = Q_whb[i] - ⇢_dh*Cp_dh*q_dh[i]*(T_dh_sup_in[i]-T_dh_ret[i]);
if excess > 0

fix.(model[:u]["q_A",i], 0., force=true);
else

fix.(model[:u]["q_B",i], 0., force=true);
end

end
end

for i in 1:length(Q_whb)
set_upper_bound.(model[:u]["q_sys",i], q_dh[i]);
set_upper_bound.(model[:u]["q_bp",i], q_dh[i]);
set_upper_bound.(model[:y]["Q_whb_dump",i], Q_whb[i]);
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fix.(model[:z]["T_phb",i,:],T_dh_sup_in[i], force=true)
end
return model

end⌃ ⇧
D.5 "tes_sim.jl"
The script tes_sim.jl contains two functions. The functions simulation() and simulation_cost()
are similar. They take as input the model to be simulated and the model to be optimized,
and also waste heat available, district flow, return and supply temperature. The function
simulates the simulation model at each finite element, and add the results as initial guesses
to the optimization model. The optimization model and the initial guesses are returned.

⌥ ⌅
function simulation(sim_mod, opt_mod, Q_whb, q_dh, T_dh_ret, T_dh_sup; kwargs...)

T_dh_maxSup = get(kwargs, :T_dh_maxSup, default[:T_dh_maxSup]);
⇢_dh = get(kwargs, :⇢_dh, default[:⇢_dh]);
Cp_dh = get(kwargs, :Cp_dh, default[:Cp_dh]);
nfe = get(kwargs, :nfe, default[:nfe]);
ncp = get(kwargs, :ncp, default[:ncp]);
S = get(kwargs, :S, default[:S]);
C = get(kwargs, :C, default[:C]);
A = get(kwargs, :A, default[:A]);
A2 = get(kwargs, :A2, default[:A2]);
x0 = get(kwargs, :x0, default[:T_tes_init]);

Ttes_guess = Array{Float64,1}(undef,nfe);
Tphb_guess = Array{Float64,1}(undef,nfe);
Twhb_guess = Array{Float64,1}(undef,nfe);
qwhb_guess = Array{Float64,1}(undef,nfe);
qA_guess = Array{Float64,1}(undef,nfe);
qB_guess = Array{Float64,1}(undef,nfe);
Qphb_guess = Array{Float64,1}(undef,nfe);
Qdump_guess = Array{Float64,1}(undef,nfe);
Qused_guess = Array{Float64,1}(undef,nfe);
qbp_guess = Array{Float64,1}(undef,nfe);
TA_guess = Array{Float64,1}(undef,nfe);
TB_guess = Array{Float64,1}(undef,nfe);
TC_guess = Array{Float64,1}(undef,nfe);

# Simulation loop
for i in 1:nfe

excess = Q_whb[i] - ⇢_dh*Cp_dh*q_dh[i]*(T_dh_sup[i]-T_dh_ret[i]);

set_start_value(sim_mod[:y]["Q_need",1], ⇢_dh*Cp_dh*q_dh[i]*(T_dh_sup[i]
-T_dh_ret[i]))

fix.(sim_mod[:z]["T_phb",1,end], T_dh_sup[i], force=true);
fix.(sim_mod[:x0], x0, force=true);

# Updating input
fix.(sim_mod[:Q_whb],Q_whb[i], force=true)
fix.(sim_mod[:q_dh],q_dh[i], force=true)
fix.(sim_mod[:T_dh_ret],T_dh_ret[i], force=true)

if excess < 0
if is_fixed(sim_mod[:u]["q_A",1])

unfix(sim_mod[:u]["q_A",1])
set_lower_bound(sim_mod[:u]["q_A",1], 0.0)

end
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if is_fixed(sim_mod[:y]["Q_phb",1])
unfix(sim_mod[:y]["Q_phb",1])
set_lower_bound(sim_mod[:y]["Q_phb",1], 0.0)

end
fix.(sim_mod[:u]["q_B",1], 0, force = true)
fix.(sim_mod[:y]["Q_whb_dump",1], 0, force = true)
set_start_value(sim_mod[:u]["q_sys",1], q_dh[i])
if x0 > T_dh_maxSup

@objective(sim_mod, Min, sim_mod[:y]["Q_phb",1]ˆ2
+ sim_mod[:u]["q_bp",1])

else
set_start_value(sim_mod[:u]["q_whb",1], q_dh[i])
@objective(sim_mod, Min, sim_mod[:u]["q_A",1]ˆ2

+ sim_mod[:u]["q_bp",1])
end

else
if is_fixed(sim_mod[:u]["q_B",1])

unfix(sim_mod[:u]["q_B",1])
set_lower_bound(sim_mod[:u]["q_B",1], 0.0)

end
if is_fixed(sim_mod[:y]["Q_whb_dump",1])

unfix(sim_mod[:y]["Q_whb_dump",1])
set_lower_bound(sim_mod[:y]["Q_whb_dump",1], 0.0)

end
if is_fixed(sim_mod[:u]["q_bp",1])

unfix(sim_mod[:u]["q_bp",1])
set_lower_bound(sim_mod[:u]["q_bp",1], 0.0)

end
fix(sim_mod[:u]["q_A",1], 0, force = true)
fix.(sim_mod[:y]["Q_phb",1], 0, force = true)
@objective(sim_mod, Min, sim_mod[:y]["Q_whb_dump",1]ˆ2)

end

fix.(sim_mod[:z]["T_phb",1,end], T_dh_sup[i], force = true)

optimize!(sim_mod);

x0 = value.(sim_mod[:x]["T_tes",1,end]);
println(termination_status(sim_mod));
if termination_status(sim_mod) != MOI.LOCALLY_SOLVED

println(excess)
println(value.(all_variables(sim_mod)))

end

Ttes_guess[i] = value.(sim_mod[:x]["T_tes",1,end]);
Tphb_guess[i] = value.(sim_mod[:z]["T_phb",1,end]);
Twhb_guess[i] = value.(sim_mod[:z]["T_whb",1,end]);
qwhb_guess[i] = value.(sim_mod[:u]["q_whb",1]);
qA_guess[i] = value.(sim_mod[:u]["q_A",1]);
qB_guess[i] = value.(sim_mod[:u]["q_B",1]);
Qphb_guess[i] = value.(sim_mod[:y]["Q_phb",1]);
Qdump_guess[i] = value.(sim_mod[:y]["Q_whb_dump",1]);
Qused_guess[i] = value.(sim_mod[:y]["Q_whb_used",1]);
qbp_guess[i] = value.(sim_mod[:u]["q_bp",1]);
TA_guess[i] = value.(sim_mod[:z]["T_A",1,end]);
TB_guess[i] = value.(sim_mod[:z]["T_B",1,end]);
TC_guess[i] = value.(sim_mod[:z]["T_C",1,end]);

for j in S
set_start_value.(opt_mod[:x][j,i,1], value.(sim_mod[:x][j,1,1]));
set_start_value.(opt_mod[:x][j,i,end], value.(sim_mod[:x][j,1,end]));
set_start_value.(opt_mod[:rk][j,i,:], value.(sim_mod[:rk][j,1,end]));

end
for j in C

set_start_value.(opt_mod[:u][j,i], value.(sim_mod[:u][j,end]));
end
for j in A

set_start_value.(opt_mod[:z][j,i,:], value.(sim_mod[:z][j,1,end]));
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end
for j in A2

set_start_value.(opt_mod[:y][j,i], value.(sim_mod[:y][j,end]));
end
fix.(sim_mod[:x0], value.(sim_mod[:x]["T_tes",1,end]), force=true);

end
guesses = [Ttes_guess,Tphb_guess,Twhb_guess,qwhb_guess,qA_guess,qB_guess,

Qphb_guess,Qdump_guess,Qused_guess,
qbp_guess,TA_guess,TB_guess,TC_guess];

return opt_mod, guesses
end

##################################
# Cost simulation
##################################

function simulation_cost(sim_mod, opt_mod, Q_whb, q_dh, T_dh_ret, T_dh_sup; kwargs...)
T_dh_maxSup = get(kwargs, :T_dh_maxSup, default[:T_dh_maxSup]);
⇢_dh = get(kwargs, :⇢_dh, default[:⇢_dh]);
Cp_dh = get(kwargs, :Cp_dh, default[:Cp_dh]);
nfe = get(kwargs, :nfe, default[:nfe]);
ncp = get(kwargs, :ncp, default[:ncp]);
S = get(kwargs, :S, default[:S]);
C = get(kwargs, :C, default[:C]);
A = get(kwargs, :A, default[:A]);
A2 = get(kwargs, :A2, default[:A2]);
x0 = get(kwargs, :x0, default[:T_tes_init]);
V_tes_init = get(kwargs, :V_tes, default[:V_tes]);

Ttes_guess = Array{Float64,1}(undef,nfe);
Tphb_guess = Array{Float64,1}(undef,nfe);
Twhb_guess = Array{Float64,1}(undef,nfe);
qwhb_guess = Array{Float64,1}(undef,nfe);
qA_guess = Array{Float64,1}(undef,nfe);
qB_guess = Array{Float64,1}(undef,nfe);
Qphb_guess = Array{Float64,1}(undef,nfe);
Qdump_guess = Array{Float64,1}(undef,nfe);
Qused_guess = Array{Float64,1}(undef,nfe);
qbp_guess = Array{Float64,1}(undef,nfe);
TA_guess = Array{Float64,1}(undef,nfe);
TB_guess = Array{Float64,1}(undef,nfe);
TC_guess = Array{Float64,1}(undef,nfe);

# Simulation loop
for i in 1:nfe

excess = Q_whb[i] - ⇢_dh*Cp_dh*q_dh[i]*(T_dh_sup[i]-T_dh_ret[i]);

set_start_value(sim_mod[:y]["Q_need",1], ⇢_dh*Cp_dh*q_dh[i]*(T_dh_sup[i]
-T_dh_ret[i]))

fix.(sim_mod[:z]["T_phb",1,end], T_dh_sup[i], force=true);
fix.(sim_mod[:x0], x0, force=true);
fix.(sim_mod[:V_tes],V_tes_init, force=true);

# Updating input
fix.(sim_mod[:Q_whb],Q_whb[i], force=true)
fix.(sim_mod[:q_dh],q_dh[i], force=true)
fix.(sim_mod[:T_dh_ret],T_dh_ret[i], force=true)

if excess < 0
if is_fixed(sim_mod[:u]["q_A",1])

unfix(sim_mod[:u]["q_A",1])
set_lower_bound(sim_mod[:u]["q_A",1], 0.0)

end
if is_fixed(sim_mod[:y]["Q_phb",1])

unfix(sim_mod[:y]["Q_phb",1])
set_lower_bound(sim_mod[:y]["Q_phb",1], 0.0)
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end
fix.(sim_mod[:u]["q_B",1], 0, force = true)
fix.(sim_mod[:y]["Q_whb_dump",1], 0, force = true)
set_start_value(sim_mod[:u]["q_sys",1], q_dh[i])
if x0 > T_dh_maxSup

@objective(sim_mod, Min, sim_mod[:y]["Q_phb",1]ˆ2
+ sim_mod[:u]["q_bp",1])

else
set_start_value(sim_mod[:u]["q_whb",1], q_dh[i])
@objective(sim_mod, Min, sim_mod[:u]["q_A",1]ˆ2

+ sim_mod[:u]["q_bp",1])
end

else
if is_fixed(sim_mod[:u]["q_B",1])

unfix(sim_mod[:u]["q_B",1])
set_lower_bound(sim_mod[:u]["q_B",1], 0.0)

end
if is_fixed(sim_mod[:y]["Q_whb_dump",1])

unfix(sim_mod[:y]["Q_whb_dump",1])
set_lower_bound(sim_mod[:y]["Q_whb_dump",1], 0.0)

end
if is_fixed(sim_mod[:u]["q_bp",1])

unfix(sim_mod[:u]["q_bp",1])
set_lower_bound(sim_mod[:u]["q_bp",1], 0.0)

end
fix(sim_mod[:u]["q_A",1], 0, force = true)
fix.(sim_mod[:y]["Q_phb",1], 0, force = true)

@objective(sim_mod, Min, sim_mod[:y]["Q_whb_dump",1]ˆ2)
end

fix.(sim_mod[:z]["T_phb",1,end], T_dh_sup[i], force = true)

optimize!(sim_mod);

x0 = value.(sim_mod[:x]["T_tes",1,end]);
println(termination_status(sim_mod));
if termination_status(sim_mod) != MOI.LOCALLY_SOLVED

println(excess)
println(value.(all_variables(sim_mod)))

end

Ttes_guess[i] = value.(sim_mod[:x]["T_tes",1,end]);
Tphb_guess[i] = value.(sim_mod[:z]["T_phb",1,end]);
Twhb_guess[i] = value.(sim_mod[:z]["T_whb",1,end]);
qwhb_guess[i] = value.(sim_mod[:u]["q_whb",1]);
qA_guess[i] = value.(sim_mod[:u]["q_A",1]);
qB_guess[i] = value.(sim_mod[:u]["q_B",1]);
Qphb_guess[i] = value.(sim_mod[:y]["Q_phb",1]);
Qdump_guess[i] = value.(sim_mod[:y]["Q_whb_dump",1]);
Qused_guess[i] = value.(sim_mod[:y]["Q_whb_used",1]);
qbp_guess[i] = value.(sim_mod[:u]["q_bp",1]);
TA_guess[i] = value.(sim_mod[:z]["T_A",1,end]);
TB_guess[i] = value.(sim_mod[:z]["T_B",1,end]);
TC_guess[i] = value.(sim_mod[:z]["T_C",1,end]);

for j in S
set_start_value.(opt_mod[:x][j,i,1], value.(sim_mod[:x][j,1,1]));
set_start_value.(opt_mod[:x][j,i,end], value.(sim_mod[:x][j,1,end]));
set_start_value.(opt_mod[:rk][j,i,:], value.(sim_mod[:rk][j,1,end]));

end
for j in C

set_start_value.(opt_mod[:u][j,i], value.(sim_mod[:u][j,end]));
end
for j in A

set_start_value.(opt_mod[:z][j,i,:], value.(sim_mod[:z][j,1,end]));
end
for j in A2
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set_start_value.(opt_mod[:y][j,i], value.(sim_mod[:y][j,end]));
end
set_start_value.(all_variables(sim_mod), value.(all_variables(sim_mod)));
fix.(sim_mod[:x0], value.(sim_mod[:x]["T_tes",1,end]), force=true);

end
guesses = [Ttes_guess,Tphb_guess,Twhb_guess,qwhb_guess,qA_guess,qB_guess,

Qphb_guess,Qdump_guess,Qused_guess,
qbp_guess,TA_guess,TB_guess,TC_guess];

return opt_mod, guesses
end⌃ ⇧

D.6 "read_file.jl"

The script read_file.jl contains one function, read_file(), taking as input the filename
as a string and the number of finite elements. The function returns arrays of available
waste heat, district flow, return temperature, supply temperature and the dates when the
heat data was obtained.

⌥ ⌅
using CSV;
using MPCCLibrary;

function read_file(filename, nfe; kwargs...)
T_dh_maxSup = get(kwargs, :T_dh_maxSup, default[:T_dh_maxSup]);
⇢_dh = get(kwargs, :⇢_dh, default[:⇢_dh]); # kg/m3
Cp_dh = get(kwargs, :Cp_dh, default[:Cp_dh]); # kJ/(kg-K)
file = CSV.read(filename);

Q_whb_file = [];
Q_need_file = [];
q_dh_file = [];
T_ret_file = [];
T_sup_file = [];

for row in eachrow(file)[3:nfe+2]
Q_whb_iter = parse(Float64,row.Column9)+parse(Float64,row.Column10)

+parse(Float64,row.Column11)+parse(Float64,row.Column12);
Q_need_iter = parse(Float64,row.Heat_flow_rates)+parse(Float64,row.Column7)

+parse(Float64,row.Column8)+parse(Float64,row.Column9)
+parse(Float64,row.Column11);

q_iter = (Q_need_iter/1000*3600)/(⇢_dh*Cp_dh*(parse(Float64,row.Column17)
-parse(Float64,row.Column15)));

append!(Q_whb_file,Q_whb_iter/1000*3600);
append!(Q_need_file,Q_need_iter/1000*3600)
append!(q_dh_file,q_iter);
append!(T_ret_file,parse(Float64,row.Column15));
append!(T_sup_file,parse(Float64,row.Column17));

end
return Q_whb_file, q_dh_file, T_ret_file, T_sup_file, file[3:nfe+2,1]

end⌃ ⇧
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D.7 "tes_logic.jl"

The file tes_logic.jl was the initial file for the optimal operations problem, used for opti-
mizing the shorter time horizon using NLP in Equation 4.1.7. The model with bounds and
same initial guesses for all finite elements is made and optimized.

⌥ ⌅
include("read_file.jl");
using PyPlot, LaTeXStrings;

### Parameters

# Heat Parameters
⇢_dh = 1000 #kg/m3
Cp_dh = 4.18 #kJ/(kg-K)

# Temperature
T_dh_ret = 55 #return, btw 40-70 depending on season
T_dh_minSup = 92.5 #minimum for supply
T_dh_maxSup = 95 #maximum for supply
T_whb_max = 120

T_tes_init = 95;

# Capacity
V_tes = 5000; #m3

# Bounds
Tlb = 40;
Tub = 120;
Q_used_ub = 22e3*3600; # kJ/hr
q_whb_ub = 291.0; # m3/hr q = Q/(⇢_dh*Cp_dh*(95-55))

### Input
#nfe=24;
file1 = "15032019.csv";
file3 = "march19.csv";
#Q_whb, q_dh, T_dh_ret, T_dh_sup = read_file(file3,nfe);

Q_whb = vcat(1.0*ones(10,1), 1.2*ones(10,1), 0.8*ones(10,1)) *1.672e5*q_whb_ub
q_dh = vcat(1.0*ones(10,1), 1.0*ones(10,1), 1.0*ones(10,1)) *291;
T_dh_ret = vcat(1.0*ones(10,1), 1.0*ones(10,1), 1.0*ones(10,1)) *55;
T_dh_sup = vcat(1.0*ones(10,1), 1.0*ones(10,1), 1.0*ones(10,1)) *95;

### Defining sets for variables
S = ["T_tes"];
C = ["q_whb", "q_A", "q_B", "Q_phb", "q_bp", "q_sys"];
A = ["T_A", "T_B", "T_C"];
A2 = ["T_phb", "T_whb"];

### Discretization
ncp = 1;
tspan = (0.0, 30);
h = 1.0
nfe = Int32((tspan[2] - tspan[1])/h);
adot = collocation_matrix(ncp,"Radau");

### Defining model
model = create_model(linear_solver = "ma97", max_iter = 5000);

### Variables
@variable(model, Tlb <= x[S, 1:nfe, 1:ncp+1] <= Tub, start = 95);
@variable(model, Tlb <= y[A2, 1:nfe, 2:ncp+1] <= Tub, start = 95);
@variable(model, rk[S, 1:nfe, 2:ncp+1], start = 0);
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@variable(model, u[C, 1:nfe] >= 0, start = 0);
@variable(model, Tlb <= z[A, 1:nfe, 2:ncp+1] <= Tub, start = 95);
@variable(model, x0[S]);

@variable(model, Q_used_ub >= Q_whb_used[i in 1:nfe] >= 0, start = Q_whb[i]);
@variable(model, Q_whb[i] >= Q_dump[i in 1:nfe] >= 0, start = 0);

set_lower_bound.(y["T_phb",:,:], T_dh_minSup);
set_upper_bound.(y["T_phb",:,:], T_dh_maxSup);
set_upper_bound.(y["T_whb",:,:], T_whb_max);
fix.(y["T_phb",:,:], 95, force=true);

set_upper_bound.(u["q_bp",:], 291.0);
set_upper_bound.(u["q_sys",:], 291.0);

set_upper_bound.(u["q_whb",:], 1200);
fix.(x0, T_tes_init, force=true);
set_start_value.(x["T_tes",:,:], 55.0);
set_start_value.(z["T_A",:,:], 55.0);
set_start_value.(u["q_bp",:], 0.0);
set_start_value.(u["q_whb",:], q_whb_ub);

set_start_value.(u["Q_phb",:], 0);

### Mathematical model
tmp = Dict();
tmp["T_tes"] = @NLexpression(model, [i in 1:nfe, j in 2:ncp+1], u["q_A",i]/V_tes

*(z["T_A",i,j] - x["T_tes",i,j])
+ u["q_B",i]/V_tes*(z["T_B",i,j]
- x["T_tes",i,j]));

@NLexpression(model, ODE[k in ["T_tes"], i in 1:nfe, j in 2:ncp+1], tmp[k][i,j]);

### Model constraints
# discretized ODE model
@NLconstraint(model, rkConstr[k in ["T_tes"], i in 1:nfe, j in 2:ncp+1], rk[k,i,j]

== sum(x[k,i,l] * adot[l,j] for l in 1:ncp+1))

@NLconstraint(model, dODE[k in ["T_tes"], i in 1:nfe, j in 2:ncp+1], rk[k,i,j]
- h*ODE[k,i,j] == 0)

# initial condition
@constraint(model, initConstrs[k in ["T_tes"]], x[k,1,1] - x0[k] == 0)
# Closing shooting gap
@constraint(model, gapConstrs[k in ["T_tes"], j in 1:nfe-1], x[k,j,end]

- x[k,j+1,1] == 0)

# algebraic constraints (balances)
@constraint(model, split[i in 1:nfe], 0 == u["q_bp",i] + u["q_sys",i] - q_dh[i]);
@constraint(model, mass[i in 1:nfe], 0 == u["q_whb",i] + u["q_A",i]

- (u["q_sys",i] + u["q_B",i]));
@constraint(model, energ1[i in 1:nfe, j in 2:ncp+1], 0 == u["q_sys",i]*T_dh_ret[i]

+ u["q_B",i]*x["T_tes",i,j] - z["T_A",i,j]
*(u["q_whb",i] + u["q_A",i]));

@constraint(model, energ2[i in 1:nfe, j in 2:ncp+1], 0 == (u["q_whb",i]
*y["T_whb",i,j] + u["q_A",i]*x["T_tes",i,j])
- z["T_B",i,j]*(u["q_sys",i] + u["q_B",i]));

@constraint(model, energ3[i in 1:nfe, j in 2:ncp+1], 0 == u["q_sys",i]
*z["T_B",i,j] + u["q_bp",i]*T_dh_ret[i]
- z["T_C",i,j]*q_dh[i]);

@constraint(model, [i in 1:nfe], Q_whb[i] == Q_whb_used[i] + Q_dump[i]);

@constraint(model, WHB[i in 1:nfe, j in 2:ncp+1], Q_whb_used[i] == ⇢_dh*Cp_dh
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*u["q_whb",i] * (y["T_whb",i,j]
- z["T_A",i,j]))

@constraint(model, PHB[i in 1:nfe, j in 2:ncp+1], u["Q_phb",i] == ⇢_dh*Cp_dh
*q_dh[i]*(y["T_phb",i,j] - z["T_C",i,j]))

@variable(model, Q_need[i in 1:nfe]);
@NLconstraint(model, [i in 1:nfe], Q_need[i] == q_dh[i]*Cp_dh*⇢_dh

*(T_dh_sup[i]-T_dh_ret[i]))

@NLobjective(model, Min, 1e-6*sum(u["Q_phb",i]ˆ2 for i in 1:nfe)
+ sum(u["q_A",i]*u["q_B",i] for i in 1:nfe)
+ 1e-6*sum(Q_dump[i]ˆ2 for i in 1:nfe)
#+ 1e-3*sum(u["q_bp",i] for i in 1:nfe)
#+ 1e-3*sum(u["q_whb",i]^2 for i in 1:nfe)
);

optimize!(model);
cost = sum(value.(u["Q_phb",:])[i] for i in 1:nfe);

Q_units = 1/3600/1000; # [kJ/hr] -> [MW]
q_units = 1/3600*1000; # [m3/hr] -> [kg/s]

### Plotting results
fig = figure(figsize = (10,10));

subplot(321);
ax1 = plot(tspan[1]:tspan[2], vcat(value.(x0["T_tes"]), value.(x["T_tes",:,end])),

label = L"T^{tes}");
ax1 = plot(tspan[1]+1:tspan[2], value.(y["T_phb",:,end]), label = L"T^{phb}");
ax1 = plot(tspan[1]+1:tspan[2], value.(y["T_whb",:,end]), label = L"T^{whb}");
ylim([40.0, 125.0]);
ylabel(L"Temperature [$ $C]");
legend();

subplot(322);
ax6 = step(tspan[1]:tspan[2]-1, Q_whb*Q_units, label = L"Q^{whb}");
ax6 = step(tspan[1]:tspan[2]-1, value.(Q_need)*Q_units, label = L"Q^{demand}")
ylim([0.0, 30.0]);
ylabel("Heat [MW]")
legend();

subplot(323);
ax2 = step(tspan[1]+1:tspan[2], value.(u["q_whb",:])*q_units, label = L"q^{whb}");
ax2 = step(tspan[1]+1:tspan[2], value.(u["q_A",:])*q_units, label = L"q^A");
ax2 = step(tspan[1]+1:tspan[2], value.(u["q_B",:])*q_units, label = L"q^B");
ylabel("Flow [kg/s]");
ylim([0.0, 340.0]);
legend();

subplot(324);
ax3 = step(tspan[1]+1:tspan[2], value.(u["Q_phb",:])*Q_units, label = L"Q^{phb}");
ax3 = step(tspan[1]:tspan[2]-1, value.(Q_dump[:])*Q_units, label = L"Q^{whb,dump}");
ax3 = step(tspan[1]:tspan[2]-1, value.(Q_whb_used[:])*Q_units, label

= L"Q^{wbh,used}");
ylim([0.0, 30.0]);
ylabel("Heat [MW]");
legend();

subplot(325);
ax4 = step(tspan[1]+1:tspan[2], value.(u["q_bp",:])*q_units, label

= L"q^{bypass}");
ax4 = plot(tspan[1]+1:tspan[2], value.(q_dh[:])*q_units, label = L"q^{dh}");
ylabel("Flow [kg/s]");
xlabel("Time [hrs]");
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ylim([0.0, 340.0]);
legend();

subplot(326);
ax5 = plot(tspan[1]+1:tspan[2], value.(z["T_A",:,end]), label = L"T^A");
ax5 = plot(tspan[1]+1:tspan[2], value.(z["T_B",:,end]), label = L"T^B");
ax5 = plot(tspan[1]+1:tspan[2], value.(z["T_C",:,end]), label = L"T^C");
ylim([40.0, 125.0]);
ylabel(L"Temperature [$ $C]");
xlabel("Time [hrs]");
legend();

fig.show();⌃ ⇧
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