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This is for you Mom and Dad, for sending me to the library,

And in the memory of my beloved sister, Rehema. May her dear soul rest
in eternal peace.





Summary

Thermal energy storage is becoming increasingly important in many
sectors including the industrial sector. This is due to increasing
environmental awareness, and energy saving is a major action to minimise
environmental footprint. When optimal control of thermal energy storage
is established, it ensures automated profitable operation of such systems.
The aim of this thesis was to improve a mathematical model representing a
thermal storage system and to continue the previous work done in the
specialisation project (Mdoe, 2018). The goal is to investigate the
performance of a multi-stage NMPC on a thermal energy storage under
uncertainty or plant-model mismatch. The general scenario used for
numerical case study is a simple thermal energy storage system that
consists of at least one supplier, one consumer, a storage unit, a direct and
cheap heat source and an expensive emergency heat source from the
external market. To obtain a basis for comparison, a similar numerical
case study was performed on a similar two plant system but without a
storage unit. A modified mathematical model was obtained and has shown
better robustness on handling numerical issues by avoiding singularity
problems when calculating derivatives for the optimisation problem solver.
It also assured convergence from any feasible starting point. After that,
case studies on the system were done by performing simulations on
specific operation scenarios.

To begin with, the importance of the thermal storage was illustrated by
comparing the operation of a two plant system with storage and without
storage. Both cases were controlled by an economic standard
model-predictive controller without plant-model mismatch that is,
assumming perfect prediction. Inclusion of a thermal storage exhibited
lesser need to purchase energy from the external market than when there
was no storage. The buffering effect of the thermal storage was clearly
seen when there was a step increase in the expected demand. A trade-off
exists between purchasing extra energy to fulfil consumer requirements
and using the limited storage efficiently. These optimal decisions are
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calculated and implemented at each hour by the standard NMPC on the
thermal energy storage.

Moreover, the thermal energy storage was integrated with an intermittent
supply such as solar power. This is a co-generation scenario for storage
with one energy resource being limited. The standard NMPC controlled
the system to utilise the use of the cheaper solar heating and store it as
much as possible to prepare for peak demand periods.

Lastly, optimal control of the thermal energy grid under uncertainty was
investigated assuming mismatch in supply and demand stream
temperatures. A multi-stage NMPC was implemented and their results
compared with the performance of a standard NMPC. The multi-stage
NMPC showed poor economic performance but without constraint
violations. The constraints satisfaction in industrial operations is
paramount because its lack of that results to unsafe operation and loss of
product quality which translates to huge losses. Therefore, the multi-stage
NMPC was found to be a better control strategy in the presence of large
supply and demand uncertainties. The optimal control problem in all cases
was discretised into a non-linear program using direct collocation
approach. The nonlinear program was defined using CasADi framework
and solved by using IPOPT solver in MATLAB environment.
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Chapter 1
Introduction

The idea of sustainability in process industries has become prominent due
to growth of environmental awareness. There are increasing concerns on
climate change and environmental emissions linked to industrial activities.
Consequently, minimisation of resource utilisation in human activities is
paramount towards achieving sustainability. Scientific innovation is
focused on developing technology that relieves the burden on the
environment. One of the most impactful human activities to the
environment is industrial manufacturing. Industries require huge amounts
of raw materials that are derived from the environment. The growth of
human world population has increased the amount significantly and
questions are being asked about the capability of the world to sustain itself
in the future. Caution is required when utilising resources for industrial
production that are of essence to the world. Humanity cannot ultimately
stop production, but the goal is optimal exploitation of the environmental
resources while satisfying customer needs. Industrial processes have been
enhanced for better efficiency, and process technology is aimed at
producing more from as little resources as possible.

Energy is the most coveted resource in all industrial processes. Energy is a
valuable resource that can be generated for use from various sources. They
can be categorised as renewable or non-renewable resources depending on
their ability to regenerate and replenish. Non-renewable resources are
easily available, cheaper to harness but to a great cost on the environment.
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Chapter 1. Introduction

Moreover, non-renewable energy resources have a great contribution to
carbon emissions to the atmosphere. The energy crisis in the 1980s due to
skyrocketed oil prices led to search for alternative energy resources, and
renewable energy technology arose. Renewables are environmentally
friendly but have unpredictable availability and are expensive to produce.
Regardless of energy source, produced energy must be meticulously
consumed . This makes energy management an important technology that
plays a major role in sustainability. Good energy management results into
lesser environmental impact and saves a significant amount of operational
costs.

Energy storage technology is a promising field to be applied for energy
management. This approach facilitates both supply-side and demand-side
energy management, and removes the gap present between power demand
and the quality of power supplied and reliability for both short and long-
term basis. Conventional energy grids without storage would meet peak
demands by purchasing extra energy from emergency generators which is
expensive. Inclusion of energy storage increases the flexibility of energy
planning and management. It also allows for contribution of other energy
production sources notably renewables, whose availability can be shifted
by storage and redistribution of the stored energy at peak demand times.
Human activity sectors that have highest energy demand include transport,
industry and residential sectors. The industry and residential sectors are
special because they require unceasing energy supply. Industries require
continuous supply of energy while in production and residential areas need
energy for domestic hot water heating, air conditioning and lighting almost
at all times of the day. All these sectors desire economic operation with less
environmental footprint and therefore optimal energy storage technology is
demanded. (Kalaiselvam and Parameshwaran, 2014c)

The development of renewable energy technologies and waste heat
recovery in chemical processes have further promoted the idea of energy
storage. These renewable sources are intermittent and uncertain in terms
of their availability and magnitude. Therefore, energy storage is a
promising utility to be applied in tandem with renewables because of
resource reallocation ability offered. The supply-demand mismatch calls
for smart energy distribution technologies that are optimally combined
with energy storage.

2



Produced energy can be stored in various forms. The most common form
of energy used is electrical energy. The storage methods for electrical
energy include electrical batteries (chemical storage) and capacitors.
Electrical batteries are practical for storing power just enough to operate
small to medium electrical appliances and not industrial scale plants.
Other forms of energy storage are underdeveloped and less practical. The
storage of large quantities of energy that can be used to supply hundreds of
megawatts of electrical power output in an 8 hour period is only possible
using thermal energy storage, pumped hydroelectric energy storage, or
compressed air storage. Pumped HEP storage requires pumping to high
heights and compressed air storage require large volume for highly
pressurised air to occupy which are unrealistic choices. Thermal energy
storage turns out to be the best technology candidate out there that is
available without limitation on location or quantity of energy stored for a
short time, up to 12 hours. (Li and Chan, 2017)

In brief, due to a growing energy demand, that is expected to escalate
further due to world population growth, the challenges that energy sector
face that force energy scientists and engineers to rethink and obtain energy
efficient technologies or measures include: depletion of primary energy
resources, complex energy extraction process from primary energy
sources, atmospheric emissions such as green-house gases and associated
carbon gases, climate change, depletion of ozone layer and global
warming, and steep increase in price of energy fuels. (Kalaiselvam and
Parameshwaran, 2014a)

In order to mitigate the current energy challenges highlighted above and
the prevailing energy issues, the following actions need to be taken to
improve energy efficiency: developing smart energy strategies and
management techniques that minimise energy demand and associated
carbon footprints, implementing energy saving technologies that will
ensure reliable energy supply, and optimising the operation of energy
distribution systems for efficient energy performance at all times
regardless of drastic and unexpected disturbances in the environmental
conditions or supply and demand patterns, promote energy distribution
frameworks that are flexible to integrate renewable energy sources when
needed, invent new energy policies that target on laying plans for expected
(obvious) future energy demand or consumption. (Kalaiselvam and
Parameshwaran, 2014a)
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Chapter 1. Introduction

Thermal energy storage combined with good process control strategy
promises to achieve optimal economic operation. Model-predictive control
(MPC) has the ability of including and tracking an economic objective to a
control problem. The controller constantly re-optimises and manipulates
the process inputs according to the economic objective that is subject to
predefined operational constraints. It is a centralised control strategy that
can handle nonlinearities in the process dynamics. This is an exciting
research area to achieve smart and automated energy distribution with
minimum effort. The MPC controller can perform online process
optimisation and is therefore convenient for optimal disturbance rejection.

1.1 Motivation

As discussed in the previous section, energy storage is useful in energy
distribution grids because they hold and release energy between the
integrated units. These integrated units are mainly the energy sources and
energy sink units. When the energy sources have excess energy, and there
is a smaller demand requirement in the sinks, the storage holds it. The
stored energy can be released to match future power demand peaks that
are typically much higher than the instant supply rate. Energy storage
systems usually have multiple sources which vary in availability, prices
and quality. Therefore the operation of such a grid requires optimal
control. Optimal control of energy grids create smart grids which ensure
that the system operates at the optimal point or near-optimal point.

Thermal energy storage is as important and are applied in industrial
clusters, hot water systems in buildings, air conditioning etc. An economic
optimal operation strategy that ensures cost minimisation and energy
demand satisfaction at all times is needed in these systems to save
resources. Thermal energy smart grids have the goal of meeting heat
demands in the system and hence its operation strategy could be based on
a predictive model that is used to predict the best actions. The advantages
of an optimal thermal energy storage system include:

1. Higher peak capacity: This means that the storage is always heated
up in advance to prepare for peak demands and meet short-term
fluctuations in demand. Therefore, the system can satisfy peak
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demands better without huge reliance on emergency power
generators that consume expensive primary energy sources.

2. Exploit energy market prices: The storage heats up when the market
prices are lowest and opts not to when most expensive. This is a
price-based strategy for storage.

3. Reject power supply surges: The energy storage improves reliability
of energy sources even when there is a fluctuation in the supply or
transitions. The storage gives the system inert ability to reject large
supply disturbances and uncertainties.

A general problem with energy distribution and management is that power
supply and demand are stochastic quantities and can never be precisely
anticipated. Optimal control can be coupled with supply and demand
forecasting to handle these supply surges and demand fluctuations in a
better way. The supply and demand historical data can be analysed and
used to learn about their behaviour, which in turn produces satisfactory
models that can forecast supply and demand fluctuations. Attaining an
accurate forecast is impossible but having a rough expectation of what will
happen in the future results in rational planning and optimal control
operation.

Uncertainties in supply and demand properties such as magnitude of
power and the timing of peaks are a major characteristic in energy
distribution systems. This work aims at contribution towards achieving a
smart controlled thermal energy grid system that is robust in presence of
large uncertainties. Robust model-predictive control approaches come to
play here and there has been quite significant studies performed for
example by Lucia et al. (2013). However, particular studies of robust
control on thermal energy grids with storage are yet to be explored.

1.2 Objectives

The goal of this thesis is to develop a robust model-predictive control
strategy on a thermal energy storage system that rejects large disturbances
in supply and demand. These disturbances are a result of plant-model
mismatch and uncertainty in forecasted and random quantities, especially
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Chapter 1. Introduction

energy supply and demand. The project builds up on work that has been
done in a specialisation project as part of the masters program requirement
at NTNU (Mdoe, 2018). From that work a numerical case study of open
loop optimisation of a simple two plant energy storage system which
consists of a thermal supply, a thermal sink, sensible heat storage tank and
an external expensive heating source was done. The work produced a
working mathematical model which was used to obtain an optimal open
loop control strategy for the system. Following the previous work, this
project focuses on the following objectives:

1. Improving suitability of the thermal energy storage system
mathematical model for numerical optimisation and control
purposes. The model has to be formulated in such a way that
numerical issues are avoided when performing calculations.

2. Illustrating the role of thermal energy storage in thermal energy
supply grids by comparing its performance with a system that has no
storage.

3. Implementing standard model-predictive control on a thermal storage
system, first without uncertainties or plant-model mismatch.

4. Developing a robust model-based control approach on a thermal
storage to handle supply and demand uncertainties and discuss its
performance. The performance is compared with that of a
non-robust control strategy.

1.3 Thesis structure

The report has a total of six chapters. Apart from the introduction chapter
the next five chapters are briefly described as follows:

Preliminaries
First, a concise background theory on thermal energy storage, modeling of
thermal storage systems, dynamic optimisation and model-predictive
control, energy supply and demand modeling is covered.

Implementation methods
The next section describes the default approach and tools used in this work

6



1.3 Thesis structure

in modeling and performing simulations for the systems and cases of
interest.

Modeling of thermal energy grids
Then the system description, assumptions and steps taken to derive the
governing equations are listed for two plant system with thermal storage
and for two plant direct coupling with no storage cases.

NMPC control on thermal energy grids
This is followed by implementation of model-predictive control on
thermal energy grids section where the importance of thermal storage
operated by model-predictive control is illustrated. In this chapter, a
scenario with an intermittent supply source in presence of thermal storage
is also shown. Moreover, a robust model-predictive control (multi-stage
NMPC) is implemented when there is uncertainty in supply and demand
stream temperatures.

Discussion and conclusion
This chapter is followed by a general discussion on the results and issues
encountered in this work. In addition to that, recommendations on future
exploration in this topic are given. Finally, a conclusion is drawn regarding
the questions that have been asked at the beginning of the research.

7



Chapter 1. Introduction

8



Chapter 2
Preliminaries

This chapter introduces the basic theory and concepts applied in this
thesis. To begin with, a foundation about energy storage and thermal
energy storage systems is presented. This is followed by an explanation of
heat transfer modeling in a heat exchanger unit for model derivation and
simulation purposes. There is also a concise description on dynamic
optimisation and application of direct discretisation method called direct
collocation in order to formulate a nonlinear program. Finally, theoretical
concepts and robust control approaches that can be applied to optimisation
problems under significant uncertainty are highlighted.

2.1 Energy storage systems

Energy storage (ES) systems are playing a major role in achieving energy
resource shifting to meet energy demand. Their development has impacted
the modern technology significantly. The varying and intermittent
available resources such as renewables including solar and wind power
can be harnessed when in abundance and the energy stored to cater
demand when at peak and/or in periods of low energy availability. Energy
storages are environmentally friendly because they ensure minimum
resource utilisation by avoiding energy wastage. One of the applications of
such energy storages are heating and cooling in industrial processes.

9



Chapter 2. Preliminaries

According to Dincer and Rosen (2002), the benefits of energy storage are:
economic operation due to diminished energy costs and consumption,
improved operational flexibility and reliability, smaller equipment sizes,
improved efficiency of process equipment, minimization of fossil fuel
used and pollutant emissions.

The 21st century industrial and process technology requires energy
abundance and reliability. In addition, it is highly preferred to minimise
operating costs which are highly influenced by the energy consumed. The
primary energy resources used are non-renewables which are mostly fossil
fuels that primarily release energy through combustion as heat. Even
though electricity is the conventional energy form, it originates from
electrical power generators that are driven by fuel combustion hot gases or
indirectly heated steam. The fuel combustion process to release heat for
power production is inefficient and hence a large chunk of lost energy is
bound to the waste streams.

On the contrary, renewable energy sources are influenced by the
environment, hence their availability is not easily predictable. They may
also be highly available when the demand is lowest and vice versa, leading
to supply-demand mismatch. This unsteady supply of energy resources is
characteristic of most renewables. For example, solar power is abundant in
some hours of the day and unavailable a night. Therefore, the commitment
for attaining efficient, minimal waste and reliable energy supply for
industrial processes has called forth the application of energy storage. The
scope of energy storage is not only limited to industries but is used in
domestic, small-scale power grids. For example, in centralised cooling and
heating systems for households and buildings or hot water supply and
storage in a household cluster. Moreover, a steep rise in fuel prices has
made energy a valuable process utility that has to be managed carefully,
and energy storage is important for energy resource management.

2.1.1 Energy demand

Energy demand is the amount of energy that an energy sink requires and it
is seldom constant. It has stochastic nature but can show some time
dependent trends. In order to decide on how much energy to generate, or
in the case of storage, how much to store, the practice is to design energy

10



2.1 Energy storage systems

systems that can adapt to demand even at peak moments. When a
combination of energy produced and energy stored fails to satisfy the
instant demand, a system must take emergency measures where an
external energy source caters the deficit. This subsidiary energy source
can be termed as external market energy. The peak demands are usually
met by operating extra gas turbines or oil generators that increase the
operating costs significantly. This is because fossil fuels are scarce and
expensive. Energy storage is another option to satisfy peak energy demand
which is also flexible enough to attach cheaper renewable energy sources
or waste energy streams. An energy storage strategy can be applied as
follows, depending on the field of application:

• Utility: a cheaper utility such as electricity at base load or hot waste
streams for example flue gases can “charge” the storage during low
demand periods. The stored energy is released in peak demand times,
to minimise cost of purchasing energy from the market.

• Industry: in industry, some process units have high temperature
outlet streams with excess heat generated that can be used to preheat
the storage for later use in peak demand periods. It can also be a part
of an industrial cluster which consists of high energy plants such as
metallurgy processes and low energy plants that are biochemical
processes, greenhouses or even district heating.

• Co-generation: when several energy sources and generators are able
to contribute for consumer supply then energy reliability is ensured
with minimal costs. Energy storage assist co-generation for
example, combining of thermal energy from hot streams and solar
energy sources can be done via a thermal storage unit in order to
meet energy demand.

Understanding the demand pattern of the energy storage system is the key to
execute better decisions for optimal operation. Therefore, energy demand
forecasting is a vital tool that is applied in energy systems to ensure that
there is always just enough energy available to satisfy the demand side at all
instances. However, the actual demand will never be equal to the forecast
due to its stochastic nature.

11



Chapter 2. Preliminaries

2.1.2 Categories of energy storage methods

Energy storages are made up of substances that have the capacity to hold
energy in some form. They are usually classified depending on the form of
energy in which the excess energy is converted to before being stored. The
classes of energy storage are mechanical, chemical, biological, magnetic
and thermal energy storage. Thermal energy storage is to be discussed in
this report. Other classes of energy storage are out of the scope of this work.

2.1.3 Thermal energy storage systems

Thermal energy storage (TES) systems are capable of holding heat for later
use depending on factors such as temperature, time, place, power demand
and price. As expected from an energy storage, thermal energy storages are
used to nullify the discrepancy between thermal energy supply and demand
when a thermal energy grid is in operation. The working principle of a TES
is analogous to an electric battery with a synchronous cycle of charging and
discharging processes.

Dincer and Rosen (2002) highlight that a TES needs a high thermal
capacity medium. They also mention that it is desired to have a good heat
transfer between the storage material and the heat transfer fluid (HTF) or
the supply and demand streams. Moreover, according to Cabeza et al.
(2015), the important design criteria for a TES are operation strategy, the
maximum load needed, the nominal temperature and enthalpy drop, and
the integration to the whole application system. A thermal storage system
commonly consists of energy collection, storage and distribution via a heat
transfer fluid. A TES can be designed with a HTF as the thermal storage
medium or with another material packed in a bed.

An ideal thermal storage is the one that heat or cold is released without
temperature degradation (Li et al., 2011). To avoid loss by temperature
degradation, the HTF must be released at the same temperature at which it
was stored. Therefore, the most efficient thermal storage when the HTF is
the storage material is by using two storage tanks. The hot fluid carrying
thermal energy is stored in a hot tank. Then from there it is pumped
through the heat sink where it “discharges” and the temperature drops
before being stored in a cold tank. When “charging” is required, the fluid
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Figure 2.1: Schematic for a thermal energy storage system

from the cold tank is pumped through the source and its temperature rises
before being stored in the hot tank. If the tanks are highly insulated, then
storage efficiency approaches 100%. Another thermal storage system has
the HTF and thermal storage material different. The two-tank thermal
energy storage system has ideal energy storage efficiency but keeps one of
the tank space empty causing space wastage therefore not cost-effective.

The concept of thermal energy storage system as applied in industrial
clusters is illustrated in figure 2.2. The energy sources are high-energy
plants and processes. These include cement plants, metallurgy and high
energy chemical plants that have hot streams in their process which
require cooling. The energy sinks are processes which require heating
such as greenhouses, biochemical plants and drying plants. The supply
and demand is uneven, and to avoid lack of energy utility in the sinks, the
system can purchase heat from an external supplier. On the other hand,
when the heat stored is in excess, the heat can be dumped to a variable
energy sink such as district heating.

Types of thermal energy storage

TES systems can be classified into sensible heat storage, latent heat storage
or thermo-chemical heat storages.

1. Sensible heat storage: Sensible heat storage also known as heat
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Figure 2.2: Conceptual illustration of energy or heat exchange in
industrial cluster with heat exchange and thermal storage.
The red lines indicate heat flow from sources to storage and
blue lines is heat flow from storage to sinks
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capacity storage, is done by initially supplying heat to the storage
material to raise the temperature of the storage material. The
temperature rise is due to rise in internal energy, meaning that the
initial supplied energy is stored in form of sensible heat. This form
of storage ensures that supply and demand requirements are met by
storing and discharging thermal energy from the heat storage
without the storage material changing in phase or chemical
composition. The amount of thermal energy stored in a sensible heat
storage at constant pressure is given by equation 2.1.

E =

∫ T

Tref

(
∂H

∂T

)
p,n

dT (2.1)

where, E = thermal energy stored, H = enthalpy, T = absolute
temperature, Tref = reference temperature. The equation can be
written in form of specific heat capacity at constant pressure, cp in
equation 2.2a

E = m

∫ T

Tref

cp(T ) dT (2.2a)

where,

cp(T ) =

(
∂h

∂T

)
p,n

(2.2b)

and m = mass of stored material and, h = specific enthalpy

Some storage materials have a small variation in their specific heat
capacity values within an operating temperature range. In such cases
a valid assumption can be made that the specific heat capacity is
independent of temperature then it is approximately constant. The
constant value used is the mean specific heat. The energy stored can
be written simply as equation 2.3.

E = mcp(T − Tref) (2.3)

The sensible energy storage materials are either solids or liquids.
For solids and liquids, the specific heat capacities at constant
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volume and constant pressure are always equal1 (cp = cv). Therefore
from the equation 2.2a, the amount of thermal storage stored in a
material due to raising its temperature can be determined.
(Kalaiselvam and Parameshwaran, 2014b)

Liquid storage is used for applications that involve low-temperature
to medium-temprature storage. Water is the most common liquid
storage material used in practice due to its cheapness, availability
and high energy density. Currently, most solar thermal energy storage
uses the mentioned qualities of water to achieve the required sensible
heat storage. Kalaiselvam and Parameshwaran (2014d) describes in
detail on sensible thermal energy storages, more information about
them can be found there.

2. Latent heat storage: have storage media that stores thermal energy
in form of their latent heat during a constant temperature process
like phase change. Solid-liquid phase change is the most common
method used. Liquid-gas phase change has the highest latent heat
of phase change but the huge volume change of the storage material
is a problem and hence this method is rarely applied (Alva et al.,
2018). The thermal energy stored by latent heat can be expressed as
in equation 2.4.

E = mL (2.4)

where, m = the mass of stored material and, L = latent heat of phase
change.

The storage material that undergoes phase change in latent thermal
energy storage are known as phase change materials (PCM). There
are very few PCMs that have been commercialised. The society
working on such storage materials face a huge challenge due to
observed problems like phase separation, corrosion, indelible
stability, sub-cooling, and low heat conductivity. (Cabeza et al.,
2015)

1Incompressible materials have the specific heat at constant volume equal that at
constant pressure
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3. Thermochemical heat storage: Thermochemical energy storage is
a result of a high energy chemical reaction that stores energy. The
reaction products must be stored and the heat generated during the
reaction must be available when backward reaction occurs.
Therefore, this storage method involves only reversible reactions. In
the charging process, injected heat is used to drive an endothermic
chemical reaction. The chemical products are later used to restore
thermal energy by performing the reverse exothermic reaction.
(Orosz and Dickes, 2017)

2.1.4 Thermal storage using water

Sensible thermal storage desires a material that can absorb a large amount
of heat. Therefore a material with inherently high heat storage density per
volume is preferred. This implies that the storage material must have both
high specific heat value and high density. A summary of storage materials
with their specific heats and heat content per volume is shown in table 2.1.
Water has a very high heat storage density both per weight and per volume
compared to other candidate storage materials. Moreover, water is an
available material which is relatively cheaper, less reactive and easy to
handle. These properties are valid for water in the temperature range
between 0◦C and 100◦C. For energy systems that have processes operating
at temperatures between 0− 100◦C, water is suitable for their heat storage.

The storage tanks involving water are constructed with watertight
materials and highly insulating materials. This insulation is to minimise
heat losses of the stores. It is a normal occurrence in the hot water storage
to exhibit temperature stratification. The rate of heat loss from the hot
water storage to the surroundings should be as small as possible to
improve storage performance. However, one should expect a higher loss
rate when the storage is heated up to elevated temperatures.When charging
and discharging the storage, the rate of charging or discharging must be as
high as possible in order to ensure that heat is withdrawn at larger
temperature differences as possible thus greater efficiency. (Furbo, 2015)

The material properties of water that affect the thermal and flow quantities
of interest in storage include density, viscosity, thermal conductivity and
specific heat. At an operation range between 0 − 100◦C, the density,
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Table 2.1: Heat storage density per volume for different materials Furbo
(2015)

Material
Specific heat
capacity
(kJ/(kgK))

Heat content per
volume (MJ/(m3K))

Water 4.2 4.2
Oil 2.0 1.7
Ice 2.0 1.8
Wood 1.8 0.9
Concrete 0.8 2.1
Brick 0.8 1.2
Glass 0.8 2.2
Steel 0.5 3.6
Aluminium 0.9 2.5
Gold 0.1 2.5

thermal conductivity and specific heat vary non-linearly with temperature.
The variation in specific heat capacity within that range is not very large
and average property value can be used without creating a huge
discrepancy.

Water density decreases with increasing temperature. Variation in density
with temperature causes the hot water (less dense) to rise up the storage and
the cold water (more dense) moves downwards in the storage. This causes
a strong thermal stratification in the hot water store.

Different configurations of hot water storage tanks are shown in figure 2.3.
The immersed coils exchanger has the heating coils placed at the bottom
where it is coldest for maximum heat transfer. This configuration can be
expensive because it may require specialized designs in most cases to
improve the storage efficiency. It is also less flexible if there is a need to
integrate several different sources of heat simultaneously. The external
heat exchanger design configuration is more appealing due to its
simplicity coimpared to the former. Moreover the design is more energy
efficient, cost effective and reliable because of the pronounced thermal
stratification that it creates in the storage. Due to better practicality of
using heat exchangers to collect and distribute energy to and from the
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Figure 2.3: Different configurations of storage tanks using water as a
storage medium

storage, it is wise to understand the theory about heat exchangers and heat
exchanger modeling.

2.2 Heat transfer modeling in heat exchangers

A heat exchanger is a process unit that allows transfer of thermal energy
between two fluid streams without having the fluids mix together or come
into direct contact. A heat exchanger ensure that there is heat transfer from
a hot fluid to a cold one without any mass transfer between them. Therefore
the equipment has two sections which separate hold and cold fluid streams
by a solid conductor. The arrangement of the two sides of a heat exchanger
is designed to create maximum possible heat transfer area and residence
time between the two streams.

Heat exchangers are used to extract heat from hot environments and
release the heat to cold environments. Therefore one can anticipate their
application in thermal energy grids. The heat transfer fluid gathers heat
from the source via a heat exchanger and consequently distributes heat
from the storage to the sinks using the same equipment. There are various
ways of classifying heat exhangers but they can easily be classified in
terms of flow arrangement or type of construction. In this thesis, there is
minimum focus of the heat exchanger construction design aspect, hence
only flow arrangements will be discussed. Based on flow arrangement, the
simplest heat exchangers with double-pipes according to Bergman et al.
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Figure 2.4: Heat exchanger types according to flow configuration (a)
cross flow (b) parallel flow (c) counter flow

(2011), can be classified as follows:

• Cross flow heat exchangers: the flow of cold and hot streams are
arranged in a way that one stream flows perpendicular to the other.

• Parallel flow heat exchangers: the cold and hot fluid enter the heat
exchanger in the same end and therefore flow in the same direction.

• Counter-current flow heat exhangers: the cold and hot fluids enter at
different ends and have opposite directed flows.

A common design in practice is a shell-and-tube heat exchanger that has a
single shell and tube passes inside the shell. Inside the shell are baffles
attached in order to maximise convective heat transfer by increasing
turbulence. In a shell and tube construction, the flow configuration can not
be clearly identified as any of the three discussed above.

2.2.1 Overall heat transfer coefficient

The heat transfer between the two streams is proportional to the
differences in absolute temperature of the two streams at that point. The
constant of proportionality is the total thermal resistance to heat transfer
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between the two fluids. This parameter is the overall heat transfer
coefficient which is a function of the convective and conductive fluid
properties, and conductive solid material properties. The determination of
this value is important to analyse heat exchanger performance but is often
the most uncertain parameter.

2.2.2 Log mean temperature difference

To model the performance of a heat exchanger one can relate the inlet and
outlet temperatures of exchanging streams, overall heat transfer coefficient
and total heat transfer surface area. This is shown in equation 2.5.

q = UA∆Tm (2.5)

where U = overall heat transfer coefficient, A = heat transfer area and ∆Tm
= appropriate mean temperature difference.

The appropriate mean temperature difference can be found by performing
energy balances across an infinitesimal transfer area and integrating w.r.t
the distributed stream temperatures throughout all the positions (length),
assuming parallel flow or counter-current flow. After some derivation steps
shown in the books by Bergman et al. (2011) and Lienhard IV and Lienhard
V (2018), the appropriate average temperature difference is a log mean
temperature difference, ∆TLM . Therefore 2.5 can be written as 2.6

q = UA∆TLM (2.6)

where,

∆TLM =
∆T2 −∆T1

ln (∆T2/∆T1)
=

∆T1 −∆T2
ln (∆T1/∆T2)

(2.7)

where positions 1 and 2 are the inlet or outlet positions of the double-pipe
heat exchanger.

It may be noted that, for the same inlet and outlet temperatures, the LMTD
for counter-current flow is always greater than that for parallel flow. Hence,
for the same value of U , the heat transfer area A required to achieve the
same heat transfer rate q is smaller for counter-current flow than for parallel
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flow arrangements. It is also possible for the outlet stream temperature of
the cold stream to be greater than the outlet temperature of the hot stream
in a counter-current flow setting but never in parallel flow. (Bergman et al.,
2011)

2.2.3 Approximation to the LMTD

The logarithmic mean temperature difference is an accurate expression for
the mean temperature difference between the hot and cold streams
provided that the overall heat transfer coefficient is not a function of the
position. However, it has been globally accepted that the logarithmic mean
causes inconvenience to chemical engineering programmers. Zavala-Rı́o
et al. (2005), Paterson (1984) and Chen (1987), communicated the
difficulties associated with performing heat exchanger calculations with
the log mean function. It is common practice in iterative equation solving
schemes that equality of stream temperatures is assumed as a starting
value. This will result into an indeterminate form of the log mean.
Moreover, at that limit, the derivatives of LMTD (which are needed in
Newton iterative methods) are undefined.

Paterson (1984) derived a new expression that overcomes the
aforementioned difficulties, to replace the log mean. The expression is a
good enough approximation to LMTD that can be used in calculations for
practical purposes. He obtained the new mean as a weighted arithmetic
mean (linear combination) of geometric mean and arithmetic mean
temperature differences shown in eq. (2.8).

∆TNM ≡
2

3
∆TGM +

1

3
∆TAM ' ∆TLM (2.8)

where

∆TAM ≡
∆T1 + ∆T2

2
(2.9a)

∆TGM ≡
√

∆T1∆T2 (2.9b)

The arithmetic mean is considered a useful approximation for mean
temperature difference in economic analysis but the new mean has refined
it for more practical uses.
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Underwood (1933, 1970) and then Chen (1987) both derived an
approximation that is a weighted geometric mean of the arithmetic mean
and geometric mean. Their new means are a polynomial of the
temperature differences at the ends of the exchanger ∆T1 and ∆T2.

∆T
1/3
UM =

1

2
(∆T

1/3
1 + ∆T

1/3
2 ) (2.10)

∆T 0.3275
CM =

1

2
(∆T 0.3275

1 + ∆T 0.3275
2 ) (2.11)

Generally,

∆Tm =

[
1

2
(∆T n

1 + ∆T n
2 )

]1/n
(2.12)

such that the n values will determine the type of approximation used. This
has been summarised in table 2.2.

Table 2.2: Values of n and their respective approximations

n Approximation (∆Tm)

1 Arithmetic mean (∆TAM )
1
3

Underwood’s mean (∆TUM )
0.3275 Chen’s mean (∆TCM )

2.3 Dynamic optimisation

An optimisation problem includes three main parts which are an objective
function, decision variables and constraints. The objective function is a
scalar function which describes the quantity to be minimised or maximised.
Decision variables can either be real numbers, integers or binary numbers.
Usually decision variables are vectors of real numbers. The constraints are
divided into equality and inequality constraints. All these elements together
define an optimisation problem. When the objective function or constraints
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are nonlinear functions then the optimisation problem becomes a nonlinear
program (NLP). (Foss and Heirung, 2013)

min
z∈Rn

f(z) (2.13a)

subject to

ci(z) = 0, i ∈ E (2.13b)
ci(z) ≥ 0, i ∈ I (2.13c)

where, z is the decision variable, E is the equality constraint index set and
I is the inequality constraints index set.

Usually optimization problems are stated as minimisation problems. To
obtain an optimal point, either a local or global minimum must satisfy the
Karush-Kuhn-Tucker (KKT) conditions which are conditions for optimality.
This has been discussed properly in Nocedal and Wright (2006).

2.3.1 Discretisation of a dynamic system

Dynamic systems have decision variables that evolve with time. They are
described mathematically by a set of Ordinary Differential Equations
(ODEs) or Differential Algebraic Equations (DAEs). Therefore, dynamic
optimisation involves computation of the optimal decision and state
variables at each point in time. This implies that the problem extends to an
infinite dimension. The problem becomes difficult to solve using standard
methods. In order to solve the problem, it must be discretised to obtain a
finite approximation. The discretisation methods used are either direct or
indirect. Most common dynamic optimisation solvers employ direct
discretisation methods. Direct methods can either be seqeuntial or
simultaneous. If discretisation is performed only on the control inputs,
then it is a called a sequential approach; while if both the control inputs
and states are discretised then it is known as a simulataneous approach.

Sequential approach described by Sargent and Sullivan (1978) considers
the discretised control inputs to be piece-wise constant within the
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discretisation time intervals which is usually equal to the sampling time
interval. The approach requires an initial guess for the control inputs that
are fed to the optimiser. Then the system is simulated using an integrator
(ODE or DAE solver) depending on the control inputs given. The
objective function, constraints and derivatives are then calculated together
with optimality conditions check. The optimal solution is found when
these optimality conditions are satisfied. Otherwise, new control input
guesses are provided by the NLP solver. the challenge of this approach is
the number of initial value problems that the solver has to compute per
scenario.

Simultaneous approaches as described by Biegler (2010) have a
dichotomy property where bounds are imposed on state variables to avoid
system instability within the prediction horizon. This is a merit when
compared to the simple to implement sequential approach for integration
of unstable systems. The only disadvantage is that the optimisation
problem becomes much bigger. Consequently, in the simultaneous
approach both the control inputs and the states must be discretised. The
two main simultaneous approaches are: full discretisation and multiple
shooting.

Multiple shooting method involves state discretisation and are added as
optimisation variables to the overall optimisation problem. The system is
integrated in finite elements which usually coincide with the sampling
time. To make sure there is state continuity at the finite elemnt boundaries,
a continuity constraint is enforced at each finite element and added to the
optimisation problem. Continuity means that the end point of a particular
finite element must be equal to the starting point of the next finite element.
More explanation of multiple-shooting method has been given by Bock
and Plitt (1984).

Another type of simultaneous approach is the full discretisation method
which uses orthogonal collocation on finite elements. The difference of
this approach from multiple-shooting method is the approximation of the
state dynamics inside the finite elements to avoid the necessity of using
an ODE solver at every stage in the prediction horizon. The approach is
a direct method that employs orthogonal collocation and thus alternatively
known as direct collocation method.
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2.3.2 Direct collocation method

This discretisation method has regularly been applied in state trajectory
optimisation and parameter optimisation problems or a combination of the
two. Every control interval is split into finite elements where the state
trajectory is parameterised using Lagrange polynomials. This method
improves the ability of an optimisation problem solver to find a solution
when a problem is further constrained, even if it increases the
dimensionality. In addition, direct collocation method better relates the
states to the augmented objective function. (Diehl and Gross, 2017)

Direct collocation method is considered an implicit variation of
Runge-Kutta method (Diehl and Gross, 2017). Runge-Kutta allows
calculation of states at each discrete time element by forward integration.
In direct collocation, the states are expressed implicitly as the function of
states and their derivatives. The method employs polynomials to
interpolate state variables inside the discrete time element (Hargraves and
Paris, 1987).

Polynomial Interpolation

In the temporal domain {tk,0, . . . , tk,K} ∈ [tk, tk+1] it is possible to
express the state trajectory within a discrete time interval as a function of
time points within the interval known as collocation points. The functions
used are called Lagrange polynomials (Pk,j(t), at time step k and
collocation point j) whose order K depends on the number of points taken
inside the interval.

Pk,j(t) =
K∏

j=0, j 6=i

t− tk,j
tk,i − tk,j

∈ R (2.14)

Lagrange polynomials in an interval [tk, tk+1], have the property
(eq. (2.15)), which also implies that they are orthorgonal.

Pk,i(tk,I) =

{
1 if I = i
0 if I 6= i

(2.15)
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Figure 2.5 shows all the Lagrange polynomials of the order K = 4 in the
interval [tk, tk+1].

Figure 2.5: Possible 4th order Lagrange polynomials in a time interval
Gross (2016)

In order to approximate the state trajectory the linear combination of all
these polynomials is used as shown in eq. (2.16).

s(θk, t) =
K∑
i=0

θk,iPk,i(t) (2.16)

where
s(θk, tk,j) = θk,j (2.17)

The main idea of direct collocation method is using eq. (2.16) to fit the state
trajectory by selecting parameters θk,i to approximate the system dynamics
F(ẋ,x,u) = 0. In that case we obtain K + 1 degrees of freedom per state.
Due to the property of Lagrangian basis, the value of the states is equal to
the sample taken at the collocation points. Thus, the constraints that should
be satisfied in direct collocation are given by eq. (2.18), and the states xk

and inputs uk are the degrees of freedom for the optimisation problem.
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Figure 2.6: Interpolated state trajectory as a function of parameters θk,i
Gross (2016)

s(θk, tk) = θk,0 = xk (2.18a)
∂

∂t
s(θk, tk,j) = F(s(θk, tk,j,uk)), j = 1, . . . , K (2.18b)

Equation 2.18a are the continuity constraints. Equation 2.18b are the
dynamic constraints that can be further modified to obtain eq. (2.19).

K∑
i=0

θk,iṖk,i(tk,j) = F(θk,j,uk) (2.19)

The best parameters θk,j can be solved for using Newton method from the
constraints at each collocation point. The resulting state trajectory is
shown in fig. 2.6, with the values at the collocation points equal to their
corresponding parameters θk,j .
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Selection of Time Grid

As discussed previously, there are many possibilities of selecting
collocation points within the interpolation interval. However, there are
proven set of collocation points which deliver an exact integration solution
for any polynomial of order < 2K (Legendre) and < 2K − 1 (Radau) 2.
(Gross, 2016)

Error and Stability

Collocation methods are A-stable: They can handle stiff model equations.
This implies that even larger time steps can be used to predict steady state
and slow dynamics correctly in the presence of very fast dynamics.
(Biegler, 2010)

Radau collocation is L-stable: In addition to A-stability, Radau collocation
handles eigenvalues at −∞. (Gross, 2016)

Order of integration error: It depends on K, integration error is O(h2K) for
Legendre and O(h2K−1) for Radau. Runge-Kutta schemes have an order of
O(h4). Moreover, the error only occurs to the end-state (tk) of the integrator
but not the intermediate points. (Biegler, 2010; Gede, 2011)

2.3.3 Implementation of Direct Collocation to solve an
NLP

Solving an NLP is done by passing the constraints and the objective
function through a nonlinear program solver. Direct collocation
approximates the dynamics within the finite elements, and enforces
continuity at the interval boundaries which are then added as constraint
equations for the decision variables (states and inputs) at all collocation
points and end-points. The optimal solution is found by solving for all the
decision variables such that an objective function is minimum. The vector
dimension of decision variables w is equal to N(nx(K + 1) + nu) where

2Gauss-Legendre and Radau roots define the position of collocation points for any
order K Lagrange polynomial. The collocation points are presented in table 10.1 by
Biegler (2010)
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nx is the number of state variables, nu is the number of input variables and
N is the number of discrete time elements. The NLP is transformed into a
form as shown in equation 2.20.

min
w

Φ(w) (2.20a)

subject to g(w) =



θ0,0 − x0

s(θ0, t1)− θ1,0
F(θ0,i,u0)−

∑K
j=0 θ0,jṖ0,j(t0,i)
...

s(θk, tk+1)− θk+1,0

F(θk,i,uk)−
∑K

j=0 θk,jṖk,j(tk,i)
...


= 0 (2.20b)

where w = {θ0,0, . . . , θ0,K ,u0, . . . , θN−1,K ,uN−1} are the decision
variables.

Since, the parameter θk,i are solved together with the decision variables xk

and uk, then direct collocation is a fully simultaneous approach. The
integration and optimisation actions are performed together in the NLP
solver.

The input is usually chosen as piecewise-constant within each discrete time
element. Picking a different input at different collocation times can also
be done but is not common and may cause problems in converging to a
solution.

How to treat a differential algebraic system of equations?
A system is said to be a differential algebraic system when it has both
differential and algebraic states. Differential states (x) are those variables
that are dynamic changing with time. Algebraic states (z) are variables
that are not time-differentiated and are dependent on differential states.

DAEs can be written in a fully implicit form as shown in eq. (2.21).

F(ẋ,x, z,u) = 0 (2.21)

They can also be expressed semi-explicitly as shown in eq. (2.22).
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ẋ = F(x, z,u) (2.22a)
0 = G(x, z,u) (2.22b)

It may be more convenient in complex systems to express dynamics
constraints as a set of DAEs instead of ODEs. Therefore when solving for
optimal decision variables governed by the system, one has to define an
NLP that is DAE-constrained. Using direct collocation discretisation, the
algebraic states are treated differently from the differential ones. This is
because algebraic states do not have to satisfy continuity. The following
must be considered when listing constraints on algebraic variables:

1. The continuity equality constraints are not included for the algebraic
states at the end-points.

2. The algebraic states appear only in the dynamic constraints. Hence,
the degree of freedom per algebraic state per finite element is K and
not K + 1 as in differential states.

The general form NLP for a DAE-constrained optimal control problem
through direct collocation discretisation method is represented by
eq. (2.23).

min
w

Φ(w) (2.23a)

subject to g(w) =



θ0,0 − x0

θ0,K − θ1,0
F( ∂

∂t
x(θk, tk,0), θk,0, zk,0,uk)

...
θk,K − θk+1,0

F( ∂
∂t
x(θk, tk,K), θk,i, zk,K ,uk)

...


= 0 (2.23b)

where the decision variables are:
w = {. . . , θk,0, θk,1, zk,1, . . . , θk,K , zk,K ,uk, . . . } ∀k = {0, . . . , N − 1}
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What about other operational constraints on the system apart from the
model equations?
A controlled process is usually subjected to operational constraints that it
has to satisfy. These constraints are based upon the control objective
which is usually economic-driven or safety-driven. For example, the
desired operation of the system requires its states to be bounded due to
material limits. Moreover, to avoid input saturation, the inputs must be
bounded to avoid the NLP providing solutions outside the saturation limits
that cannot be implemented. These state and inputs bounds are inequality
constraints that must be explicitly defined at each collocation point for the
states and at each finite element for the inputs. There might also be hard
equality constraints on the decision variables. For example the system has
to reach a desired terminal state or a desired quantity must be accurately
satisfied at each finite element in order to avoid losses. It is advised to
enforce other equality constraints on the finite elements and not on each
collocation point.

2.4 Model predictive control

Model Predictive Control (MPC) involves application of optimisation
theory in control. It uses the system model to describe and predict the
future process states and optimises the current actions to achieve the
control objective. This control strategy allows inclusion of feedback
measurements to update the optimisation problem when the system is
driven away from the model prediction (which is the case for chemical
processes). This sampling action at discrete time intervals updates and
recalculates the optimal control problem at each sampling time step
allowing for better control compared to open loop optimisation since
mathematical models are not exact representations of a plant process. The
idea of MPC was first proposed by Richalet et al. (1978) and then Cutler
and Ramaker (1980).

2.4.1 The MPC Algorithm

The MPC strategy is described by Mayne Mayne et al. (2000) as:
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Model predictive control is a form of control in which the
current control action is obtained by solving, at each sampling
instant, a finite horizon open loop optimal control problem,
using the current state of the plant as the initial state; the
optimization yields an optimal control sequence and the first
control in this sequence is applied to the plant.

min
(x,u)

φ(x,u) (2.24a)

subject to: Equality constraints (ODEs or DAEs):

F(ẋ,x,u) = 0 (2.24b)

and, Inequality constraints (Variable bounds):

xlow ≤ x ≤ xhigh (2.24c)

ulow ≤ u ≤ uhigh (2.24d)

The basic MPC algorithm is summarised in table 2.3. A prediction horizon
is the length of time in to the future which the calculations predict. It must
be noted that once an optimal solution for the first step is computed, the
prediction horizon for the next optimisation problem will move one step
forward. This is a moving horizon approach and it can be seen in figure 2.7.
Therefore, for a system under control the same optimal problem eq. (2.24)
is solved over and over again at each time step to obtain a sequence of
optimal control inputs. (Foss and Heirung, 2013) These control inputs are
applied within one control step (finite element).

When the ODEs and DAEs that are constraints to the MPC problem are
nonlinear functions, the problem is known as nonlinear model predictive
control (NMPC).

2.4.2 Robust NMPC

Nonlinear model predictive control (NMPC) handles highly coupled
systems with multiple inputs and outputs compared to classical linear
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Table 2.3: Basic MPC algorithm (Foss and Heirung, 2013)

Algorithm: State feedback MPC procedure

for t = 0, 1, 2, . . . do
Get the current state xt.
Solve a dynamic optimization problem on the
prediction horizon from t to t + N with xt as initial
condition
Apply the first control move ut from the solution
above.

end for

Figure 2.7: Illustration of MPC principle (Foss and Heirung, 2013)

34



2.4 Model predictive control

control strategies. It is ideal for plants with tight constraints. Regardless of
its advantages it is still not a commonly sought for approach to control
industrial processes because model based approaches introduce
uncertainty to the optimal control problem. The stability and performance
of the NMPC controller is not guaranteed under uncertainty. It is always
the case that a model has some degree of inaccuracy known as plant-model
mismatch.

Standard MPC has issues dealing with uncertainty because the
optimisation technique does not consider uncertainty. Over the years,
developments of the optimisation formulations to handle huge uncertainty
have been done and as a result optimisation techniques such as stochastic
programming (Birge, 1997; Shapiro et al., 2009), dynamic programming
(Bellman, 1957) and robust optimisation (Soyster, 1973) were discovered.
Robust NMPC approach aspires to overcome the effect of model
inaccuracy and errors in the standard NMPC while ensuring stability, no
constraint violation, and recursive feasibility for all possible values in the
uncertainty space. The standard MPC has an innate ability to reject large
disturbances but is only valid when the strong assumptions mentioned by
Grimm et al. (2004) hold. The assumptions are invalid for nonlinear
constrained systems thus the need for robustification. The general
formulation of robust optimisation is such that all parameters are uncertain
but are known to be a part of a given uncertainty set. The optimal solution
is found by minimising the cost for the worst case uncertainty realisation.
This is also known as a min-max optimisation form.

Consequently, min-max MPC was conceived by describing the
optimisation problem with an objective function of the worst case scenario
minimisation and the constraints for all minimum and maximum
uncertainty value cases. This ensured constraint satisfaction for the
optimal control sequence solved based on the objective of minimizing the
worst possible loss. When optimising a system with uncertain variables
along the prediction horizon, we obtain prompt decisions that have to be
made, and a set of possible future decisions which depend on where the
system is driven. Therefore, first-stage decisions need to be made at the
current time and depending on the uncertainty realized in the next step the
optimiser will take a corresponding second-stage action. This
phenomenon is known as recourse, which reduces the conservativeness of
the current decisions. The min-max approach does not allow for recourse
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when new information from the plant measurements is already available.
Scokaert and Mayne (1998) showed that this may lead to highly
conservative solutions and infeasibilities.

A feedback min-max NMPC was designed by Lee and Yu (1997) and then
Mayne (2001) which includes a sum of the costs for each control policies
and not control input sequences in min-max without feedback. The
approach is a closed-loop min-max NMPC which makes it adaptable and
feasible due to possibility of taking recourse actions. However, this
robustification technique generates a problem with infinite dimensions
which deems the problem extremely difficult to solve.

Tube-based MPC approach, which was applied to linear systems has
attained recent interest in nonlinear cases to replace min-max approaches.
Tube based MPC is based on the solution of a nominal control problem
and inclusion of an ancillary controller that ensures that the evolution of
the real uncertain system stays in a tube whose cross-section is a positive
invariant set, centered around the nominal trajectory. This approach can be
difficult to adapt for nonlinear cases because it is a challenge to entirely
define the possible set for the nominal problem, which can also be
conservative.

Lucia et al. (2013) presented another approach called the multi-stage
NMPC. The multi-stage approach is described as a promising framework
for solving robust NMPC problems by including both standard and
min-max NMPC. The main idea of this approach is to model the growth of
uncertainty with each discrete time step as a scenario tree. Since
measurement feedback will only be available in the future, it allows
recourse which in turn minimizes the conservativeness of the resulting
decisions.

2.4.3 Multi-stage NMPC

Multi-stage NMPC is a robustification scheme that combines standard and
min-max NMPC approaches. The principal assumption that is taken to
build up a multi-stage NMPC is that the uncertainty can be perfectly
modeled by a scenario tree. The evolution of uncertainty takes up discrete
values at each discrete time step. If the assumption is not valid, that we

36



2.4 Model predictive control

have a continuous uncertainty space (which is the case for real systems),
the approach calculates the approximate optimal feedback policy that is
near-optimal. However, much care is needed to pick the discrete values
from the continuous uncertainty space.

The scenario tree that is used in multi-stage NMPC shown in fig. 2.8
describes the uncertainty evolution. The tree grows progressively towards
the future by branching at the nodes. Every node represents an unknown
uncertain event that influences the system apart from the applied control
input. The tree indicates the relationship between the future control
actions and their previous uncertainty realisations extracted from
measurement information. This gives the ability for future control inputs
to act as recourse variables to cancel out the effect of future uncertainties.
In fact, multi-stage NMPC approach is a closed loop robust NMPC with a
lower degree of conservativeness compared to others.

Figure 2.8: Scenario tree representation of uncertainty evolution for
multi-stage NMPC
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The tree growth represents the fact that if uncertainty at the future
sampling time is unknown, then it will remain unknown for the next
sampling time when the horizon moves forward. The branches in the tree
are the uncertain parameter realisations and constraint violations can
definitely occur for the values that are not represented in the tree.
However, the worst case parameters are used as the bound values to create
an uncertainty parameter interval and the branches are the combinations of
these extreme parameter values. Therefore, it is the designer’s task to
chose a proper scenario tree for the desired system. Consequently if we
have the combination, then the scenario tree will always grow
exponentially with the number of realisations and prediction horizon
length. This creates a rapid increase in problem size with prediction
length, and is a major drawback of this approach.

When making current decisions of the control input, it is impossible to
know the future outcome. The controller is unable to anticipate what will
happen in the next time step and therefore it is required to enforce
non-anticipativity constraints which ensure all the control inputs
originating from the same node are always equal.

The scenario tree as in NLP formulation assumes not only discrete time
steps but also discrete uncertainty realisations of the nonlinear system
described. The realisations depends on the set of the disturbances
(uncertain parameters) and thus the scenario tree model function
f : Rnx × Rnu × Rnd −→ Rnx that maps current state to future state is
written as in eq. (2.25) 3.

xlk+1 = f(x
p(l)
k , ulk, d

r(l)
k ), (2.25)

The superscript p(l) identifies the parent node of the branched future state
xlk+1. The parent node depends on the tree path taken that is a function of
the tree position p(l, k). Representation of stage index k is dropped to
simplify the expressions. The superscript r(l) is the realisation of
uncertainty at sampe time k and is also dependent on the scenario tree
position r(l, k). nd is the size of the uncertainty vector.

3Note: index l is used to represent a scenario since index i indicates position in variable
vectors, index k time discretisation, and j indicates collocation points for the states.
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From fig. 2.8, x62 = f(x21, u
6
1, d

3
1). It is convenient to have equal number

of branches from all nodes hence a constant dimension for vector dr(l)k ∈
{d1k, d2k, . . . , dsk} at time k and s uncertainty realisations.

Referencing in the scenario tree can be further simplified by using I to
denote the set of all node positions (l, k). A scenario is any continuous
path through a set of nodes that begins from the root node x0 to any leaf
(end) node xlNP

. A set of all the nodes and their variables (states and control
inputs) through which a one scenario takes path is denoted by Si. Therefore,
an ith scenario can be generically represented as:

Si = {xiNP
, x

p(i)
NP−1, x

p(p(i))
NP−2 , . . . , x

1
0, u

i
NP−1, u

p(i)
NP−2, x

p(p(i))
NP−3 , . . . , u

i
0}, ∀i = 1, . . . , N,

(2.26)

Here, N is the total number of scenarios, which in the case of equal
branching nodes is the same as the leaf node count. NP is the length of
prediction horizon. A subset of Si that contains all the states in the ith
scenario is denoted as:

Xi = {xiNP
, x

p(i)
NP−1, x

p(p(i))
NP−2 , . . . , x

1
0, }, ∀i = 1, . . . , N, (2.27)

In the same way, the sequence of control inputs for the ith scenario is
written as:

Ui = {uiNP−1, u
p(i)
NP−2, u

p(p(i))
NP−3 , . . . , u

i
0}, ∀i = 1, . . . , N, (2.28)

After understanding and identifying the scenarios and set of variables in
the multi-stage optimisation formulation the optimisation problem resulting
from this setting is written as in eq. (2.29).

min
xl
k,u

l
k∀(l,k)∈I

N∑
i=1

ωiJi(Xi, Ui) (2.29a)
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subject to:

xlk+1 = f(x
p(l)
k , ulk, d

r(l)
k ), ∀(l, k + 1) ∈ I, (2.29b)

g(xlk+1, u
l
k) ≤ 0, ∀(l, k + 1) ∈ I, (2.29c)

ulk = umk if xp(l)k = x
p(m)
k ∀(l, k), (m, k) ∈ I, (2.29d)

where, g : Rnx ×Rnu −→ Rng (eq. (2.29c))is a general inequality constraint
function on the states and inputs at each scenario tree node. ng is the
number of constraints at each node. The scenario tree cost function in
eq. (2.29a) is a weighted sum of the cost Ji of each scenario Si assigned
weight ωi where Ji : Rnx×NP+1 × Rnu×NP −→ R is a scalar cost.

Non-anticipativity constraints (eq. (2.29d)) are listed in such a way that the
current decision vectors ulk having the same parent node xp(l)k have to be
equal. The problem is reduced to a standard NMPC when N = 1. The
weights ωi are decided based on stochastic data or parameter estimation
when available. It is normal to chose identical weights in absence of such
information. A drawback of an evolving scenario tree is how fast the
problem grows with increase in uncertainty realisations considered and the
prediction horizon. The number of scenarios is given by sNP ,when there
are s uncertainty realisations branching from each parent node. Moreover,
the total number of nodes is a sum of an exponential sequence involving
NP and s. A large number of nodes implies larger number of decision
variables which deems the problem difficult to compute. This challenge
also known as the curse of dimensionality can be overcame by making the
following important assumption as outlined by Lucia et al. (2013):

A simple strategy to deal with tree growth with prediction
horizon is to assume that the uncertainty remains constant
after a certain point in time (called the robust horizon).

This assumption can be justified by the receeding horizon feature of NMPC,
which makes accurate modeling of future uncertainties unnecessary. The
control inputs will be recomputed at the next time step anyway. Figure
2.9 illustrates such simplification. The simplification does not affect the
performance of the multi-stage NMPC as shown by Lucia et al. (2013).
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Figure 2.9: Scenario tree representation of the uncertainty evolution for
multi-stage NMPC with robust horizon
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Chapter 3
Implemetation methods

This chapter explains the default tools and methods that are employed to
perform simulation case studies in this thesis. The chapter presents the
general approach used in modeling and simulation of the controlled
systems. All the descriptions here are assumed to be applied to obtain the
presented results unless specified otherwise.

3.1 Modeling

The process that has to be controlled is described. In this work, case studies
have been done on two systems. The first system is a direct thermal energy
transfer from a thermal source to a demand stream without any thermal
storage. The other system of interest in this work is a two plant thermal
energy storage system.

Modeling of the two-plant thermal energy storage has been done in the
previous specialisation project (Mdoe, 2018) but some modifications on
the model have been added in this work. Due to the modifications, the
modeling of the system has been presented again in this report. Direct
thermal heat transfer model is written down as simple heat exchanger model
using similar equations from the two-plant energy storage system. The
models used are based on physical laws subject to some assumptions that
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are clearly explained in the modeling section.

3.2 Simulations

After obtaining the model for the controlled systems, which is a set of
DAES, simulations for interesting control scenarios were done. Unless
stated otherwise, all the simulations were performed in a MATLAB (2018)
environment installed on an Intel Core i7 CPU at 2.7 GHz running
Windows 10 Pro with 8 GB RAM.

In the MATLAB environment, CasADi was used as a tool for improving
computational performance and simpler code implementation. CasADi is
an open-source framework which allows for easy and efficient
implementation of optimal control (Andersson, 2013). The advantage is
that an NLP can be represented in a high-level symbolic form but in the
background it is represented as an expression graph with the help of
included ODE or DAE integrators. The representation is easy for any
available NLP solver to solve the NLP, or even a custom one. CasADi is
an automatic differentiator and so it calculates and provides the first-order
and second-order derivative information for the NLP solver. Therefore,
CasADi helps user avoid errors in derivative calculations, which is often
very tedious for nonlinear models.

The NLP solver used in this work is IPOPT (Interior Point OPTimiser)
developed by Wächter and Biegler (2006). The solver uses the automatic
derivative information provided by CasADi. In this thesis, a direct
collocation approach was implemented for all cases using Radau
collocation points with 3rd order interpolation polynomials.

To illustrate plant-model mismatch, a real plant had to be implemented that
produces real measurement data. The simulation of real plant was done
by writing a dynamic model function in MATLAB that was integrated for
a length of sample time with optimal inputs provided by the NLP solver
(optimiser) using ode15s function. ode15s is a stiff ODE solver and
it is also capable of solving DAEs when a Mass matrix is specified and
passed as an argument in the odeset structure. The Mass matrix is a
square diagonal matrix whose dimension matches the dynamic variables.
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The diagonal index corresponding to differential variables are set to ones
while those for algebraic variables are set to be zero.

The standard NMPC was performed for both cases: first perfect
knowledge of the plant behaviour is assumed, then when there is
plant-model mismatch. In both cases, the general implementation follows
what has been explained above.

For multi-stage NMPC, an overview of all the possible uncertain
parameters was done. The most important parameters whose uncertainty
has greater effect on the operation were identified. The uncertainty space
of each parameter was established. In this case a mean value was assumed
and depending on the level of confidence of the mean, an assuming normal
Gaussian distributions for the parameters, high and low uncertainty
realisations were obtained. then according to the box design the extreme
realisations were set as the uncertainty levels in which the scenario tree
evolves. In the simulations involving Gauss distributions about a mean, a
95% confidence level was assumed. The multi-stage NMPC were
implemented with a robust horizon of 1 (NR = 1).
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Chapter 4
Modeling of thermal energy grids

In this chapter, governing equations for thermal energy grids are derived.
Simple case studies with two plants where one is a heat source and another
a heat sink are considered. The case studies are done on the following
simple systems of interest:

1. A two plant system with thermal storage and direct storage heating,
and

2. A simple two plant system of direct thermal transfer without storage.

The model equations are derived from principles of mass and energy
conservation following some assumptions. The result is a mathematical
model which is necessary for the numerical case studies performed in this
thesis.

4.1 System description and assumptions

Mdoe (2018) derived a model that describes a systems which is a thermal
energy grid that consists of one supply from a hot stream, a variable direct
storage heating for example flue gases and solar heating that directly heats
a storage tank, a sink plant or demand stream with demand satisfaction
constraints that can be met by purchasing energy from an external source
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in the market. The following assumptions were taken in order to derive the
system model:

1. The sources and sinks are considered as reservoirs such that flow
streams originating from them have their intensive properties. This
implies that the temperature of the source and sink streams are only
dependent of the plants.

2. All heat exchangers are modeled as two lumps (hot and cold sides)
with heat transfer flow between them.

3. The heat exchanger sides are assumed to have uniform temperature,
and equal to the temperature of their outlet streams. This
assumption is valid because the heat exchanger exit temperatures
have faster dynamics compared to the storage tank temprature
dynamics. It is also possible to make a steady state approximation
for the heat exchangers since the modeling is focused on optimal
control which is at a slower time scale.

4. The model does not account for heat losses from the heat exchanger
or flow pipelines to the surroundings. It also assumes that the overall
heat transfer coefficient Uhex is constant.

5. All heat exchangers in the system are identical, that is, they have the
same dimensions and parameters.

6. The storage has no temperature stratification. It is uniform
throughout the volume and the storage holdup is controlled and
always constant at Vtank.

7. The exit temperature from the tank is equal to the storage
temperature.

8. The fluid streams have constant specific heat capacity cp, and have
the physical properties of water.

9. The conventional energy flow is from the supply side to the demand.

The following two sections present how the mathematical model is obtained
with the aforementioned assumptions for our systems of interest.
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4.2 Modeling of a two plant energy storage system

4.2 Modeling of a two plant energy storage
system

A pictorial representation of the system that is a framework for model
derivation is given by a topology in figure 4.1.

Figure 4.1: Topology of a simple thermal energy grid including thermal
storage

Energy and Mass Balances

Following assumption 1, the sources and sinks have temperatures T1 and
T2 respectively that are not affected by the system dynamics. They will be
considered constant or given.

Source:
dH1

dt
= 0, T1 = constant (given) (4.1)

Sink:
dH2

dt
= 0, T2 = constant (given) (4.2)

Lumps:
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1. Heat exchanger 1: Starting with the mass balances across the heat
exchanger gives equation 4.3.

d(ρVhex)

dt
= ρq1|L1 − ρqL1|1 (4.3a)

dVhex

dt
= q1|L1 − qL1|1 (4.3b)

While in operation, the heat exchanger is filled with fluid so it is
always constant i.e. dVhex

dt
= 0 . Therefore, the inlet and outlet flows of

the heat exchanger are equal. For simplicity, the following notations
in eq. (4.4) will be used from now on in this report instead.

q1|L1 = qL1|1 = qL1 (4.4a)
qtank|R1 = qR1|tank = qR1 (4.4b)
qtank|L2 = qL2|tank = qL2 (4.4c)
q2|R2 = qR2|2 = qR2 (4.4d)

The outlet temperatures of the left and right side of the heat exchanger
1 (HX-1) are denoted as TL1 and TR1 respectively. The temperature
of all the storage tank’s outlet streams are equal and denoted as Ttank.
Energy is conserved across each side of the heat exchanger. Starting
with the left side L1 the energy conservation equation is eq. (4.5a).

dHL1

dt
=
∑

Hin −
∑

Hout +Qnet −Ws (4.5a)

Adiabatic conditions are assumed and there is no shaft work done by
the system i.e. Qloss = 0 and Ws = 0, then

d(ρcpVhexTL1)

dt
= ρcpqL1T1 − ρcpqL1TL1 −QL1|R1 (4.5b)

ρcpVhex
dTL1

dt
= ρcpqL1(T1 − TL1)−QL1|R1 (4.5c)

(4.5d)

Where QL1|R1 stands for energy transfer rate from lump L1 to R1.
Hence, equation for temperature dynamics of stream qL1 given by
equation 4.7.
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dTL1
dt

=
1

Vhex

{
qL1(T1 − TL1)−

QL1|R1

ρcp

}
(4.6)

The right side, R1 dynamics can be found with the same steps done
in the left side L1 to give equations 4.7.

dTR1

dt
=

1

Vhex

{
qR1(Ttank − TR1) +

QL1|R1

ρcp

}
(4.7)

2. Heat exchanger 2: The design parameters of every heat exchanger
is the same so the energy balances for the second heat exchanger will
result to similar equations with different variables shown in equation
4.8 and 4.9. The outlet temperatures of the left and right sides of the
heat exchanger 2 (HX-2) are denoted as TL2 and TR2 respectively.

dTL2
dt

=
1

Vhex

{
qL2(Ttank − TL2)−

QL2|R2

ρcp

}
(4.8)

dTR2

dt
=

1

Vhex

{
qR2(T2 − TR2) +

QL2|R2

ρcp

}
(4.9)

3. Heat transferred from hot to cold side: Heat transfer model
between cold and hot streams in heat exchangers is given by 2.5.

Q = UhexAhex∆Tm (4.10)

where, ∆Tm is the mean temperature difference between the cold
and hot streams. The appropriate value for this is the LMTD,
(∆TLM) but a polynomial approximation is suited for practical
purposes instead. These approximations are by Chen (1987) ∆TCM ,
Underwood (1970) ∆TUM . The ∆Tm can be simply expressed as
the differences between the inlet temperatures of hot and cold sides
or as an arithmetic mean ∆TAM . The simple approximations are
suitable for cases when the ratio of flow rates of either streams is
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close to 1. Otherwise when one of the flows in very large compared
to another then the approximation becomes very poor. In the
specialisation project work (Mdoe, 2018) performed on this same
system, simulation results indicated that the Underwood and Chen
mean approximations produced the best results. In this thesis the
Underwood mean approximation has been considered.

QL1|R1 = UhexAhex∆Tm,1 and QL2|R2 = UhexAhex∆Tm,2

where,

∆T n
m,1 = 0.5

[
(T1 − TR1)

n + (TL1 − Ttank)
n
]
, n =

1

3

∆T n
m,2 = 0.5

[
(TL2 − T2)n + (Ttank − TR2)

n
]
, n =

1

3

Using the simpler approximation the mean temperature differences
can be estimated as equations 4.11.

∆Tm,1 = T1 − TR1 (4.11a)
∆Tm,2 = Ttank − TR2 (4.11b)

4. Storage tank: Beginning with mass balances we obtain equation
4.12.

d(ρVtank)

dt
= ρqR2 + ρqL2 − ρqR2 − ρqR2 = 0 (4.12)

Energy balance across the tank following the general energy balance
equation 4.5a provided the enthalpies and the net heat flow in
equations 4.13 leads up to equation 4.14.

∑
Hin = ρcp(qR1TR1 + qL2TL2) (4.13a)∑
Hout = ρcp(qR1Ttank + qL2Ttank) (4.13b)

Qnet = QD|tank −Qtank|E (4.13c)

52



4.2 Modeling of a two plant energy storage system

dHtank

dt
= ρcp(qR1(TR1−Ttank)+qL2(TL2−Ttank))+QD|tank−Qtank|E−0

(4.14)

Let QD|tank = Qtank and Qtank|E = Qloss

dTtank

dt
=

1

Vtank

{
qR1(TR1 − Ttank) + qL2(TL2 − Ttank) +

Q−Qloss

ρcp

}
(4.15)

Hence storage tank temperature dynamics.

Basing on the listed assumptions, the system model was derived and the
final model is a set of ordinary differential equations listed in eq. (4.16).

dTL1
dt

=
1

Vhex

{
qL1(T1 − TL1)−

UhexAhex

ρcp
∆Tm,1

}
(4.16a)

dTR1

dt
=

1

Vhex

{
qR1(Ttank − TR1) +

UhexAhex

ρcp
∆Tm,1

}
(4.16b)

dTL2
dt

=
1

Vhex

{
qL2(Ttank − TL2)−

UhexAhex

ρcp
∆Tm,2

}
(4.16c)

dTR2

dt
=

1

Vhex

{
qR2(T2 − TR2) +

UhexAhex

ρcp
∆Tm,2

}
(4.16d)

dTtank

dt
=

1

Vtank

{
qR1(TR1 − Ttank) + qL2(TL2 − Ttank) +

1

ρcp
(Q−Qloss)

}
(4.16e)

where,

Qloss = (UA)tank(Ttank − Tsurr) (4.16f)

∆T n
m,1 = 0.5

[
(T1 − TR1)

n + (TL1 − Ttank)
n
]
, n =

1

3
(4.16g)

∆T n
m,2 = 0.5

[
(TL2 − T2)n + (Ttank − TR2)

n
]
, n =

1

3
(4.16h)
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There are five differential states in the model. The other variables can be
classified as disturbances or inputs depending on whether they can be
manipulated within the system boundaries or not.

• Differential states (x): there are 5 states variables in the system.

x =
[
TL1 TR1 TL2 TR2 Ttank

]> (4.17)

• Inputs (u): there are 5 input variables in the system. These variables
could be possibly manipulated.

u =
[
qL1 qR1 qL2 qR2 Qtank

]> (4.18)

• Disturbances (d): there are at least 3 disturbances in the system.
These variables are uncertainties that can not be manipulated within
the system boundaries.

d =
[
T1 T2 Tsurr

]> (4.19)

• Parameters: the remaining variables are parameters as long as they
are constant with respect to time. They depend on the design of the
system, material properties of the storage fluid and heat exchanger.

Therefore, the system’s model can be simply written as: ẋ = F(x,u,d)

In the Underwood approximation for heat exchanger modeling, where
n = 1

3
, it is best to express the model as a set of differential and algebraic

equations to avoid having terms with root expressions (fraction indexes).
This is because the derivatives of roots are rational, generating singularity
problems when gradients are calculated by CasADi at points with state
values approaching zero.

Therefore, new states are assigned to slightly adapt the model to deal with
the aforementioned numerical issues. The resulting model will be of a
higher dimension with extra algebraic states. For the simple two plant
model case, 4 new algebraic states are defined which are new variable
vector z.

z =
[
a b c d

]> (4.20)
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4.2 Modeling of a two plant energy storage system

where:

a = (T1 − TR1)
n (4.21a)

b = (TL1 − Ttank)
n (4.21b)

c = (TL2 − T2)n (4.21c)
d = (Ttank − TR2)

n (4.21d)

which can be written in an implicit form as eq. (4.22).

a
1
n − (T1 − TR1) = 0 (4.22a)

b
1
n − (TL1 − Ttank) = 0 (4.22b)

c
1
n − (TL2 − T2) = 0 (4.22c)

d
1
n − (Ttank − TR2) = 0 (4.22d)

The set of algebraic equations can be written in general form as
G(x, z,u,d) = 0. The model becomes a differential algebraic system of
equations (DAE) when combined with the rest of the differential states.
The algebraic equations eq. (4.22) are added to the first five differential
equations in eq. (4.16). The equations eq. (4.16g) and eq. (4.16h) are
written as eq. (4.23a) and eq. (4.23b) respectively.

∆T n
m,1 = 0.5(a+ b), n =

1

3
(4.23a)

∆T n
m,2 = 0.5(c+ d), n =

1

3
(4.23b)

The DAE model is expressed in a general semi-explicit form expression as
eq. (4.24)

ẋ = F(x, z,u,d) (4.24a)
0 = G(x, z,u,d) (4.24b)

Expressing the model as a set of DAEs with 9 states (5 differential, 4
algebraic) instead of an ODE with only 5 differential states makes the
optimal control problem and consequently the NLP larger and slightly
slower to solve compared to the previous model but has the following
advantages:
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Chapter 4. Modeling of thermal energy grids

1. DAE formulation increases the chances of the solver, IPOPT,
converging to an optimal solution of the NLP by avoiding errors
when the differentiation algorithm, CasADi, fails to compute the
Jacobians for the NLP due to singularity.

2. The NLP can be solved from any possible initial state of the system
given to the solver.

We need a model for a system that has no storage. This model is to be used
as a base case (control) when showcasing the performance of a thermal
energy storage.

4.3 Modeling thermal supply without storage

The pictorial representation of the system without storage is shown in
fig. 4.2. The rate of heat transfer from the supply side is limited by the
heat transfer across the heat exchanger. Otherwise, the rest of the heat is
dumped out by a cooling process, for example. Applying the same
principles and assumptions taken in the derivation of the simple two plant
system with storage we obtain the following equations 4.25.

Figure 4.2: Topology of a simple thermal energy grid without thermal
storage (direct heat supply)
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4.4 Energy demand modeling

dT1,o
dt

=
1

Vhex

{
q1(T1 − T1,o)−

UhexAhex

ρcp
∆Tm

}
(4.25a)

dT2,o
dt

=
1

Vhex

{
q2(T2 − T2,o) +

UhexAhex

ρcp
∆Tm

}
(4.25b)

0 = a
1
n − (T1 − T2,o) (4.25c)

0 = b
1
n − (T1,o − T2) (4.25d)

where,

∆T n
m = 0.5(a+ b), n =

1

3
(4.25e)

(4.25f)

The model variables in this no storage system can be classified as follows:

• Differential states (x): there are 2 state variables in the system.

x =
[
T1,o Tz,o

]> (4.26)

• Inputs (u): there are 2 input variables in the system. These variables
could be possibly manipulated.

u =
[
q1 q2 QM Qdump

]> (4.27)

As a part of modeling a thermal energy supply grid, it is important to
understand how to model energy demand. The demand must be
anticipated and forecasted. These forecasted demand profiles are set as
operational constraints that a control strategy must abide to. Depending on
the nature of the demand-side, there are common demand patterns that are
discussed in the next section.

4.4 Energy demand modeling

To perform energy storage control simulations there must be a model for
prediction of energy demand. This is usually a forecast that depends on
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Chapter 4. Modeling of thermal energy grids

the historical data of the demand-side and other factors such as season of
the year, time of the day. The process of obtaining such models is out
of the scope of this report. However, we shall discuss some interesting
demand trends. Since thermal energy storages are used for intermittent
storage to cater for diurnal supply-demand mismatch we are interested on
daily demand curves (within 24 hours).
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Figure 4.3: Average diurnal electricity demand in Norway for the year
2018 (NordPool, 2018)

Figure 4.3 shows the mean hourly electrical power demand in a single day
in Norway as recorded by NordPool (2018). The feature of this demand
curve is a sharp rise to a peak at 9-10 AM in the morning. This is when most
households are awake and are using a lot of electrical devices for cooking,
heating water. As the day goes on the demand gradually decreases and past
8 PM it sharply decreases because people are going to sleep. The lowest
demands are at 4 AM the morning.

The same figure 4.3 also shows the standard deviation (uncertainty)
associated with the mean hourly demands. It is vivid that there is some
correlation between the magnitude of demand with uncertainty. The
uncertainty is highest at the peak demand hours and lowest at the low
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4.4 Energy demand modeling

demand hours. This gives us an idea that when modeling uncertainty in
demand one must consider the change in uncertainty levels at each hour
depending on the magnitude of the mean hourly demand. The variance of
the demand also depends on the season of operation. There is the greatest
variance in the winter season and variance is lowest in summer period.

Another typical daily energy demand curve is the “duck curve” demand
profile. California Independent system Operator (CAISO)’s duck curve is
shown in figure 4.4. The duck curve is interesting since it shows the
challenge of intermittent renewable resources such as solar and wind
integration to energy supply grids. In the case of California state in the
United States, there is abundant sunlight but only available in the day and
not at night. This challenge supports the role of energy storage for
successful integration.
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Figure 4.4: Estimated net load daily trend for the year 2020 from
CAISO showing the “duck curve” (Burnett, 2016)

The demand data was scaled down to generate the same trend and a
hypothetical supply curve from a solar supply was considered to show the
mismatch of supply and demand peaks. See fig. 4.5. This scaled down
data has been used as a case study in section 5.4.
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Figure 4.5: Scaled demand values of the California duck curve with
a typical solar supply curve to illustrate the intermittent
supply mismatch challenge
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Chapter 5
NMPC control on thermal energy
grids

This chapter demonstrates the implementation of an MPC controller on a
simple thermal energy supply grid. First, we present a numerical case
study that compares operation of the direct thermal supply system (see
section 4.3) against a two plant energy grid with a thermal storage as
described in the section 4.2. In both mentioned cases, there is zero direct
tank heating (Qtank), for better comparison. This is followed with another
case study to demonstrate integration of direct storage heating using a
renewable energy resource of intermittent solar power. Both of the cases
already mentioned are standard NMPC control with state feedback and no
uncertainty. Lastly, a plant-model mismatch is introduced in the supply
and demand temperatures. This final case study is used to compare the
performance of standard NMPC with multi-stage NMPC considering an
operational constraint on the tank temperature.

5.1 Implementation description

After obtaining the model equations for the systems, they should be
represented in the computer code in MATLAB. The code includes the
following sections:
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Chapter 5. NMPC control on thermal energy grids

1. Parameter specification: The nominal system parameters must be
specified before running a simulation for the system. The
parameters used in the model are approximately realistic and are
listed in table 5.1

Table 5.1: Model parameters and values used

Parameter Description Value Units

Uhex Overall heat transfer
coefficient for heat exchanger

0.5 kW/m2K

Ahex Heat transfer area for heat
exchanger

300 m2

Utank Overall heat loss coefficient
for tank

0.5 W/m2K

Atank Heat loss area for storage tank 100 m2

Vtank Volume of the storage 103 m3

cp Specific heat capacity of
storage material

4.186 kJ/kgK

ρ Density of storage material 1000 kg/m3

PM Cost per unit external energy 10−3 -
PT Cost per unit direct tank

heating
5× 10−6 -

T1 Supply stream temperature 95 ◦C
T2 Demand stream temperature 20 ◦C
Tsurr Ambient temperature 15 ◦C

2. Optimiser: This is the part of the code that represents the NMPC
controller. It includes the approximate model (expected model) and
the formulation of the NLP. The direct collocation discretisation
method was implemented using Radau 3rd order polynomials. As
mentioned in section 3.2, IPOPT was the optimisation solver used to
compute the optimal solution.

3. Plant simulator and observer: This part is used for sampling the state
of the real plant. The system of DAEs are solved by an integrator for
discretised time steps to obtain the approximate system dynamics.
In this thesis, ode15s integrator in MATLAB was used to simulate
the differential equations for the system representation. This
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5.2 Standard NMPC without thermal storage

simulation was used to represent the “real plant”. The MATLAB
function allows passing the system model and the required time span
it should simulate in order to obtain the state values at every
sampling time.

A standard MPC with state feedback is investigated here. The model
derived in sections 4.3 and 4.2 were used in the calculations to represent
their respective systems. To begin with the simulation results for a thermal
energy supply grid without storage are presented in the next section.

5.2 Standard NMPC without thermal storage

To illustrate the importance of a thermal storage controlled by a standard
NMPC controller we use a simple supply-demand mismatch scenario.
Figure 5.1 shows the demand and supply profiles over 24 hours. The
expected daily supply is always constant at 2500 kW, while the expected
demand is 1500 kW for the first 12 hours and then immediately rises to
3500 kWfor the remainder of the day.
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Figure 5.1: Simple supply-demand mismatch scenario in a thermal
energy system

To begin with, let us investigate the operation of energy supply to a
demand stream without storage as illustrated in fig. 4.2. A standard NMPC
controller manipulates the flow of the demand-side stream q2 into the heat
exchanger, the purchased energy from the external heating source QM and
the amount of heat dumped in the supply side Qdump. The supply-side flow
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Chapter 5. NMPC control on thermal energy grids

q1 is fixed at 50 `/s. Therefore, in this case the manipulated variables
u =

[
q2 QM Qdump

]>. The control objective is an economic function to
minimise the cost of external heating. The objective function is written in
eq. (5.1).

min
(x,u)

φ(x,u) (5.1a)

where

φ(x,u) = PMQM (5.1b)

The optimisation objective eq. (5.1) is constrained by the system dynamics,
demand satisfaction constraint and supply constraints. The constraints are
categorised as follows:

1. Equality constraints: These are hard constraints that the system has
to strictly satisfy for optimal and stable operation.

(a) The decision variables are related by the system dynamic model
and they can not violate it. If these constraints are violated,
then the system will go unstable. The model of the system is an
equality constraint in this optimal problem.

F(ẋ,x, z,u,d) = 0 (5.2)

(b) Consumer demand satisfaction: The scenario expects that the
demand-side requires a specified amount of energy at a specific
time. If the demand profile is constant then the demand is
independent of time. However, it is almost always the case that
there is a varying demand in the sink. It is of interest to see
how a system without thermal storage handles this variations
from the normal base load. In this scenario, a step increase in
demand was considered assuming that the supply was always
higher before the step time. The thermal power demand can be
satisfied by the enthalpy gain of demand stream across the heat
exchanger and power purchased from external resource. Hence
eq. (5.3).

Qdemand(tk) = QM,k + ρcpq2,k(T2,o,k − T2) (5.3)
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5.2 Standard NMPC without thermal storage

where QM,k is the energy purchased from external market at the
kth hour.

(c) Supply constraint: The thermal energy supply rate and the
supply stream temperature at which the energy is available are
both specified. In practice, these supply streams are hot
process streams that require cooling to a specific temperature.
If the energy system cannot provide enough cooling, the
stream must be cooled further. Therefore a supply constraint is
added to ensure that the system does not draw more energy that
what is available. For the cases when the supply is higher than
demand, energy can be dumped at a rate Qdump. When the
thermal energy supply rate is 2500 kW, it implies a return
temperature of 83.05 ◦C.

Qsupply(tk) = Qdump,k + ρcpq2,k(T1 − T1,o,k) (5.4)

where Qdump,k is the rate of heat dumped in the supply side at the kth

hour.

2. Inequality constraints: These are relaxed conditions that the system
must satisfy. They include:

(a) State bounds: The system is assumed to have a storage fluid
with properties of water. Therefore, the storage fluid does not
exceed a temperature of 100 ◦C and does not go below zero.
The tank temperature is not allowed to go below 30 ◦C. Hence
eq. (5.5).

[
0
0

]
≤
[
T1,o
T2,o

]
≤
[
100
100

]
(5.5)

(b) Input bounds: The manipulated variables have saturation limits
to which they cannot exceed. It is undesirable in practice to
have an optimal solution outside the MV saturation limit range.
In this scenario the volumetric flows can be adjusted between
0 and 50 `/s. The power flows QM and Qdump must be non-
negative. Hence eq. (5.6).
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0
0
0

 ≤
 q2
QM

Qdump

 ≤
 50

+∞
+∞

 (5.6)

The standard NMPC above was implemented to the above scenario without
thermal storage using the methods described earlier in section 3.2. The
simulation assuming a perfect model for 24 hour operation yielded results
that are plotted in figure 5.2.

Figure 5.2 shows that without storage the system dumps all the extra heat
supplied in periods of low demand. The supply-demand difference is 1000
kW, and that is the thermal energy dumped in the low-demand phase. In the
high demand period, the system purchases extra heating from the external
source. The amount of extra heating purchased is equal to the difference
between the peak demand and supply, that is 1000 kW. The flow rate of
the demand stream increases from 4.78 to 8.12 `/s at the demand step time.
The controller cannot increase the flow to the maximum because it reaches
equilibrium. Moreover, it is impossible to transfer thermal energy through
the heat exchanger at a higher rate than the rate at which it is supplied.

The temperature difference between T1,o and T2,o is increased when the
peak demand rises. This is also because of the same reason that the NMPC
manipulates the heat exchanger to transmit all the available thermal power
now that the demand has exceeded the supply. The rest of the energy
required to meet the demanded thermal power is purchased from the
external market. As it is evident in figure 5.2, past the 12th hour mark there
is zero dumped heat, and the external energy purchased at a rate of 1000
kW.

The performance of the economic standard NMPC on a thermal energy
supply system without storage has been presented in this section. The next
section presents the case where a thermal storage is part of the thermal
supply grid. The performance of the latter system is discussed and
compared in the next section.
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Figure 5.2: Simple scenario of power supply and demand mismatch for
an energy system that has no thermal storage
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5.3 Standard NMPC with thermal storage

Now we consider a thermal storage included in the thermal energy supply
system (see fig. 4.1). The thermal supply is not connected directly to the
demand side. The storage tank is expected to be heated up first by the
supply stream, and then the storage “discharges” to the demand stream to
satisfy demand requirements.

Again a standard NMPC operates the system under the similar
supply-demand scenario in fig. 5.1. In this case we want to compare the
behaviour of a thermal power supply with and without storage therefore
the direct tank heating, Qtank is set to 0 kW. The supply-side and storage
outlet flows (qL1, qR1 and qL2) are fixed at 50 `/s and only the
demand-side flow qR2 is manipulated. The control objective is the same as
before in eq. (5.1). The constraints here are the similar to those in
section 5.2 except for the state bounds (see eq. (5.7)) and the equality
constraints, where the set of DAEs corresponding to the thermal storage
system (eq. (4.23)) were used. The 24 h simulation was done assuming no
plant-model mismatch and the results were plotted as shown in figure 5.3.


0
0
0
0
30

 ≤

TL1
TR1

TL2
TR2

Ttank

 ≤


100
100
100
100
100

 (5.7)

Figure 5.3 shows that the tank temperature rises at the beginning when the
demand is lower than the supply. Instead of the system dumping the extra
heat, the tank provides capacity for storage of surplus thermal energy.
However, as the temperature of the storage rises, the storage’s ability to
withdraw heat from the supply stream decreases. This is due to the
decrease in the mean temperature difference across the supply-side heat
exchanger. The temperature difference can be thought of as the force that
drives thermal current from the source. Therefore, as the storage
temperature rises the rate of “charging” decreases.

At the 12th hour mark, the storage starts to cool down at a decreasing rate.
Similar to charging process, the rate of storage thermal discharge is higher
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Figure 5.3: Simple scenario of power supply and demand mismatch for
an energy system with thermal storage tank of volume 106
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than when the storage is hotter. However, the flow rate of the cold stream
qR2 is manipulated by the NMPC to ensure thermal power demand is
satisfied by the stored heat first as long as possible before purchasing from
the market. This is why at the demand step time the controller increases
the flow qR2 sharply to match the sudden increased demand. It is followed
by a gradual step wise increase as a consequence of the storage gradual
cooling until the storage is completely discharged at t = 18h. Complete
thermal discharge of the storage is when the storage temperature cools
down to an equilibrium temperature. After that, the controller will
increase purchased power QM to meet the demand requirements.

The amount of market energy purchased is lower compared to the no
storage case because the system will purchase only when the thermal
storage is fully discharged. In this case, the system purchases energy only
for the remaining 6 hours. Moreover, the rate of rejected heat is highest
when the storage is hottest, and is zero when the storage begins to
“charge” or has completely “discharged” and is at its equilibrium
temperature. The magnitudes of Qdump are lower than that observed in the
no storage case because most of extra energy supplied is stored in the tank
and reallocated. The period in which the storage dicharges depends on the
storage size and the thermal energy demand rate.

To observe the effect of storage size on the system, simulations were
performed with different storage sizes. Smaller storage will heat up faster
to higher temperatures than larger storage. When the demand is higher
than supply and the tank starts cooling, a smaller storage exhibits faster
cooling rates than a larger storage. Therefore, the discharge times for the
storage depends on the storage size. Even though a larger storage does not
heat up as high temperature as the small storage, it has bigger storage
material mass and therefore a larger thermal capacity. This implies that
less heat is dumped in the low demand phase and the storage can supply
energy to the supply at much longer periods before purchasing power from
external sources.

The trend of discharge time with storage material volume can be seen
using a scatter plot shown in fig. 5.5. The larger storage size the longer the
discharge time. However the plot shows that the effect on discharge time is
less pronounced when the size is large and for infinite large sizes an
asymptote discharge time is reached. This shows that there is a limit for
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Figure 5.4: Comparison of storage temperatures with different storage
sizes showing the effect of storage size

the effect of storage size on thermal discharge time. In this example case,
the net thermal charging rate equals net discharge rate at 1000 kW. Due to
that we expected to see for an infinitely large storage that the thermal
discharge time is at least equal the charging time of 12 h. That is not the
case because the quality of thermal energy stored will depend on the
temperature at which it is stored. When thermal energy is stored at a lower
temperature than it was originally produced, it losses its ability to transfer
known as exergy losses. When the design optimisation is performed, it is
expected that the tank costs are significant with larger storage volumes.
This will lead to a solution for an optimal storage size.

Therefore, these simulation results indicate that it is possible to satisfy peak
demand requirements and significantly save purchase costs from external
sources by a good choice of thermal storage size and good control structure
such as the standard NMPC. A thermal storage controlled by an optimal
controller such as a standard economic NMPC will always be cheaper to
operate than direct coupling of the supply and demand streams.

After assuming zero direct storage heating in the previous case studies,
it is also interesting to see the behaviour of a thermal energy grid with
storage and two integrated sources. The additional thermal energy source
is intermittent, for example solar power. The following section presents
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Figure 5.5: Scatter plot of storage discharge time (td) after a 12 h
charging duration against storage size

such a case study and discussion of the simulation results.

5.4 Standard NMPC on thermal storage with
direct solar heating

Consider the scaled California “duck curve” demand data shown in fig. 4.5
with an intermittent direct storage heating supply that comes from solar
power. The solar power is only available at night and the availability is
variable depending on the hour of the day. It is most available at noon and
least available in the morning and afternoon hours of the day.

This case was implemented using a standard NMPC that controls not only
qR2, Qdump and QM but also Qtank. The Qtank comes from solar heating thus
can be denoted as Qsolar interchangeably. The standard NMPC implements
the predicted hourly solar power levels as upper bounds forQtank. The input
bounds are represented in eq. (5.9). The state bounds used here are equal
to those in eq. (5.7). The objective function has an added term from price
of direct storage heating (PTQtank) in this case (see eq. (5.8)).
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5.4 Standard NMPC on thermal storage with direct solar heating

φ(x,u) = PMQM + PTQtank (5.8a)

where 
0
0
0
0

 ≤

qR2

Qtank

QM

Qdump

 ≤


50
Qsolar,k

+∞
+∞

 (5.9)

and Qsolar,k is the amount of solar heating available at the kth hour of the
day.

The simulation was performed using the default implementation described
in section 3.2 of this thesis. The results for the simulation are shown in
figure 5.6.

The storage remains at a constant temperature for the first 9 hours because
the net available supply is less than the demand. Therefore, its starts
purchasing energy from the external market at the beginning to cater the
demand gap. When the minimum demand hours are approaching the solar
power availability increases. The storage temperature starts to rise rapidly
to store the relatively cheaper solar power for future high demand
(PT << PM). The controller anticipates a future peak demand that is at
2100 hrs. This is because the MPC recomputes the optimal control
problem at every time step with a prediction of the future supply and
demand values in the coming 24 hours. The storage charges to the
maximum at 1700 hrs before it starts cooling due to increase in energy
demand.

The following section introduces discrepancies between the model in the
optimiser and the actual plant (simulator). The case study compares the
performance of standard NMPC and a multi-stage NMPC whose theory
has been discussed in section 2.4.3.
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Figure 5.6: Integration of intermittent solar power source with the heat
source stream via thermal storage
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5.5 Multi-stage NMPC on two-plant thermal
storage system

The previous numerical case studies assumed perfect knowledge of the
system dynamics. This is not possible in practice. There are always
discrepancies between the mathematical model and the actual plant. The
plant model mismatch will result to slightly different operation. There are
also imperfections in measurements and the supply and demand profiles
are always different from the expected values. These unanticipated
variations in the parameters are known as uncertainties.

For the energy storage system, there are uncertainties that are associated
with:

1. Actual supply and demand values: The NMPC calculates over a
prediction horizon into the future, thus requiring a forecast of these
values. However, in actual case they are different from expected
values.

2. Disturbances in the temperature of supply and demand flow streams
(T1 and T2), surrounding temperature (Tsurr), volumetric flow of
supply stream (qL1).

3. Approximations in the mathematical model.

4. Changes in design parameters such as overall heat transfer coefficient
(Uhex) due to fouling etc.

These uncertainties can result to:

1. Failure to exactly match power demand requirements, especially
when the expected demand is underestimated. Extra thermal power
supply to the demand side when the expected demand is
overestimated results to unnecessary losses. However, the
underestimated expected demand is a more critical issue.

2. Violation of model equality constraints that can result to poor and
unsafe operation, and even process instability.
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5.5.1 Implementation of multi-stage NMPC on thermal
storage

The multi-stage NMPC was designed to reject huge disturbances in the
supply temperature (T1) and demand temperature (T2). The NLP
optimiser, which is basically our controller is programmed to expect a
supply temperature T1 = 95◦C and a demand stream temperature
T2 = 20◦C. However, this is not the case for actual values in the plant.
The actual values for T1 and T2 are 99◦C and 18 ◦C. Physically this can be
interpreted that there is a potential to supply heat at a higher rate than
expected, and the potential of the sink plant to extract heat from the
storage is much greater than expected. Simulations for a standard NMPC
with plant-model mismatch were performed and the results are shown in
fig. 5.8. The objective function in this case include a regularisation term
for the flow inputs as shown in eq. (5.10). This term reduces wild changes
in the manipulated variables and the obtained solution has smoother input
transitions. (Biegler, 2010)

φ(x,u) = pMQM + Pu(q
2
L2 + q2R2) (5.10a)

where, Pu = 5× 10−5

Moreover, in the same case a multi-stage NMPC was implemented with
three levels for both uncertainty variables T1 and T2. The assumed
uncertainty space for the T1 and T2 values was a deviation of 5◦C either
side of the expected mean temperatures. Therefore the uncertainty space
interval considered for the two parameters are listed in eq. (5.11).

T1,actual = [90, 100] (5.11a)
T2,actual = [15, 25] (5.11b)

Figure 5.7 shows the possible uncertainty realisations taken were all the
combinations of the extreme levels and the mean values for each parameter.
This is a conventional BOX method for scenario selection. The scenario
NMPC was implemented with as robust horizon (Nr) of 1.
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Figure 5.7: The BOX method for selection of uncertainty realisations in
the scenario tree

A custom function in MATLAB was created to automatically return the
scenarios for two pairs of parameters. The function is called
scenpara() and can be found in the Appendix. The implementation of
the non-anticipativity constraints in the MATLAB code was done by use
of a for loop to list all the equality constraints for the equal inputs
originating from the root node. More details on the MATLAB code
implementation of multi-stage NMPC can be seen in the code included in
the Appendix.

The figure 5.8 shows results for simulation with plant-model mismatch as
explained before. The figure compares both standard NMPC and
multi-stage NMPC control on the exact case scenario over one day of
operation. It can be seen that economically the multi-stage NMPC is
worse than standard NMPC because it purchases more energy from the
market. The standard NMPC does not purchase external energy at all
times because the actual supply is always higher than expected and
therefore the stored heat is capable of satisfying demand in the peak
demand phase without need of extra purchase. However, when a constraint
is set for tank temperature, the standard NMPC violates it while
multi-stage NMPC does not. This shows that multi-stage NMPC is much
more conservative but the price must be paid by spending more to avoid
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Figure 5.8: Plots for both standard NMPC and multi-stage NMPC with
plant-model mismatch T1,actual = 99◦C, T2,actual =
18◦C, and Ttank ≤ 66.7◦C
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the constraint violation. Therefore, due to the critical nature of the
constraint violations in plant operation, multi-stage NMPC is better than
standard NMPC. This might be for example, high tank temperature should
not be allowed to avoid vapour pressure build up in the tank for safer
operation. In another plant process, this might be a quality constraint and
its violation implies loss of production and product quality. Otherwise, if
there is no operational constraint in the system, then standard NMPC
definitely shows the best economic performance and should be
encouraged.

In addition to that, when there are larger disturbances present, and there
are tight constraints imposed, the standard NMPC could easily run into
infeasibility issues. As for the case of this project, if the tank temperature
bound is chosen much lower than 66.7 ◦C, there is no guarantee that there
would be recursive convergence to a feasible solution by the solver. A
way around this is to express the bounds as soft constraints and penalise
the magnitude of soft constraint violation in the objective function. This
constraint formulation has not been implemented in this thesis.

5.5.2 Issues with implementation of multi-stage NMPC

In these two simulations the flows in the heat exchanger 2 were both
manipulated. This is because if qL2 was fixed as in previous cases and we
only allow qR2 to change then the solver fails to converge to a solution.
The difficulty is due to the supply side from the tank being constrained,
the only way to satisfy the demand constraint is by manipulating qR2, but
since multi-stage NMPC has non-anticipativity constraints, this flow is
fixed for all scenarios with a specific demand and market energy. This
defines a required temperature TR2 for each scenario which might not be
feasible with the storage dynamic constraints. Therefore, the issue with
the definition of demand satisfaction constraint has resulted into the
implementation of both flows as manipulated inputs. This implies that the
solution in the multi-stage NMPC is not a unique solution. Hence, further
work can be done in this area to reformulate the demand satisfaction
constraint in a better way and avoid these mentioned numerical problems.
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Chapter 6
Discussion

Included in this chapter is a general discussion about the results of this
work focusing on the objectives set at the beginning of the research period.
Some numerical issues that occurred while conducting this work and how
they were resolved have been presented. Suggestions on future work and
possible improvements of results have been highlighted.

6.1 TES versus no storage

The inclusion of a thermal storage in a thermal supply grid is cost saving
compared to direct thermal supply. When the system is controlled by an
economic MPC, it ensures minimum purchase of energy as possible from
external sources. Inclusion of thermal storage gives the energy supply grid
capacity of storing as much thermal energy as possible when supply is
greater than demand and utilise the stored energy in peak demand periods.
The quality of thermal energy stored for an non-stratified storage is lower
because it will always be stored at a lower temperature than it was
previously available. This lack of temperature stratification lowers the
storage efficiency but the effect of storage in the energy system is still
evident.
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6.2 Operation of TES using NMPC

Thermal energy storage is advantageous for energy supply and demand
management when operated by an economic optimal control policy using
a standard NMPC. They exhibit cheaper operation and energy savings
when there is a characteristic supply and demand mismatch in daily
operation. The standard NMPC with an economic objective function
decides on current inputs that will lead to profitable operation. The
optimal operation is storing as much as possible and releases the stored
heat efficiently when the thermal power demand is higher than thermal
power supplied. The storage size affect the duration of thermal discharge,
storage temperature and amount of thermal energy that can be stored.

When another supply source is available, it can be integrated into the system
via a thermal storage flexibly. An intermittent source such as a variable
solar heating supply which is cheaper than external heating is prioritised
by the standard NMPC control when available to heat up the storage and
prepare for peak demand periods.

Uncertainty in actual plant operation is better handled by the robust multi-
stage NMPC for thermal energy storage compared to standard NMPC at
the expense of higher operating costs. This is a merit because operational
constraint satisfaction in chemical processes is paramount. Occurrence of
constraint violations can be translated to economic losses due to unsafe
operation and substandard product quality. Therefore, profitable operation
is not the main concern, and instead constraint violations that correspond
to safe operation and product quality standards must always be prioritised.
In this case of thermal storage, there could be storage temperature bound to
avoid vapour pressure build-up in the tank. Multi-stage NMPC will ensure
operation without violating the constraint, but standard NMPC results to
constraint violation and may fail to converge to a feasible solution. This
makes multi-stage NMPC a better controller than standard NMPC under
uncertainty in supply and demand.
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6.3 Numerical Issues

The numerical case studies that have been done in this thesis brought forth
some numerical problems which were tackled using some mathematical
tricks. These numerical issues include:

• Singularity: To avoid singularity and computation of non-real
jacobians by CasADi, it is important for the NLP to be formulated
with additional algebraic states. These states were introduced such
that polynomial terms including differential states with fractional
exponents were substituted from the model. This formulation also
ensures the convergence from any feasible starting points.

• Computational speed in NMPC: To improve computational speed,
initial guesses provided to IPOPT must be near to the optimal
solution. To ensure fast convergence, the solution from the previous
open loop problem is stored and used as an initial guess for the next
NMPC reoptimisation step. Apart from fast convergence, this also
improved the chances converging to a feasible point.

• Feasible demand side temperatures (TR2): To avoid failure of
convergence to a feasible solution, the numerical case study must be
formulated wisely. The demand side heat exchanger will always
transmit thermal energy and the rate of thermal power transferred is
dependent on the ratio of heat capacities of the cold and hot side.
The return temperature of the cold side stream (TR2) has a limit and
that may cause an enthalpy gain larger than the expected demand.
Therefore, for an equality demand satisfaction constraint, the
expected demand (Qdemand) must always be larger than this limit in
enthalpy gain.

6.4 Unresolved Issues

The implementation of multi-stage NMPC with control of only one flow
in the demand side remains unresolved. The issue might be because of
how the demand satisfaction constraint function is expressed. When the
value of return stream temperature TR2 determined by the dynamics of the
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thermal storage system is high enough to make its change in enthalpy higher
than Qdemand, then the equality constraint can never be satisfied since QM

is non-negative. A suggestion to solve this problem could be by using an
inequality constraint with a slack variable instead of an equality constraint
for the demand satisfaction constraint.

The slack variable will physically represent dumped heat since the demand
stream has already satisfied the demand requirements, but the storage
dynamics make it impossible to match it exactly. The formulation of the
inequality constraint could be written as equation 6.1.

QM,k + ρcpqR2,k(TR2,k − T2)−Qslack,k ≥ Qdemand(tk) (6.1)

where Qslack should be always positive, and the value may be penalised in
the objective function.

It was also found impossible for IPOPT to converge to an optimal solution
when considering uncertainties in Qdemand and Qsupply instead of the
temperatures. This is because the plant model does not include the demand
and supply rate as parameters in the model. Therefore, a better formulation
of the plant model is to required to include the aforementioned parameters.

6.5 Further work

More improvements are possible in the multi-stage NMPC implementation.
These improvements include:

• Reformulation of the model to explicitly include thermal power
supply and demand in the system dynamics, both in the optimiser
and the simulator. This reformulation should also be included in the
constraints.

• Implementation of soft constraints and slack variable tricks seems
extremely important in order to tackle infeasibility problems in both
standard NMPC and multi-stage NMPC cases.

• It could also be interesting to select other uncertain parameters such
as overall heat transfer coefficient to design the robust NMPC.
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6.5 Further work

In general, future work on optimal control of thermal energy systems
could be on determination of algorithms to predict thermal power supply
and demand with little uncertainty. It might be a far-fetched idea to
completely eliminate the effect of uncertainty on optimal control but by
application of learning algorithms on historical data better forecasts can be
obtained and improve the control of a smart thermal energy grid.
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Chapter 7
Conclusion

The drawn conclusions regarding the thesis objectives are presented
together in this chapter after the general discussions.

The mathematical model of a simple two-plant thermal energy storage
system from previous work has been successfully reformulated from an
ODE to a set of DAEs which is now suitable for numerical computations.
This formulation generates non-singular jacobians for values of decision
variables that are close to zero and hence a more robust NMPC code. The
reformulation increases the dimension of the optimisation problem but it is
important anyway to ensure convergence.

It has been found that thermal storage is important in thermal supply grids
and when controlled by an economic standard NMPC, it operates at
minimal costs. The direct thermal supply without thermal storage results
to dumping of excess supplied heat at periods of abundant thermal supply.
Moreover, the system without storage purchases the exact amount of extra
demanded heat from the market at peak demand periods.

Standard NMPC on a thermal storage with an economic objective and
assuming perfect prediction behaves correctly. With a varying supply and
demand, the controller manipulates the system to heat up storage when the
supply is highest and to cool it down to release the stored thermal energy
when the demand is highest. The use of an additional cheaper but
intermittent solar supply has been showcased and the controller works
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perfectly by preferring to store the cheaper source when it is available. It
prepares the system to use the stored heat at peak periods instead of using
emergency sources.

When there is a plant-model mismatch due to supply and demand
uncertainty, the implementation of multi-stage NMPC shows better
performance than standard NMPC on the thermal storage. Multi-stage
NMPC incurs more costs than standard NMPC but it obeys operation
constraints. Constraint satisfaction is argued as a more important criteria
that cost savings. This is because processes have to operate within their
limits to ensure safety and product quality. Otherwise, constraint
violations happening in standard NMPC control causes huge losses and
also results to infeasibilities when constraints are not softened.
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Appendix

System Models

This section presents the set of mathematical model equations used in the
optimal control problems for numerical case study.

DAE model for two plant system

The system described in has a mathematical model in semi-implicit DAE
form shown in eq. (7.1l).

dTL1
dt

=
1

Vhex

{
qL1(T1 − TL1)−

UhexAhex

ρcp
∆Tm,1

}
(7.1a)

dTR1

dt
=

1

Vhex

{
qR1(Ttank − TR1) +

UhexAhex

ρcp
∆Tm,1

}
(7.1b)

dTL2
dt

=
1

Vhex

{
qL2(Ttank − TL2)−

UhexAhex

ρcp
∆Tm,2

}
(7.1c)

dTR2

dt
=

1

Vhex

{
qR2(T2 − TR2) +

UhexAhex

ρcp
∆Tm,2

}
(7.1d)

dTtank

dt
=

1

Vtank

{
qR1(TR1 − Ttank) + qL2(TL2 − Ttank) +

1

ρcp
(Q−Qloss)

}
(7.1e)

0 = a
1
n − (T1 − TR1) (7.1f)

0 = b
1
n − (TL1 − Ttank) (7.1g)

0 = c
1
n − (TL2 − T2) (7.1h)

0 = d
1
n − (Ttank − TR2) (7.1i)
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where,

Qloss = (UA)tank(Ttank − Tsurr) (7.1j)

∆T n
m,1 = 0.5(a+ b), n =

1

3
(7.1k)

∆T n
m,2 = 0.5(c+ d), n =

1

3
(7.1l)

Source codes

Here the MATLAB source codes used for different numerical cases in this
thesis are presented.

Direct supply with no storage dynamics

ODE function

1 function dxdt = twoPlantModelDirect(~,x,p)
% Model for direct heat exchange system between two plants

3 % a heat supplier and consumer external heating.

%========================================================================

5 % Author: Zawadi Mdoe

% Date: May 2019

7 %========================================================================

%% Description of the states:

9 T_L1 = x(1);

T_R1 = x(2);

11

%=======================================================================

13 %% Assignment of inputs and disturbances

% Input variables u's

15 q_L1 = p(1);

q_R1 = p(2);

17

% Distubances d's

19 T1 = p(3);

T2 = p(4);

21

% Design and physical parameters

23 V_hex = p(5);
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U_hex = p(6);

25 A_hex = p(7);

rho = p(8);

27 cp = p(9);

n = p(10);

29

%% ODEs

31 dxdt = [(1/V_hex)*(q_L1*(T1-T_L1) - (U_hex*A_hex/(rho*cp))*...

(0.5*((abs(T1 - T_R1))ˆn + (abs(T_L1 - T2))ˆn))ˆ(1/n));

33

(1/V_hex)*(q_R1*(T2-T_R1) + (U_hex*A_hex/(rho*cp))*...

35 (0.5*((abs(T1 - T_R1))ˆn + (abs(T_L1 - T2))ˆn))ˆ(1/n))];

37 end

Two plant dynamics

ODE function

function dxdt = twoPlantModelChen(~,x,p)
2 % Model for an energy storage system with two plants

% a heat supplier and consumer, a storage tank and external heating.

4 %------------------------------------------------------------------

% Description of the states:

6 %------------------------------------------------------------------

T_L1 = x(1);

8 T_R1 = x(2);

T_L2 = x(3);

10 T_R2 = x(4);

T_tank = x(5);

12 %------------------------------------------------------------------

% Reassignment of inputs and disturbances

14 % Manipulated or fixed input variables u's

q_L1 = p(1);

16 q_R1 = p(2);

q_L2 = p(3);

18 q_R2 = p(4);

Q_tank = p(5);

20

%% Distubances

22 T1 = p(6);

T2 = p(7);

24

%% Design and physical parameters
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26 V_hex = p(8);

V_tank = p(9);

28 U_hex = p(10);

A_hex = p(11);

30 rho = p(12);

cp = p(13);

32 h_s = p(14);

A_tank = p(15);

34 T_s = p(16);

n = p(17);

36

%% ODEs

38

dxdt = [(1/V_hex)*(q_L1*(T1-T_L1) - (U_hex*A_hex/(rho*cp))*...

40 (0.5*((abs(T1-T_R1))ˆn + (abs(T_L1-T_tank))ˆn))ˆ(1/n));

42 (1/V_hex)*(q_R1*(T_tank-T_R1) + (U_hex*A_hex/(rho*cp))*...

(0.5*((abs(T1-T_R1))ˆn + (abs(T_L1-T_tank))ˆn))ˆ(1/n));

44

(1/V_hex)*(q_L2*(T_tank-T_L2) - (U_hex*A_hex/(rho*cp))*...

46 (0.5*((abs(T_L2-T2))ˆn + (abs(T_tank-T_R2))ˆn))ˆ(1/n));

48 (1/V_hex)*(q_R2*(T2-T_R2) + (U_hex*A_hex/(rho*cp))*...

(0.5*((abs(T_L2-T2))ˆn + (abs(T_tank-T_R2))ˆn))ˆ(1/n));

50

(1/V_tank)*(q_R1*(T_R1-T_tank) + q_L2*(T_L2-T_tank) ...

52 + (Q_tank-h_s*A_tank*(T_tank-T_s))/(rho*cp))];

54 end

Standard NMPC code

No Storage

1 % An implementation of direct collocation to open loop

% dynamic optimisation of a two plant

3 % direct supply without storage using CasADi

%% VARIABLE DEMAND!!!

5

% Zawadi Mdoe, 2019

7 % =========================================================================

clear;

9 clc;

close all;

98



11

addpath('C:\Users\DELL\Desktop\Matlab\casadi-windows-matlabR2016a-v3.4.5')

13 import casadi.*

15 run Parameters_NoStorage.m

17 Q_demand = [1500*ones(12,1); 3500*ones(12,1)];

Q_supply = 2500*ones(24,1);

19

% Degree of interpolating polynomial

21 d = 3;

23 % Get collocation points

tau_root = [0 collocation_points(d, 'radau')]; %can be 'legendre'

25

% Coefficients of the collocation equation

27 C = zeros(d+1,d+1);

29 % Coefficients of the continuity equation

D = zeros(d+1, 1);

31

% Coefficients of the quadrature function

33 B = zeros(d+1, 1);

35 % Construct polynomial basis

for j=1:d+1

37 % Construct Lagrange polynomials to get the polynomial basis

% at the collocation point

39 coeff = 1;

for r=1:d+1

41 if r ~= j

coeff = conv(coeff, [1, -tau_root(r)]);

43 coeff = coeff / (tau_root(j)-tau_root(r));

end

45 end

% Evaluate the polynomial at the final time to get the

47 % coefficients of the continuity equation

D(j) = polyval(coeff, 1.0);

49

% Evaluate the time derivative of the polynomial at all collocation

51 % points to get the coefficients of the continuity equation

pder = polyder(coeff);

53 for r=1:d+1

C(j,r) = polyval(pder, tau_root(r));

55 end

57 % Evaluate the integral of the polynomial to get the coefficients

% of the quadrature function

59 pint = polyint(coeff);
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B(j) = polyval(pint, 1.0);

61 end

63 % Time horizon

T = 24*60*60;

65 ndiff = 2; %number of differential states

nalg = 2; %number of algebraic states

67 nu = 3; %number of controls

nx = nalg + ndiff; %total number of states

69

zub = Inf*ones(nalg,1);

71 zlb = -Inf*ones(nalg,1);

73 run SSOptNS.m

75 % Declare model variables

x1 = SX.sym('x1');

77 x2 = SX.sym('x2');

x3 = SX.sym('x3');

79 x4 = SX.sym('x4');

x = [x1; x2];

81 z = [x3; x4];

u1 = SX.sym('u1'); %q_R2

83 u2 = SX.sym('u2'); %Q_Market

u3 = SX.sym('u3'); %Q_dump

85 u = [u1; u2; u3];

87 % Model equations

89 xdot = [(1/V_hex)*(q_L1*(T1-x1) - (h_dot)*(0.5*(x3 + x4))ˆ(1/n));

91 (1/V_hex)*(u1*(T2-x2) + (h_dot)*(0.5*(x3 + x4))ˆ(1/n));

93 T1 - x2 - x3ˆ(1/n);

95 x1 - T2 - x4ˆ(1/n)];

97 % Objective term

L = Pm*u2; %no tank heating

99

% Continuous time dynamics

101 f = Function('f', {x, z, u}, {xdot, L});

103 % Control discretization

N = 24; % number of control intervals

105 M = 24; % number of MPC loops

h = T/N;

107 period = N;
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109

%% Prepare output variables

111 x_opt = zeros(ndiff,M);

u_opt = zeros(nu,M);

113 i_infeasible = zeros(M,1);

solver_return = {};

115

%% Predicted Demand

117 Q_demand = [Q_demand; Q_demand];

Q_supply = [Q_supply; Q_supply];

119

%% MPC loop

121 for i=1:M

% Start with an empty NLP

123 w={};

w0 = [];

125 lbw = [];

ubw = [];

127 J = 0;

g={};

129 lbg = [];

ubg = [];

131

% "Lift" initial conditions

133 % Differential states

Xk = MX.sym('X0', ndiff);

135 w = {w{:}, Xk};

lbw = [lbw; x_init];

137 ubw = [ubw; x_init];

w0 = [w0; x_init];

139

% Algebraic states

141 Zk = MX.sym('Z0', nalg);

w = {w{:}, Zk};

143 lbw = [lbw; z_init];

ubw = [ubw; z_init];

145 w0 = [w0; z_init];

147 % Formulate the NLP

for k=0:N-1

149 % New NLP variable for the control

Uk = MX.sym(['U_' num2str(k)], nu);

151 w = {w{:}, Uk};

lbw = [lbw; ulb];

153 ubw = [ubw; uub];

w0 = [w0; u_init];

155

% State at collocation points

157 Xkj = {};

101



Zkj = {};

159 for j=1:d

% Differential states

161 Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j)], ndiff);

w = {w{:}, Xkj{j}};

163 lbw = [lbw; xlb];

ubw = [ubw; xub];

165 w0 = [w0; x_init];

167 % Algebraic states

Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j)], nalg);

169 w = {w{:}, Zkj{j}};

lbw = [lbw; zlb];

171 ubw = [ubw; zub];

w0 = [w0; z_init];

173 end

175 % Loop over collocation points

Xk_end = D(1)*Xk;

177

for j=1:d

179 % Expression for the state derivative at the collocation point

xp = C(1,j+1)*Xk;

181 zp = zeros(nalg,1);

for r=1:d

183 xp = xp + C(r+1,j+1)*Xkj{r};

end

185

% Append collocation equations

187 [fj, qj] = f(Xkj{j}, Zkj{j}, Uk);

g = {g{:}, h*fj - [xp; zp]};

189 lbg = [lbg; zeros(nx,1)];

ubg = [ubg; zeros(nx,1)];

191

% Add contribution to the end state

193 Xk_end = Xk_end + D(j+1)*Xkj{j};

195 % Add contribution to quadrature function

J = J + B(j+1)*qj*h;

197 end

199 % New NLP variable for state at end of interval

% Differential states

201 Xk = MX.sym(['X_' num2str(k+1)], ndiff);

w = {w{:}, Xk};

203 lbw = [lbw; xlb];

ubw = [ubw; xub];

205 w0 = [w0; x_init];
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207 % Add inequality constraint

g = {g{:}, Uk(2) + Uk(1)*rho*cp*(Xk(2)-T2)};

209 lbg = [lbg; Q_demand((i-1)+k+1)];

ubg = [ubg; Q_demand((i-1)+k+1)];

211

g = {g{:}, Uk(3) + q_L1*rho*cp*(T1-Xk(1))};

213 lbg = [lbg; Q_supply(i)];

ubg = [ubg; Q_supply(i)];

215

% Add equality constraint

217 g = {g{:}, Xk_end - Xk};

lbg = [lbg; zeros(ndiff,1)];

219 ubg = [ubg; zeros(ndiff,1)];

end

221

% Create an NLP solver

223 opts = struct;

opts.ipopt.max_iter = maxiter;%5000;

225 opts.ipopt.print_level = 5; %0,3

opts.print_time = 1; %0,1

227 opts.ipopt.tol = tol;

opts.ipopt.acceptable_tol = 100*tol; % optimality convergence tolerance

229

prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));

231 solver = nlpsol('solver', 'ipopt', prob, opts);

233 % Solve the NLP

sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,'lbg', lbg, 'ubg', ubg);

235 i_infeasible(i) = solver.stats.success;

solver_return{i} = solver.stats.return_status;

237 w_opt = full(sol.x);

239 if solver.stats.success == 0

error('Error: Optimal Solution Not Found')

241 end

243 % Simulator

x0 = x_init;

245 tspan = [0 3600];

p = [q_L1; w_opt(nx+1:nx+nu-2); T1; T2; V_hex; U_hex; A_hex; rho;...

247 cp; n];

options = odeset('RelTol',1e-5,'Stats','off','OutputFcn',@odeplot);

249 [t,x] = ode15s(@(t,x) twoPlantModelDirect(t,x,p),tspan,x0,options);

251 u_opt(:,i) = w_opt(nx+1:nx+nu);

u_init = w_opt(nx+1:nx+nu);

253 x_m = x(end,:);

x_opt(:,i) = x_m(1:ndiff);

255 x_init = transpose(x_m(1:ndiff));
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257 x_init

u_init

259 i

end

261

Cost = Pm*u_opt(2,:)+ Pu*u_opt(3,:);

263 Cost = [Cost, NaN];

265 % Store data

nostorageNMPC = struct('Demand',Q_demand,'OptimalStates',...

267 x_opt,'OptimalInputs',u_opt,'Measurement',...

x_opt,'Cost',Cost);

269

%% Plot results

271 T = T/3600;

tgrid = linspace(0, T, N+1);

273 clf;

275 x_opt = [x_0, x_opt];

277 set(0,'DefaultTextFontName','Times',...

'DefaultTextFontSize',15,...

279 'DefaultAxesFontName','Times',...

'DefaultAxesFontSize',15,...

281 'DefaultLineLineWidth',1.5,...

'DefaultLineMarkerSize',7.75,...

283 'DefaultStairLineWidth',1.5);

set(findall(gcf,'Type','text'),'FontSize',15,'Interpreter','latex');

285 set(gcf,'color','white');

287 figure(1)

subplot(311)

289 plot(tgrid, x_opt(1,:), '-r')

hold on

291 plot(tgrid, x_opt(2,:), '-b')

% xlabel('time [hr]')

293 ylabel('Temperature [$\circ$C]','Interpreter','latex')

legend('$T_{1,o}$','$T_{2,o}$','Interpreter','latex')

295 hold off

grid on

297

subplot(312)

299 stairs(tgrid, [u_opt(1,:), nan], '-b')

hold off

301 % xlabel('time [hr]')

ylabel('$q_{2}$ [$\ell$/s]', 'Interpreter','latex')

303 ylim([0 10])

grid on
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305

subplot(313)

307 stairs(tgrid, [u_opt(3,:), nan], '-g')

hold on

309 stairs(tgrid, [u_opt(2,:), nan], '-r')

hold off

311 xlabel('time [hr]','Interpreter','latex')

ylabel('Power [kW]','Interpreter','latex')

313 legend('$Q_{dump}$','$Q_{M}$','Interpreter','latex')

ylim([0 1200])

315 grid on

With Storage

1 % An implementation of direct collocation to open loop

% dynamic optimisation of a two plant

3 % Energy Storage System using CasADi

%% VARIABLE DEMAND!!!

5

% Zawadi Mdoe, 2019

7 % ============================================================================

clear;

9 clc;

close all;

11

addpath('C:\Users\DELL\Desktop\Matlab\casadi-windows-matlabR2016a-v3.4.5')

13 import casadi.*

15 run Parameters_TES.m

17

Q_demand = [1500*ones(12,1); 3500*ones(12,1)];

19 Q_supply = 2500*ones(24,1);

21 % Q_demand = CalDemand;

% Q_supply = 2500*ones(24,1);

23

% Degree of interpolating polynomial

25 d = 3;

27 % Get collocation points

tau_root = [0 collocation_points(d, 'radau')]; %can be 'legendre'

29

% Coefficients of the collocation equation

31 C = zeros(d+1,d+1);
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33 % Coefficients of the continuity equation

D = zeros(d+1, 1);

35

% Coefficients of the quadrature function

37 B = zeros(d+1, 1);

39 % Construct polynomial basis

for j=1:d+1

41 % Construct Lagrange polynomials to get the polynomial basis

% at the collocation point

43 coeff = 1;

for r=1:d+1

45 if r ~= j

coeff = conv(coeff, [1, -tau_root(r)]);

47 coeff = coeff / (tau_root(j)-tau_root(r));

end

49 end

% Evaluate the polynomial at the final time to get the

51 % coefficients of the continuity equation

D(j) = polyval(coeff, 1.0);

53

% Evaluate the time derivative of the polynomial at all collocation

55 % points to get the coefficients of the continuity equation

pder = polyder(coeff);

57 for r=1:d+1

C(j,r) = polyval(pder, tau_root(r));

59 end

61 % Evaluate the integral of the polynomial to get the coefficients

% of the quadrature function

63 pint = polyint(coeff);

B(j) = polyval(pint, 1.0);

65 end

67

% Time horizon

69 T = 24*60*60;

ndiff = 5; %number of differential states

71 nalg = 4; %number of algebraic states

nu = 3; %number of controls

73 nx = nalg + ndiff; %total number of states

75 zub = Inf*ones(nalg,1);

zlb = -Inf*ones(nalg,1);

77

run SSOpt.m

79 x_0 = x_init;
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81 % Declare model variables

x1 = SX.sym('x1');

83 x2 = SX.sym('x2');

x3 = SX.sym('x3');

85 x4 = SX.sym('x4');

x5 = SX.sym('x5');

87 x6 = SX.sym('x6');

x7 = SX.sym('x7');

89 x8 = SX.sym('x8');

x9 = SX.sym('x9');

91 x = [x1; x2; x3; x4; x5];

z = [x6; x7; x8; x9];

93 u1 = SX.sym('u1'); % q_R2

u2 = SX.sym('u2'); % Q_Market

95 u3 = SX.sym('u3'); % Q_dump

u = [u1; u2; u3];

97

% Model equations

99

xdot = [(1/V_hex)*(q_L1*(T1-x1) - h_dot*(0.5*(x6 + x7))ˆ(1/n));

101

(1/V_hex)*(q_R1*(x5-x2) + h_dot*(0.5*(x6 + x7))ˆ(1/n));

103

(1/V_hex)*(q_L2*(x5-x3) - h_dot*(0.5*(x8 + x9))ˆ(1/n));

105

(1/V_hex)*(u1*(T2-x4) + h_dot*(0.5*(x8 + x9))ˆ(1/n));

107

(1/V_tank)*(q_R1*(x2-x5) + q_L2*(x3-x5) - h_t_dot*(x5-T_s));

109

T1-x2-x6ˆ(1/n);

111

x1-x5-x7ˆ(1/n);

113

x3-T2-x8ˆ(1/n);

115

x5-x4-x9ˆ(1/n)];

117

% Objective term

119 L = Pm*u2;

121 % Continuous time dynamics

f = Function('f', {x, z, u}, {xdot, L});

123

% Control discretization

125 N = 24; % number of control intervals

M = 24; % number of MPC loops

127 h = T/N;

period = N;

129 % Q_demand = zeros(N+M,1);
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131 % Variable counting

NXD = N*ndiff*(d+1); %Total Number of differential state variables

133 NXA = N*nalg*d; %Total Number of algebraic state variables

NU = N*nu; %Total Number of input variables

135 NXF = ndiff; %Total Number of end point variables(diff. only)

NV = NXD + NXA + NU + NXF; %Total number of NLP variables

137

%% Prepare output variables

139 x_opt = zeros(ndiff,M);

u_opt = zeros(nu,M);

141 i_infeasible = zeros(M,1);

solver_return = {};

143 w_stored = zeros(NV,1);

145 %% Predicted Demand

Q_demand = [Q_demand; Q_demand];

147 Q_supply = [Q_supply; Q_supply];

149 %% MPC loop

for i=1:M

151 if i==1

% Start with an empty NLP

153 w={};

w0 = [];

155 lbw = [];

ubw = [];

157 J = 0;

g={};

159 lbg = [];

ubg = [];

161

% "Lift" initial conditions

163 % Differential states

Xk = MX.sym('X0', ndiff);

165 w = [w(:)', {Xk}];

lbw = [lbw; x_init];

167 ubw = [ubw; x_init];

w0 = [w0; x_init];

169

% Formulate the NLP

171 for k=0:N-1

% New NLP variable for the control

173 Uk = MX.sym(['U_' num2str(k)], nu);

w = [w(:)', {Uk}];

175 lbw = [lbw; ulb];

ubw = [ubw; uub];

177 w0 = [w0; u_init];
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179 % State at collocation points

Xkj = cell(1,d);

181 Zkj = cell(1,d);

183 for j=1:d

% Differential states

185 Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j)],ndiff);

w = [w(:)', Xkj(j)];

187 lbw = [lbw; xlb];

ubw = [ubw; xub];

189 w0 = [w0; x_init];

191 % Algebraic states

Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j)],nalg);

193 w = [w(:)', Zkj(j)];

lbw = [lbw; zlb];

195 ubw = [ubw; zub];

w0 = [w0; z_init];

197 end

199 % Loop over collocation points

Xk_end = D(1)*Xk;

201

for j=1:d

203 % Expression for the state derivative at the collocation point

xp = C(1,j+1)*Xk;

205 zp = tol*ones(nalg,1);

for r=1:d

207 xp = xp + C(r+1,j+1)*Xkj{r};

end

209

% Append collocation equations

211 [fj, qj] = f(Xkj{j}, Zkj{j}, Uk);

g = [g(:)', {h*fj - [xp;zp]}];

213 lbg = [lbg; zeros(nx,1)];

ubg = [ubg; zeros(nx,1)];

215

% Add contribution to the end state

217 Xk_end = Xk_end + D(j+1)*Xkj{j};

219 % Add contribution to quadrature function

J = J + B(j+1)*qj*h;

221 end

223 % New NLP variable for state at end of interval

% Differential states

225 Xk = MX.sym(['X_' num2str(k+1)], ndiff);

w = [w(:)', {Xk}];

227 lbw = [lbw; xlb];
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ubw = [ubw; xub];

229 w0 = [w0; x_init];

231 % Add inequality constraint

g = [g(:)', {Uk(2) + Uk(1)*rho*cp*(Xk(4)-T2)}];

233 lbg = [lbg; Q_demand((i-1)+k+1)];

ubg = [ubg; Q_demand((i-1)+k+1)];

235

g = [g(:)', {Uk(3) + q_L1*rho*cp*(T1-Xk(1))}];

237 lbg = [lbg; Q_supply(i)];

ubg = [ubg; Q_supply(i)];

239

% Add equality constraint

241 g = [g(:)', {Xk_end-Xk}];

lbg = [lbg; zeros(ndiff,1)];

243 ubg = [ubg; zeros(ndiff,1)];

end

245

else

247 % Start with an empty NLP

w={};

249 w0 = w_stored;

lbw = [];

251 ubw = [];

J = 0;

253 g={};

lbg = [];

255 ubg = [];

257 % Apply the first control from the previous solution

w0(1:ndiff+nu) = [x_init; u_init];

259

% "Lift" initial conditions

261 % Differential states

Xk = MX.sym('X0', ndiff);

263 w = [w(:)', {Xk}];

lbw = [lbw; w0(1:ndiff)];

265 ubw = [ubw; w0(1:ndiff)];

267 % Formulate the NLP

for k=0:N-1

269 % New NLP variable for the control

Uk = MX.sym(['U_' num2str(k)],nu);

271 w = [w(:)', {Uk}];

lbw = [lbw; ulb];

273 ubw = [ubw; uub];

275 % State at collocation points

Xkj = {};
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277 Zkj = {};

for j=1:d

279 % Differential states

Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j)],ndiff);

281 w = [w(:)', Xkj(j)];

lbw = [lbw; xlb];

283 ubw = [ubw; xub];

285 % Algebraic states

Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j)],nalg);

287 w = [w(:)', Zkj(j)];

lbw = [lbw; zlb];

289 ubw = [ubw; zub];

end

291

% Loop over collocation points

293 Xk_end = D(1)*Xk;

for j=1:d

295 % Expression for the state derivative at the collocation point

xp = C(1,j+1)*Xk;

297 zp = tol*ones(nalg,1);

for r=1:d

299 xp = xp + C(r+1,j+1)*Xkj{r};

end

301

% Append collocation equations

303 [fj, qj] = f(Xkj{j},Zkj{j},Uk);

g = [g(:)', {h*fj - [xp;zp]}];

305 lbg = [lbg; zeros(nx,1)];

ubg = [ubg; zeros(nx,1)];

307

% Add contribution to the end state

309 Xk_end = Xk_end + D(j+1)*Xkj{j};

311 % Add contribution to quadrature function

J = J + B(j+1)*qj*h;

313 end

315 % New NLP variable for state at end of interval

% Only for differential states

317 Xk = MX.sym(['X_' num2str(k+1)], ndiff);

w = [w(:)', {Xk}];

319 lbw = [lbw; xlb];

ubw = [ubw; xub];

321

% Add inequality constraint

323 g = [g(:)', {Uk(2) + Uk(1)*rho*cp*(Xk(4)-T2)}];

lbg = [lbg; Q_demand((i-1)+k+1)];

325 ubg = [ubg; Q_demand((i-1)+k+1)];
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327 g = [g(:)', {Uk(3) + q_L1*rho*cp*(T1-Xk(1))}];

lbg = [lbg; Q_supply(i)];

329 ubg = [ubg; Q_supply(i)];

331 % Add equality constraint (only differential states)

g = [g(:)', {Xk_end-Xk}];

333 lbg = [lbg; zeros(ndiff,1)];

ubg = [ubg; zeros(ndiff,1)];

335 end

end

337

% Create an NLP solver

339 opts = struct;

opts.ipopt.max_iter = maxiter; %5000;

341 opts.ipopt.print_level = 3; %0,3

opts.print_time = 1; %0,1

343 opts.ipopt.tol = tol;

opts.ipopt.acceptable_tol =100*tol; % optimality convergence tolerance

345

prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));

347 solver = nlpsol('solver', 'ipopt', prob, opts);

349 % Solve the NLP

sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,'lbg', lbg, 'ubg', ubg);

351

if solver.stats.success == 0

353 error('Error: Optimal Solution Not Found')

end

355

i_infeasible(i) = solver.stats.success;

357 solver_return{i} = solver.stats.return_status;

w_opt = full(sol.x);

359

% Store the open loop solution

361 w_stored = [w_opt((ndiff+nu)+d*nx+1:end); ...

w_opt(end+1-((ndiff+nu)+d*nx):end)];

363

% Simulator

365 x0 = x_init;

tspan = [0 3600];

367 p = [q_L1; q_R1; q_L2; w_opt(ndiff+1:ndiff+nu-2); ...

Q_tank; T1; T2; V_hex; V_tank; U_hex; A_hex; rho;...

369 cp; h_s; A_tank; T_s; n];

options = odeset('RelTol', 1e-8,'Stats','off','OutputFcn', @odeplot);

371 [t,x] = ode15s(@(t,x) twoPlantModelChen(t,x,p), tspan, x0, options);

373 u_opt(:,i) = w_opt(ndiff+1:ndiff+nu);

u_init = w_opt(ndiff+1:ndiff+nu);
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375 x_m = x(end,:);

x_opt(:,i) = x_m;

377 x_init = x_m';

379 x_init(5)

u_init

381 i

383 end

385 Cost = Pm*u_opt(2,:) + Pu*u_opt(3,:);

Cost = [Cost, NaN];

387

% Store data

389 storageNMPC = struct('Demand',Q_demand,'OptimalStates',...

x_opt,'OptimalInputs',u_opt,'Measurement',...

391 x_opt,'Cost',Cost);

393 %% Plot results

T = T/3600;

395 tgrid = linspace(0, T, N+1);

clf;

397

x_opt = [x_0, x_opt];

399

% Plot optimal controls

401 set(0,'DefaultTextFontName','Times',...

'DefaultTextFontSize',15,...

403 'DefaultAxesFontName','Times',...

'DefaultAxesFontSize',15,...

405 'DefaultLineLineWidth',1.5,...

'DefaultLineMarkerSize',7.75,...

407 'DefaultStairLineWidth',1.5);

set(findall(gcf,'Type','text'),'FontSize',15,'Interpreter','latex');

409 set(gcf,'color','white');

411 figure(1)

subplot(311)

413 plot(tgrid, x_opt(5,:), 'k-')

ylabel('$T_{tank}$ [$ˆ{\circ}$C]','Interpreter','latex')

415 hold off

grid on

417

subplot(312)

419 stairs(tgrid, [u_opt(1,:), nan], 'b-')

ylabel('$q_{R2}$ [$\ell$/s]','Interpreter','latex')

421 grid on

423 subplot(313)
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stairs(tgrid, [u_opt(3,:), nan], 'm-')

425 hold on

stairs(tgrid, [u_opt(2,:), nan], 'r-')

427 hold off

xlabel('time [hr]','Interpreter','latex')

429 ylabel('Power [kW]','Interpreter','latex')

legend('$Q_{dump}$','$Q_M$','Interpreter','latex')

431 grid on

Multi-stage NMPC

Supply and demand temperature uncertainty

1 % An implementation of direct collocation to open loop

% dynamic optimisation of a two plant energy Storage System using CasADi

3 % VARIABLE DEMAND!!! with plant model mismatch an implementation of

% multi-stage MPC to handle uncertainties.

5

% Author: Zawadi Mdoe

7 % Date: March 2019

% ========================================================================

9

clear;

11 clc;

close all;

13

addpath('C:\Users\DELL\Desktop\Matlab\casadi-windows-matlabR2016a-v3.4.5')

15 import casadi.*
run Parameters_scendae3.m

17 load CaliforniaDemand3.mat

19 Q_demand = [1500*ones(12,1); 3500*ones(12,1)];

21 T1_actual = 99;

T2_actual = 18;

23

% Uncertain parameter(s)

25 par1 = [90; 95; 100]; %Source temperature

par2 = [15; 20; 25]; %Sink temperature

27

[scens, scen_count] = scenpara(par1,par2);

29

% Degree of interpolating polynomial

31 d = 3;
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33 % Get collocation points

tau_root = [0 collocation_points(d, 'legendre')];

35

% Coefficients of the collocation equation

37 C = zeros(d+1,d+1);

39 % Coefficients of the continuity equation

D = zeros(d+1, 1);

41

% Coefficients of the quadrature function

43 B = zeros(d+1, 1);

45 % Construct polynomial basis

for j=1:d+1

47 % Construct Lagrange polynomials to get the polynomial basis at

% the collocation point

49 coeff = 1;

for r=1:d+1

51 if r ~= j

coeff = conv(coeff, [1, -tau_root(r)]); %convolution

53 coeff = coeff / (tau_root(j)-tau_root(r));

end

55 end

% Evaluate the polynomial at the final time to get the

57 % coefficients of the continuity equation

D(j) = polyval(coeff, 1.0);

59

% Evaluate the time derivative of the polynomial at all collocation

61 % points to get the coefficients of the continuity equation

pder = polyder(coeff);

63 for r=1:d+1

C(j,r) = polyval(pder, tau_root(r));

65 end

67 % Evaluate the integral of the polynomial to get the coefficients

% of the quadrature function

69 pint = polyint(coeff);

B(j) = polyval(pint, 1.0);

71 end

73 % Time horizon

T = 24*60*60; %Prediction horizon time

75 ndiff = 5; %number of differential states

nalg = 4; %number of algebraic states

77 nu = 4; %number of controls

nx = nalg + ndiff; %total number of states

79

zub = Inf*ones(nalg,1);
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81 zlb = -Inf*ones(nalg,1);

83 % Declare model variables

x1 = SX.sym('x1');

85 x2 = SX.sym('x2');

x3 = SX.sym('x3');

87 x4 = SX.sym('x4');

x5 = SX.sym('x5');

89 x = [x1; x2; x3; x4; x5];

x6 = SX.sym('x6');

91 x7 = SX.sym('x7');

x8 = SX.sym('x8');

93 x9 = SX.sym('x9');

z = [x6; x7; x8; x9];

95 u1 = SX.sym('u1');

u2 = SX.sym('u2');

97 u3 = SX.sym('u3');

u4 = SX.sym('u4');

99 u = [u1; u2; u3; u4];

p1 = SX.sym('p1');

101 p2 = SX.sym('p2');

p = [p1; p2];

103

% Model equations

105 xdot = [(1/V_hex)*(q_L1*(p1-x1) - h_dot*(0.5*(x6 + x7))ˆ(1/n));

107 (1/V_hex)*(q_R1*(x5-x2) + h_dot*(0.5*(x6 + x7))ˆ(1/n));

109 (1/V_hex)*(u1*(x5-x3) - h_dot*(0.5*(x8 + x9))ˆ(1/n));

111 (1/V_hex)*(u2*(p2-x4) + h_dot*(0.5*(x8 + x9))ˆ(1/n));

113 (1/V_tank)*(q_R1*(x2-x5) + u1*(x3-x5) + ...

(u3/(rho*cp)-h_t_dot*(x5-T_s)));

115

p1-x2- x6ˆ(1/n);

117

x1-x5-x7ˆ(1/n);

119

x3-p2-x8ˆ(1/n);

121

x5-x4-x9ˆ(1/n)];

123

% Objective term

125 L = Pm*u4 + Pt*u3 + Pu*(u1ˆ2+ u2ˆ2);

127 % Continuous time dynamics

f = Function('f', {x, z, u, p}, {xdot, L});

129
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% Control discretization

131 N = 24; % number of control intervals

M = 24; %mpc loops

133 h = T/N;

Nr = 1;

135 levels = scen_count;

S = levelsˆNr; % number of scenarios

137 period = N;

% Q_demand = [CalDemand; CalDemand];

139 Q_demand = [Q_demand; Q_demand];

141 % Variable counting

NXD = N*ndiff*(d+1); %Total Number of differential state variables

143 NXA = N*nalg*d; %Total Number of algebraic state variables

NU = N*nu; %Total Number of input variables

145 NXF = ndiff;

%Total Number of end point variables (diff. only)

NV = NXD + NXA + NU + NXF; %Total number of NLP variables

147

% Prepare output variables

149 x_opt = zeros(M,ndiff);

u_opt = NaN(M+1,nu);

151 i_infeasible = zeros(M,1);

solver_return = cell(1,M);

153 w_stored = zeros(NV,1);

155 %% MPC loop

for ii=1:M

157 if ii == 1

% Start with an empty NLP

159 w={};

w0 = [];

161 lbw = [];

ubw = [];

163 J = 0;

g={};

165 lbg = [];

ubg = [];

167

% "Lift" initial conditions

169 Xkl = MX.sym('X0', ndiff);

w = [w(:)', {Xkl}];

171 lbw = [lbw; x_init];

ubw = [ubw; x_init];

173 w0 = [w0; x_init];

175 % Formulate the NLP

% For each scenario

177 for l=1:S
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% New NLP variable for the control

179 for k=0:N-1

Ukl = MX.sym(['U_' num2str(k) '_' num2str(l)], nu);

181 w = [w(:)', {Ukl}];

lbw = [lbw; ulb];

183 ubw = [ubw; uub];

w0 = [w0; u_init];

185

% State at collocation points

187 Xklj = cell(1,d);

Zklj = cell(1,d);

189

for j=1:d

191 %Differential states

Xklj{j} = MX.sym(['X_' num2str(k) '_' num2str(l) ...

193 '_' num2str(j)], ndiff);

w = [w(:)', Xklj(j)];

195 lbw = [lbw; xlb];

ubw = [ubw; xub];

197 w0 = [w0; x_init];

199 % Algebraic states

Zklj{j} = MX.sym(['Z_' num2str(k) '_' num2str(l) ...

201 '_' num2str(j)], nalg);

w = [w(:)', Zklj(j)];

203 lbw = [lbw; zlb];

ubw = [ubw; zub];

205 w0 = [w0; z_init];

end

207

% Loop over collocation points

209 Xkl_end = D(1)*Xkl;

211 for j=1:d

% Expression for the state derivative at the

213 % collocation point

xp = C(1,j+1)*Xkl;

215 zp = zeros(nalg,1);

for r=1:d

217 xp = xp + C(r+1,j+1)*Xklj{r};

end

219

% Append collocation equations

221 [fj, qj] = f(Xklj{j}, Zklj{j}, Ukl, scens{l}');

g = [g(:)', {h*fj - [xp; zp]}];

223 lbg = [lbg; zeros(nx,1)];

ubg = [ubg; zeros(nx,1)];

225

% Add contribution to the end state
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227 Xkl_end = Xkl_end + D(j+1)*Xklj{j};

229 % Add contribution to quadrature function

J = J + B(j+1)*qj*h;

231 end

233 % New NLP variable for state at end of interval

% Differential states

235 Xkl = MX.sym(['X_' num2str(k+1) '_' num2str(l)], ndiff);

w = [w(:)', {Xkl}];

237 lbw = [lbw; xlb];

ubw = [ubw; xub];

239 w0 = [w0; x_init];

241 % Add inequality constraint

g = [g(:)', {Ukl(4) + Ukl(2)*rho*cp*(Xkl(4)-scens{l}(2))}];

243 lbg = [lbg; Q_demand((ii-1)+k+1)];

ubg = [ubg; Q_demand((ii-1)+k+1)];

245

% Add equality constraint

247 g = [g(:)', {Xkl_end - Xkl}];

lbg = [lbg; zeros(ndiff,1)];

249 ubg = [ubg; zeros(ndiff,1)];

end

251 end

253 else

255 % Start with an empty NLP

w={};

257 w0 = w_stored;

lbw = [];

259 ubw = [];

J = 0;

261 g={};

lbg = [];

263 ubg = [];

265 % Apply the first control from the previous solution

w0(1:ndiff+nu) = [x_init; u_init];

267

% "Lift" initial conditions

269 Xkl = MX.sym('X0', ndiff);

w = [w(:)', {Xkl}];

271 lbw = [lbw; w0(1:ndiff)];

ubw = [ubw; w0(1:ndiff)];

273

% Formulate the NLP

275 % For each scenario
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for l=1:S

277 % New NLP variable for the control

for k=0:N-1

279 Ukl = MX.sym(['U_' num2str(k) '_' num2str(l)], nu);

w = [w(:)', {Ukl}];

281 lbw = [lbw; ulb];

ubw = [ubw; uub];

283

% State at collocation points

285 Xklj = cell(1,d);

Zklj = cell(1,d);

287

for j=1:d

289 %Differential states

Xklj{j} = MX.sym(['X_' num2str(k) '_' num2str(l) ...

291 '_' num2str(j)], ndiff);

w = [w(:)', Xklj(j)];

293 lbw = [lbw; xlb];

ubw = [ubw; xub];

295

% Algebraic states

297 Zklj{j} = MX.sym(['Z_' num2str(k) '_' num2str(l) ...

'_' num2str(j)], nalg);

299 w = [w(:)', Zklj(j)];

lbw = [lbw; zlb];

301 ubw = [ubw; zub];

end

303

% Loop over collocation points

305 Xkl_end = D(1)*Xkl;

307 for j=1:d

% Expression for the state derivative at the

309 % collocation point

xp = C(1,j+1)*Xkl;

311 zp = zeros(nalg,1);

for r=1:d

313 xp = xp + C(r+1,j+1)*Xklj{r};

end

315

% Append collocation equations

317 [fj, qj] = f(Xklj{j}, Zklj{j}, Ukl, scens{l}');

g = [g(:)', {h*fj - [xp; zp]}];

319 lbg = [lbg; zeros(nx,1)];

ubg = [ubg; zeros(nx,1)];

321

% Add contribution to the end state

323 Xkl_end = Xkl_end + D(j+1)*Xklj{j};
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325 % Add contribution to quadrature function

J = J + B(j+1)*qj*h;

327 end

329 % New NLP variable for state at end of interval

% Differential states

331 Xkl = MX.sym(['X_' num2str(k+1) '_' num2str(l)], ndiff);

w = [w(:)', {Xkl}];

333 lbw = [lbw; xlb];

ubw = [ubw; xub];

335

% Add inequality constraint

337 g = [g(:)', {Ukl(4) + Ukl(2)*rho*cp*(Xkl(4)-scens{l}(2))}];

lbg = [lbg; Q_demand((ii-1)+k+1)];

339 ubg = [ubg; Q_demand((ii-1)+k+1)];

341 % Add equality constraint

g = [g(:)', {Xkl_end - Xkl}];

343 lbg = [lbg; zeros(ndiff,1)];

ubg = [ubg; zeros(ndiff,1)];

345 end

347 end

349 end

351 % Non-anticipativity constraints

U = w(2:2*d+2:end);

353

for n=1:S-1

355 g = [g(:)', {U{N*(n-1)+1} - U{1+N*n}}];

lbg = [lbg; -tol*zeros(nu,1)];

357 ubg = [ubg; tol*zeros(nu,1)];

end

359

% Create an NLP solver

361 opts = struct;

opts.ipopt.max_iter = maxiter; %5000;

363 opts.print_time = 1; %0,1

opts.ipopt.tol = tol;

365 opts.ipopt.acceptable_tol =100*tol; % optimality convergence tolerance

367 prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));

solver = nlpsol('solver', 'ipopt', prob, opts);

369

% Solve the NLP

371 sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,'lbg', lbg, 'ubg', ubg);

373 if solver.stats.success == 0
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error('Error: Optimal Solution Not Found')

375 end

377 i_infeasible(ii) = solver.stats.success;

solver_return{ii} = solver.stats.return_status;

379 w_opt = full(sol.x);

381 % Store the open loop solution

w_stored = [w_opt((ndiff+nu)+d*nx+1:end); ...

383 w_opt(end+1-((ndiff+nu)+d*nx):end)];

z_init = w_stored((d-1)*ndiff+nu+1:ndiff+nu+nx);

385

% Simulator

387 x0 = x_init;

u_init = w_opt(ndiff+1:ndiff+nu);

389 tsample = T/M;

tspan = [0 tsample];

391

par = [q_L1; q_R1; u_init(1:nu-1); T1_actual; T2_actual; ...

393 V_hex; V_tank; U_hex; A_hex; rho;...

cp; h_s; A_tank; T_s; n];

395 options = odeset('RelTol',1e-5,'Stats','off','OutputFcn',@odeplot);

[t,x] = ode15s(@(t,x) twoPlantModelChen(t,x,par), tspan, x0, options);

397

u_opt(ii,:) = w_opt(ndiff+1:ndiff+nu);

399 x_m = x(end,1:ndiff);

x_opt(ii,:) = x_m;

401 x_init = transpose(x_m);

403 x_init

u_init

405 ii

end

407

T = T/3600;

409 tgrid = linspace(0, T, N+1);

clf;

411

x_opt = [x_0'; x_opt];

Scenario generation (scenpara())

1 function [scens, scen_count] = scenpara(a1,a2)

%scenpara: creates combinations for uncertain

3 %parameter levels in scenarioMPC
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%

5 % Author: Zawadi Mdoe 2019

%==========================================================

7 scen_count = length(a1)*length(a2);

9 scens = {};

11 for i=1:length(a1)

for j=1:length(a2)

13 scens = [scens(:); {[a1(i), a2(j)]}];

end

15 end

end
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