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Abstract

Using reinforcement learning as controllers in the process industries was ex-
plored as an alternate path of doing control compared to the regular controllers.
Methods such as value-based and policy-based methods were used as controllers
for three different cases of tank level regulation. The controllers were compared
to a traditional P-controller for evaluation of the controller performance. The
reinforcement learning controllers showed promising results as they managed
to control the liquid level between the predetermined constraints. However,
the P-controllers proved a better performance with smaller input changes com-
pared to the reinforcement learning controllers which had large input changes
that resulted in oscillatory liquid level. This thesis shows that the creation
of reinforcement learning controllers is complicated and time-consuming and a
well-tuned controller would most likely perform better. However, with more re-
search and standardized approaches, there is a huge potential of including this
field into the process industries due to its ability to handle nonlinearity and long
term evaluations.
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Sammendrag

Bruk av forsterkningsinnlæring som kontroller i prosessindustriene ble utfors-
ket som et alternativ for kontroll til sammenligning med vanlige kontrollere.
I denne oppgaven var forsterkningsinnlæringsmetodene value based- og policy
based brukt som kontrollere for tre forskjellige tilfeller av tanknivåregulering.
Kontrollerne ble sammenlignet med en tradisjonell P-kontroller for evaluering
av kontrollerens ytelser. forsterkningsinnlæringsregulatorene viste lovende re-
sultater da de klarte å kontrollere væskenivået mellom de forhåndsbestemte
begrensningene. Imidlertid viste P-kontrollerne en bedre ytelse med mindre
ventilposisjonsendringer sammenlignet med forsterkningsinnlæringsregulatorene
som hadde store ventilposisjonsendringer som resulterte i oscillerende væskenivå.
Denne oppgaven viser at etableringen av forsterkningsinlæringsregulatorer er
komplisert og tidkrevende, og en velinnstilt tradisjonll regulator vil være et
bedre valg av regulator. Med mer forskning og standardiserte metoder er det
et stort potensial for å inkludere forsterkningsinnlæring inn i prosessindustriene
på grunn av dens mulighet til å takle ikke-linearitet og langsiktig evaluering.
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Overview of thesis

The structure of the thesis consists of a literature review followed by implemen-
tation and evaluation of methods in reinforcement learning in the light of process
control. The first section is an introduction to the relevant conventional con-
trollers which are currently used in the process industry. This follows into the
general introduction to machine learning and reinforcement learning and their
current successful applications. After the introduction, a deep literature review
of reinforcement learning is presented. The end of section 2 marks the end of
the literature review and the rest of the thesis is about the implementation and
evaluation of controllers. Section 3 presents the cases and section 4 explains the
implementation, along with its challenges, of the different controllers. The per-
formance of the controllers is evaluated in section 5. In section 6, the controllers
performance discussed and further an overall conclusion is then presented in sec-
tion 7. In the final section potential further work is presented.

In the literature can notation and terminology in machine learning and control
theory be different from each other, even though the concepts are the same.
For example for states in chemical engineering are x used but denoted as s
in ML. This thesis mainly uses the terminology and notation used in machine
learning as it is the theory presented in the literature. The fields of control and
machine learning often overlap and for this purpose will the terminology within
control theory will be presented for better understanding when there is a clear
relationship.
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1 Introduction

Process control is a field within industrial control systems which combines
chemical- and control-engineering. For process industries, process control is
crucial to maintain safe and optimal production. The first known usage of pro-
cess control is credited to Ktesibios of Alexandria in the 3rd Century BC, who
created a float valve to regulate water levels of water clocks [1]. Since then the
field has grown widely and is essential to the economy for a number of nations
all around the world. Countries like Norway rely heavily on chemical production
from oil and gas [2]. In 2017, the export of oil and gas accounted for 50 % of
the countries total international export [3]. Without regulation and control of
chemical production, catastrophic failure may happen which will have enormous
negative consequences for the society and economy. Process control can prevent
such catastrophic failures and is therefore crucial to Norway’s Gross Domestic
Product, as well as the Gross National Product as most of it is exported.

1.1 Fundamental of process control

Control is a mechanism where the system is driven to a desired state by exerting
an external “force”. The field of process control uses information about the
system to calculate how it responds to disturbances in favor of creating a model
that can counteract disturbances for a real process system. Current usage of
control strategies reformulates a digital model of the system with mathematical
operations to propose the control model. The model is tuned to best counteract
disturbances with optimal performance. For a complex system, a stable control
model can be difficult to formulate mathematically. The process of creating a
control model from the system model can, therefore, be non-trivial. A wrong
control model may lead to oscillatory responses, over and undershoots and in
the worst case lead to an unstable system [4].

1.2 Current usage of process controllers

In process industries, a huge variety of different controllers are applied to dif-
ferent systems. The choice of controllers is dependent on the complexity of
the system as well as the economic potential and risk assessment. There is no
universal strategy for choosing controllers and the choice is often done by engi-
neering intuition. However, a system with low economic potential and low risk
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often uses a simpler controller than a system with high economic potential and
high risk. Common choices of controllers that are widely used are ON-OFF,
PID, Model Predictive Control and adaptive controllers which will be briefly
discussed in the following sections.

1.2.1 On-Off controller

ON-OFF controllers are simple, inexpensive feedback controllers that are com-
monly used in noncritical industrial applications [4]. For ideal ON-OFF con-
trollers, the input is only of two potential values:

p(t) =

{
pmax if e ≤ 0

pmin if e > 0
(1)

The pmax and pmin denotes the on and off values. e is the offset error. The
controller has a constant input of either on or off depending on the systems
state, hence the name. ON-OFF controllers are commonly used for systems
in which divergence from optimal operation has negligible effect, unless the
divergence is large. The simplicity of the controllers makes them suited as
thermostat controllers in houses, but not for more complex systems where a
state-value needs to be controlled tightly.

1.2.2 PID controller

PID, or a Proportional-Integral-Derivative controller, is a control loop feedback
mechanism which are the most commonly applied control technique in process
industries [4]. More specifically, the P- and PI-controller are often the default
choice. The controller continuously calculates an error value e(t) as the Con-
trolled Variable’s (CV) divergence from a desired SetPoint (SP) value. The
error value is corrected by a proportional, integral and a derivative term, hence
P,I and D, which calculated how much a Manipulative Variable (MV) should be
changed. The mathematical ideal form of the overall control function u(t) can
be seen from the equation below [5]:

u(t) = u0 +Kc

[
e(t) +

1

τI

∫ t

0

e(t) dt+ τD
de(t)

dt

]
(2)
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The τI is called the integral time constant and τD is called derivative time
constant. TheKc is the controller gain which indicates the effect of the controller
action on the system. Both τ constants and the KC are parameters which are
chosen based on the systems response to changes. There are many strategies to
choose the parameters for control tuning. Methods like Ziegler-Nichols, Smiths
predictor and SIMC are among popular choices [6].

The beauty with PID controllers, and why they are so widely used in process
industries, comes from their simplistic implementation and linearity. For most
process systems a linear approximation is good enough for control models and
in many of these systems, PID controllers are implemented. PID controllers
are linear controllers which means that for nonlinear systems the usage of PID
controllers may result in poor control. For nonlinear systems, more complicated
controllers like adaptive control and Model Predictive Control are often used.

1.2.3 Model Predictive Control

Model Predictive Control (MPC) is a form of control in which the current con-
trol action is obtained by solving, at each sampling instant, a finite horizon
open-loop optimal control problem [7]. Compared to PID control, the main mo-
tivation to use MPC is the multivariable nature and ability to handle constraints.
This allows for better performance with non-linear systems. The optimization
problem solved at each time steps is a minimization of a cost function. The
optimization problems are constructed with the state-space model as equality
constraints along with desired constraints for the MV and CV. For a linear case
of MPC the general MPC algorithm with state feedback can be seen below in
algorithm 1 with a graphical illustration of the procedure in fig. 1.

Algorithm 1: State feedback MPC procedure

for t=0,1,2,... do
Measure current state xt.
Solve a dynamic optimization problem from the measure state xt.
on the prediction horizon from t to t+N .
Apply the first u from the predicted input solution to the system.

end

3
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Future 

Past

current measurement

state history

predicted state

predicted input trajectory from measurement

input history

t' = current time step

t'

State value

Figure 1: Illustration of the Model Predictive Control procedure at time
step t′

The mathematical optimization formulation is presented in eq. (3). This par-
ticular formulation is a Quadratic Programming (QP) formulation with a linear
model [7]. The following equation is a cost function with the objective being to
minimize the deviation between the state x and the setpoint xsp.

min
z∈Rn

f(x, u) =

N−1∑
t=0

1

2
((xt+1 − xsp)Qt+1(xt+1 − xsp)

Subject to
xt+1 = Atxt +Btut

x0, u−1 = given

xlow ≤ xt ≤ xhigh

ulow ≤ ut ≤ uhigh

−∆ulow ≤ ∆ut ≤ ∆uhigh

(3)

The advantages of using MPC compared to PID are that MPC can work with
nonlinear systems and can include constraints. Whereas the PID may change the
input from 0 % to 100 % over two-time instances, a constraint to maximal input
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changes can be implemented with MPC preventing rapid input changes. MPC
provides a lot of flexibility of constraints and implementation. However, tuning
of MPC can be difficult and the requirement of solving an optimization problem
at each time step can be computational demanding. The time required to solve
optimization problems results in MPC often being used for calculating optimal
setpoint for controllers in a Real Time Optimization (RTO) layer. However,
This optimal setpoint is only as good as the MPC itself and often are adaptive
controllers often used to adjust the optimal setpoint when the one calculated is
proved to be sub-optimal.

1.2.4 Adaptive control

Adaptive control builds on the concept of self-optimizing control where a cost
function J is minimized by calculating optimal set values of controllers that
are not bounded by active constraints [8]. Adaptive control dates back to the
late seventies and has since been in contrast with the regular robust method
where it does not need prior information about the control parameters for taking
suitable control actions [9]. Adaptive control can generally be divided into two
fields dependent on the controller preventing incoming disturbances or reacting
to occurred disturbance. The two methods are denoted by feedforward- and
feedback adaptive control. There are many different approaches to the concept
of adaptive control. One of these is called extremum seeking control which has
similar behavior as policy-based reinforcement learning methods.

The optimization on extremum seeking is done by injecting a perturbation to the
input value û, often with a sin function and measuring the shift in J [10]. This
allows for evaluation of different J(û) which are used for shifting the previous
predicted û towards the local optimum u∗. In other words, the input position
SP is adapting to changes in the controlled system for improved performance.
An illustration of the extremum seeking controller can be seen in fig. 2.
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Figure 2: Illustration of the input value adjustment for increased perfor-
mance for an extremum seeking adaptive controller. Figure aquired from
Atta, Khalid Tourkey and Johansson, Andreas and Gustafsson, Thomas
Extremum seeking control based on phasor estimation [11]

A common challenge in process control is to find a stable control model for
non-linear and discrete systems. Many systems require a lot of knowledge and
expertise to implement sufficient control. A question in recent year has been to
come up with a general framework which automates this trial and error process
of finding a sufficient control model. Recent progress in machine learning have
shown promising results in different fields and could potentially be applied in
process control as an alternative approach of doing control.

1.3 Machine learning in applications

Machine learning (ML) is a field in computer science which combines mathe-
matical models with algorithms in optimization of specific tasks [12]. The field
studies statistical analysis of sets of data with different computational algo-
rithms.

ML is a huge topic with many applications in multiple fields, but generally
it can be divided into three different sub-fields: Supervised Learning (SL),
Unsupervised Learning (UL), Reinforcement Learning (RL) [13].
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• Supervised learning: A set of input data is used to predict a set of out-
put data. For each prediction, parameters are adjusted to improve future
predictions [12]. In other words, constant feedback from an instructor,
indicating right/wrong prediction with the residual between the predicted
and correct output. A famous example of SL is to train a machine to
correctly classify images of cats and dogs [12].

• Unsupervised learning: While supervised learning tries to map a rela-
tionship between inputs and outputs, UL has no outputs in the data set
[14]. Instead, the method tries to set up a categorical representation of
the data with no feedback. In other words, is UL a method for finding re-
lationships within a dataset. This could be the categorizing of individuals
based on their personal data for example, for targeted advertisements.

• Reinforcement learning: Unlike supervised learning where the data set
is assigned before training, RL dynamically collects data during training
[15]. The prediction conducted during training affects the future data
set and this may result in a lot of predictions without feedback until a
criterion is met. RL is the most unexplored sub-field of machine learning,
compared to SL and UL, but have seen successful applications in video
games and robotics [16].

1.4 Related Work

The concepts of Machine Learning, or ML, dates back to the mid of the 20.
century when Arthur L. Samuel first used the terminology in his paper about
using machines to play checkers [17]. However, the field ML was not formally
used until 1990. In the recent year, ML has surged in popularity due to the
improved computational power of computers since ML is computationally de-
manding. The progress made in the electronic hardware industries and with the
storage of large data sets, Big Data, has opened up possibilities for companies
to use machine learning as a tool for data analysis. Today, ML is mainly applied
as an analytic tool for companies with image recognition and statistics.

The field of SL and UL has seen many successful applications in multiple fields.
In process control, has especially SL rises as a tool for analysis and optimiz-
ing process industries [18]. As for Unsupervised learning have clustering and
PCA, which are considered UL methods, been more common approaches in the
analysis of process data. However, RL has not seen the same popularity as UL
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and SL in the process industries. RL has mostly been explored in niche fields
of video-games and cybernetic robotic control. However, some companies like
Google DeepMind and OpenAI have experimented with the RL sub-field of ML
to create machines that can learn from their own experience.

In 2015 Google’s DeepMind presented AlphaGo which in 2016 managed to beat
the world No. 1 ranked player in the game of Go [19]. This was a benchmark
for researchers as Go was considered to be a sufficiently complicated game that
no machine would ever beat humans in performance. In other fields like control
theory has machine learning improved robotics control. In 2016, the Boson
Dynamics group created the walking robot “Atlas” which in 2018 was improved
to do human-like parkour stunts [16]. The most recent big application of ML
was demonstrated in January 2019 when Google DeepMind released AlphaStar
which managed to beat top-level players in the computer game StarCraft [20].
A game which is considered so difficult that one is required to start practicing
from a very young age to compete at the highest level.

In 2009, Jay H. Lee and Weechi Wong published an article where they explored
how Approximate Dynamic Programming (ADP) could be implemented as a
method for complementing MPC for discrete systems. They argue that ADP
has a great potential in the process industries and could potentially for obtaining
control policies for stochastic constrained nonlinear systems [21]. An article in
the 13th International Symposium on Process Systems Engineering (PSE 2018)
touches on the possibilities of using RL in comparison with MPC for future
applications [22]. They concluded that RL has the potential to significantly
impact the theory and applications in the field of process control.

There are various reasons for not exploring RL as much as SL and UL in process
industries. One likely reason is that the implementations of RL require a deep
knowledge of computer science since frameworks for RL have not been fully
developed as of this date. Tensorflow at the TF Dev summit in March 2019
showcased their first framework which supports simple RL implementations [23].
This thesis explores the possibilities of using RL as a methodology for process
controllers and tries to evaluate how RL compares to common controllers in the
industry.
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Thesis contribution

In this thesis, the field of process control will be combined with RL as a proof
of concept for using RL as an alternative way of doing process control. This
thesis is a case analysis of different RL algorithms in use for process control.
In addition, the theory behind RL will also be presented thoroughly since the
field of RL is quite unknown for most process engineers. The RL controllers
would be compared to a standard industry controller for evaluation of how
the RL-algorithms performs compared to the standard controllers used in the
industry. The cases would be created from scratch by mathematical modeling
of a tank system and further implemented with a programming language. The
simulator, industry controller, and RL-controllers would all be created from
generic mass balances and further implemented as a computer software with
the Python programming language. This is to have a complete understanding
of the dynamic of the system and potentially make changes to the model if
needed. However, for the implementation of the RL-algorithm, a deep learning
framework would be used for the implementation of the neural networks.

The task of the controllers is to regulate the liquid level in one or multiple
tanks and the controller performance would be evaluated with a predefined
disturbance. The cases of tank level regulations are more thoroughly introduced
in section 3. The aim of the thesis is to evaluate how the trained models control
the liquid level to a given SP with incoming disturbance. Due to the size of the
code will not the whole code implementation be presented in the thesis. The
code used in this thesis consists of ∼15 000 lines with only a few third-party
dependencies like numpy, pygame and pytorch. The code is made open sourced
as future researchers can use this thesis along with the code implementation as
a reference for continued research [24].
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Terminology and notation

Below is a list of the terminology and notation used in reinforcement learning
compared to the termination and notation used in process control. This is due
to the terminologies and notations spanning the same concept which can be
confusing when coming from process industries.

Terminology used in RL Explanation
State value (s) State value (x) or CV
Action value (a) Input value (u)
Environment Controlled system, everything which is set by the

controller
Agent Controller, or MV
Reward function (G) Cost function (J) that also spans positive numbers
Reward (R) Feedback signal from the controlled system
Hyper-parameters Parameters which are decided by the engineers
Episode (e) Defined series of events bounded by an initial state

and an end state, in this thesis is the episode a time
series from 0 to N time steps.

Training Automatic altering av parameter for improved sys-
tem performance

Weights (θ or w) Parameters in function approximators, e.g. neural
networks, which are altered during training

Policy The predicted input trajectory, given the current
state, for the optimal future states

Value function Metric used to evaluate the goodness of the con-
trolled system being in a state, this is not to be con-
fused with the reward function.

Exploration Doing sub-optimal input trajectory for sampling new
information

Exploitation Doing optimal input trajectory for fine tuning the
parameters for the current optimal trajectory.

Table 2: Explanation of concept used in RL from the perspective of an
control engineer. The table is meant as a reference when reading through
the thesis
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2 Reinforcement learning: A literature review

Reinforcement Learning (RL) concerns the mapping of correct action given the
state in an environment [15]. RL mainly consists of two contributors: The
Agent and the Environment. The agent observes a state s from the environment
and is able to do an action a. The environment responds to the action and
gives back a new state based on the action. Depending on the new state the
environment gives feedback to the agent, in this form a reward R, which indicates
the goodness of being in the new state. The environment is defined by everything
the agent has no control over, including uncertainties. An illustration of the
agent acting in an environment can be seen in fig. 3.

Figure 3: Illustration of the agent doing action a in state s and returned
to a new state with reward R
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From a control engineering perspective, the agent and environment are the more
pedagogic terms for controller and controlled system. The action a is the con-
troller input u and state s is state x. Sutton and Berto use the terminology
environment and agent because they are meaningful to a wider audience[15].
To be consistent with the literature in RL, this thesis will follow the notation
and terminology of Sutton and Berto.

The goal of RL is to evaluate which action is optimal in each state. To be
able to find this optimal policy, the agent is required to explore the states and
actions. This is called the training of the agent [15]. The agent is acting in
the environment and samples up data which it uses to improve its action for
future states. The agent improves its policy to learn which action in what state
leads to the maximum accumulative rewards. This training process continues
until the agent cannot improve its policy which indicates the training is done.
This, however, does not indicates that the optimal policy for traversing the
environment is found, only that the agent can not improve its performance.

A real-life analogy to RL is the process of teaching a child to throw a basketball
into a basket. The agent is the child and the environment is the basketball,
the playground, wind and everything the child has no control over. The child
is rewarded by if the ball hits the basket. Starting out the child does not know
how to throw the ball, let alone how much force he/she should apply when
throwing. Exploring different techniques and fine-tuning the shooting arm, the
child understands what techniques result in poor performance and which results
in a good performance. By letting the child repeatedly shooting the ball and
trying to understand the relationship between technique and hitting the basket,
the child’s performance gradually increases. The same methodology applies
to RL where the agent tries out different actions and maps out the maximal
expected accumulative reward for possible actions given the current state.
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Figure 4: A simple overview of the main methods in Reinforcement learn-
ing

Fig. 4 presents a way of separating the different methods in RL. The applied
RL methods used in this thesis are only model-free methods as they are best
suited for solving the cases presented in section 3. However, to understand
model-free RL, knowledge about model-based RL is highly recommended. This
main chapter follows the setup in fig. 4 with first an introduction to model-based
methods through Markov decision processes. Further, model-free methods will
be presented with the main two sub-fields called value-based and policy-based.
Finally is a method presented which combines value-based and policy-based.

The methods discussed further in this thesis are all valid options for solving
RL problems in theory. The main discussion is often connected to how fast the
algorithm solves the RL-problem, as well as the robustness of the application and
how feasible they are in practice. There is not one method which is better than
all other for all RL problem. Dependent on the dynamics and the goal, different
methods may yield equal results. The evaluation of the different methods is often
based on how the problems can be formulated as a Markov Decision Process.
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2.1 Markov Decision Processes

Markov Decision Processes (MDP) is a discrete stochastic time process often
presented as a stochastic model. MDPs are the mathematically idealized form
of the RL problem for which precise theoretical statements can be made [15].
It expands on the classic Markov chains which is a statistical model that repre-
sents transitions from state si to a new state (si+1) [25]. Where the transition
between states in Markov chain models is solely dependant on probability, the
transition in MDP is also dependent on the previous action in the given state.
In relationship with RL, MDP is the formal problem which RL tries to solve.

In a MDP an agent can interact with an environment at each sequence of discrete
time steps t = 0, 1, 2, 3, .... All states in a MDP at time step t is a subset of
all possible actions in the MDP, St ∈ S. This basis also applies to an action at
each time step at ∈ A(s), where a in the selected action from the subset A of
possible actions. The transition from state st to st+1 can formally be written
as:

p(s′, a) = Pr{St = s′, At−1 = a} (4)

The Pr and p is the probability of the transition. This can be reformulated to
the state-transition probability for all states transitions for state s. A simple
finite MDP process can be seen in fig. 5.
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Figure 5: A finite Markov decision process with three possibles states.
The numbers besides each action node denotes the probability of the state
transition given the action ai and state si

MDP in RL also includes a Markov Reward Process (MRP) which also is an
expansion of the Markov chain [25]. Where the Markov chain only feeds back
the new state, a MRP also returns a numerical reward Rt+1 for the transition
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to the new state St+1. Introducing the MRP to the MDP, the total probability
transition is shown in eq. (5) and eq. (6). The ’|’ is the conditional probability.

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s,At−1 = a} (5)

∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1, for all s ∈ S, a ∈ A(s) (6)

The goal in RL is to learn an agent to maximize the future rewards Gt, which
is the sum of the collected rewards as seen in the following equation.

Gt = Rt+1 +Rt+2 + · · ·+RT (7)

To prevent the agent to not only look at the immediate rewards at the next
time step, all rewards for a set of action are summed together to evaluate Gt.
This implementation of only looking at the end goal may prompt the agent
to do actions that yield low immediate rewards as the agent only maximizes
the sum of all rewards. This approach may be suited for many applications
but often results with a non-stable training process [15]. This is due to small
updates to the Gt may change the behavior of the agent drastically and result
in poor behavior. However, a combination of maximizing immediate and long
term rewards is desirable, due to long term uncertainty, and a discount factor γ
is often introduced. The discount factor is a hyperparameter that weights the
importance of future and immediate rewards. The agent may value immediate
rewards, but also look ahead. The mathematical formulation of rewards in MRP
is usually included with a discount factor from time t to time step T as shown
in eq. (8).

Gt =

T∑
k=t+1

γk−t−1Rk (8)

A γ ≈ 0 makes the agent favor immediate rewards close in time while a γ ≈
1 favors long term rewards. In fig. 6 the discounting of Gt can be seen for
three different choices of γ values. The third subfigure with gamma equals 0.9,
showcases how the rewards after time step 50 are weighted around zero which
results in the agent accounting for only 50 future time steps.
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Figure 6: Weights of discounted future rewards from current time step
t = 0 to time step t = 200 with three different discount factors

An assumption of the MDP is that the information from previous states has no
effect on the current state. In other words, the process is memoryless between
each transition. This property is called theMarkov property and this assumption
lays the foundation of using RL to solve stochastic transition processes like MDP
[15]. The reason for this being desired in RL is that the agent only needs to
consider the current state when evaluating the action which gives the maximal
expected reward. This action which is expected to yield the maximal rewards
is also called the optimal policy π∗.
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2.1.1 Policy, value-function and Bellman equation

Almost all reinforcement learning algorithms involve estimating a value func-
tions of a state or an state-action pair that estimates how good it is for the
agent to be in a given state or doing a certain action in the given state [15].
The estimation is used to evaluate the policy π, the mapping from action a to
state s, π(a|s), formally denoted as π : A→ S.

To evaluate if a policy is good or bad, a state value-function vπ or a state-action
value function qπ is often introduced. The mathematical definition of vπ(s) and
qπ(s, a) are defined as eq. (9) and eq. (10) respectively.

vπ(s) :=E
[ ∞∑
t=0

γtR(st)|st = s
]

(9)

qπ(s, a) :=E
[ ∞∑
t=0

γtR(st)|st = s, at = a
]

(10)

E is the notation for the stochastic expected value. From a control engineering
perspective can the value function be seen as a cost function. In comparison
computes the cost functions only negative values and of optimizing the cost func-
tion is to reduce it towards zero. However, in RL may the value and state-value
functions compute positive and negative numbers with the maximum beeing
dependent on the architecture of the RL implementation. As stated earlier, the
goal of RL is to find the optimal policy qπ for all feasible states. Solving this
problems means to find a policy that maximizes the accumulated rewards over
a long time series. A new policy π

′
is said to be better than the current pol-

icy π if it’s expected to return a greater total rewards than the current policy
vπ′ (s) > vπ(s) [15].

The optimal policy and state value function are the ones where no policy can
yield greater rewards. The optimality is denoted the asterisk symbol ∗. The
mathematical definition for the optimal policy and state-action function can be
described as:

v∗(s) = max
π

vπ(s) for all s ∈ S (11)

q∗(s, a) = max
π

qπ(s, a) for all s ∈ S and a ∈ A (12)

18



An important property of the value functions is whether they satisfy recursive
relationships with the policy π [15]. This implicates that a policy π can be
evaluated from the value function vπ as shown in equation eq. (13).

vπ =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s′)

]
(13)

Eq 13 is called the Bellman equation for vπ and shows the relationship between
the value of an action-state and the values of succeeding action-states [15]. This
relationship can be exploited to find the optimal policy q∗(s, a) as stated with
the Bellman optimality equation for v∗(s).

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)
∣∣∣St = s,At = a

]
=
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
q∗(s

′, a′)
]

(14)

In theory, any MDP can be solved with the Bellman equation and the optimal
policy can be found with the bellman optimality equation. However, for real life
examples this process be can too ambiguous and infeasible in terms of compu-
tational efficiency. In the following sections different methods are presented as
efficient solutions to MDP. The following methods involves storage of values of
tables and later methods with value function approximations will be introduced.

2.2 Tabular methods for solving MDPs

The simplest form for solving MDP with reinforcement learning is called tabular
solution methods. The idea is to store values of different states and the action
taken in tables for all action-state pairs. The method uses one or more tables
where each row and column represents the value of taking an action at a given
state. The method may also be done by only storing the state values without
the associated action. However, action-state value terminology covers the im-
plementation of state values. Therefore, in this section, only state-action values
are considered.

As the agent explores all possible action-states, the values in the table will
iteratively converge towards the Bellman equation of optimality [15]. Since the
MDP is a combination of discrete and continuous values can the optimization
problem be categorized as a Mixed Integer Programming (MIP). In theory,
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all MDPs can be solved with tabular solutions, but with large action and/or
state spaces this method will require large tables to store all possible action-
state-values. For most real-life systems this is infeasible in practice. With the
requirement of infinite large tables, an approximation is needed. This will be
further discussed in section 2.3. but for small finite MDPs however, dynamic
programming is a common choice for finding the optimal policy.

2.2.1 Dynamic programming

Dynamic Programming (DP) is a method for solving a complex problem by
dividing the problem into sub-problems [26]. The Sub-problems are solved indi-
vidually and their value is stored for future evaluations. This memorization of
sub-problems allows for usage of previous experience when solving over-lapping
sub-problems. In other words, DP remembers it’s past to avoid solving the same
problem multiple times.

DP in the context of RL refers to a collection of algorithms that can be used to
compute optimal policies given a perfect model of the environment as a MDP
[15]. As discussed earlier, the assumption of a perfect model of the environment
is not always feasible in RL, but the fundamental approach DP uses to solve
MDP can be generalized for all RL-problems. DP searches for the optimal policy
by utilizing the value function V (s). The approach combines policy iteration and
value iteration to find the optimal policy.

Policy iteration consists of two parts, policy evaluation and policy improvement.
The two methods work together as a reliable algorithm for finding the optimal
policy for a given MDP. The algorithm explores all states in the MDP and
updates the transition probability when the value function converges. The policy
evaluates a value function for the given policy based on the Bellman equation.
Value iteration, on the other hand, differs from policy iteration by updating
the value function before it converges. Policy- and value iteration are popular
methods for exploring all possible state transitions for solving finite MDP. The
methods are often described by the term Generalized Policy Iteration (GPI)
which lets the policy improvement and policy evaluation interact with each
other. A visualization of GPI can be viewed in fig. 7
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Figure 7: Visulization of the Generalized Policy Iteration (GPI). The
two figures illustrated how the policy and value is evaluated and improved
iteratively throughout training

The left part of the image represents the convergence of evaluating both the
value function and best-found policy (greedy). The evaluations will eventually
converge towards the optimal value and policy function v∗ π∗. The right part
shows the cycle of shifting between policy evaluation and policy improvement.

After evaluating the optimal policy, the agent is considered fully trained and
further be used for control. Control is a term for when the agent no longer is
exploring suboptimal actions and only takes the action which it finds optimal.
However, finding the optimal policy requires exploration of the entire MDP state
space. The optimal ratio between policy evaluation and policy improvement is
usually unique for each problem. It’s desirable to only prove the policy but
without sufficient evaluation, the best policy will not be discovered. This trade-
off is famously called the Exploration VS Exploitation dilemma.

If the GPI spans a large MDP, a model based method like DP is not efficient
enough as is needs to search through the whole MDP for finding the optimal
policy. Alternate methods like Monte Carlo or Temporal differences are rather
the default choice as they do not require to search the whole MDP.
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2.2.2 Monte Carlo methods

Monte Carlo methods can arguably be considered the most popular choice of
learning method for estimating value functions and discovering optimal policies
[15]. Monte Carlo methods use the property of episodic trials to evaluate the
value function of a given state. In the fields of mathematics, Monte Carlo is a
class of algorithms which repeatedly samples data from a system to evaluate the
property of the system [27]. This is often done to evaluate the distribution and
probability of different scenarios. In RL, this method implies that the feedback
signal of rewards are only prompted when the episode terminates. This means
that the transitions of multiple state-actions are made before the training is
prompted. The mathematical expression for a simple every-visit Monte Carlo
method can be expressed as eq. (15)

V (St)← V (St) + α
[
Gt − V (St)

]
(15)

V (St) is the value at state S at time t. Gt is the return at time t and α is a step
size parameter. This process of waiting until the episode terminates is often
referred to as a rollout. For each rollout, the value function is adjusted until the
Bellman optimality is satisfied. Monte Carlo methods require a termination of
the episode before Gt is can be evaluated. This is convenient for systems where
the feedback is only prompted at the end of the episode. Monte Carlo is often
used to solve systems like chess and videogames [15]. However, for systems where
the rewards are constantly given during the episodes, an alternative approach
is to make a prediction before the episode is terminated. A method which is
called bootstrapping and is utilized in temporal differences.

2.2.3 Temporal differences

Temporal Differences (TD) is a combination of Monte Carlo and dynamic pro-
gramming ideas [15]. Like DP, the value function is constantly updated as the
agent moves through the action-state space. However, in contrast with DP,
TD does not require a model of the environment. Like Monte Carlo, TD can
learn directly from the exposure to the environment without a MDP model.
The value function is updated after each action without waiting for the final
outcome. This process is also commonly known as bootstrapping. The initial
guess of the value is constantly altered with the experience of the agent. The
simplest version of TD is known as TD(0) and can mathematically be shown in
eq. (16)
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V (St)← V (St) + α
[
Rt+1 + γV (St+1)− V (St)

]
(16)

where Rt+1 is the resulting reward at time step t and γ is the discount factor.
Where as the Monte Carlo method waits until the episode terminated and then
evalutes the value of the experienced action-states, TD predicts constantly the
value as it traverses the action-states and updates the value function based on
the TD error δt as seen in eq. (17)

δt=̇Rt+1 + γV (St+1)− V (St) (17)

2.2.4 N-step and TD(λ)

The method of temporal differences also expands to other methods know as
n-step TD and TD (λ). Where the TD(0) only uses the Rt+1 to update the
estimate, n-step and TD(λ) includes n number of rewards in the update. The N-
step method can be described as the generalization of TD(0) and Monte Carlo.
Where TD(0) updates after each feedback, the N-step method waits for n-steps
before updating, hence the name. By setting n to infinite, the n-step method
will always wait until termination before updating which is the definition of the
Monte Carlo method. An illustration of the difference can be seen in fig. 8.
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Figure 8: n-step method for temporal differences showing the connection
between TD(0) and Monte Carlo with the choices from n = 0 to n =∞

Another way of generalizing Monte Carlo and TD is the popular TD(λ). In con-
trast to N-step methods, TD(λ) has significant computational advantages. This
is due to eligibility traces, denoted with λ, where λ is a trace-decay parameter
λ ∈ [0, 1] [15]. While the n-step method computes n vectors in each episode,
utilizes TD(λ) only one trace vector. The long term vector can be split up into
multiple shot term vectors which can be computed parallel during training. An
eligibility trace of (λ = 1) is the Monte Carlo method and is TD(0) for (λ = 0).
The usage of eligibility traces has shown to improve efficiency during training
when solving RL [15].

2.3 Function approximations for solving MDPs

As presented earlier in section 2.2, the action-state spaces are often too large
to be solved using tabular methods. For instance, in the game of chess with 32
pieces and 64 possible positions, the total number of possible states is roughly
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64 · 63 · 62 ... 33 · 32 = 1.55 · 1055, not accounting for illegal states. Creating a
table that can store 10 · 1055 values is intractable. This problem is further
increased for continuous action- and state spaces where the real numbers R
cannot be discretized without loss of information. The whole mathematical
background for RL builds on the MDP as a discrete stochastic process. To
represent the problem as an MDP, a finite number of states is required. However,
for continuous state spaces is this not possible. This problem is commonly known
as Curse of dimmentionality. This curse applies to both the state values as well
as the state-action values.

A simple approach for solving this curse is to discrete the action and/or the state
space. By lumping the ranges of the possible state space into a finite number,
a tabular method can be used. However, this method creates multiple distinct
states that generalize subdomains into one state. A discretizing of the state
space loses information about the original MDP and creates a new MDP. Since
the agent is trained on the new MDP will, this will not necessarily work for the
original MDP as the new MDP contains less information than the original.

Another method that is commonly used is to utilize a function to approximate
the values of the state given experiences from similar states. This maps the
state to an approximation of the state value function. This means that all
values from the state value can be used without needing to treat each value as
a unique state. In other words, the values from the full state space are used
to create a generalization of the state space. To create these approximations a
function is required. This function can either be linear or non-linear.

2.3.1 Linear methods

A linear function approximate f(x) can be described by a feature vector φ(x) and
a parameter vector θ, which is often referred to as a weight vector in the context
of ML. A general linear function approximator is presented in the following
equation.

f(x) = θTφ(x) (18)

The function approximator can be described as a predictor that tries to evaluate
the observed value of f̂(x). From the field of supervised learning, the variable
x is called features and can also be described as the input to the function [12].
In RL, the features are often the state which the agent experience. However,
the features may consist of multiple states and/or a transformation of the states
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which the agent has experienced. This is often done to simplify the agent’s task
of finding important observations.

Where the tabular methods use a table of all possible state values, a function
approximator instead is used to approximate the large table. Instead of updating
elements in a table, the weights of the function are adjusted to better fit the true
observed state values. Typically, this error is calculated from an error function
like mean squared error over a distribution µ of all features as shown in the
equation below.

MSV E(θ) =
∑
s∈S

µ(s)
[
V π(s)− V̂ (s, θ)

]2 (19)

The distribution µ indicates how much each state is valued in the error function.
The adjustment of the weights in eq. (18) is done by minimizing a loss function,
like eq. (19), with unconstrained optimization.

The advantage of the linear function approximator is that they are computa-
tionally efficient and easy to understand how the weights are adjusted during
training. A commonly used linear function approximator in process control is
the weighted least squares regression. However, for many non-linear systems,
a linear function approximator cannot capture a sufficient generalization of the
state values. Instead, a non-linear activation function like Neural Network,
rather used. This is further presented in section 2.3.3.

With the minimization of the cost function is the field of mathematical opti-
mization is introduced. Mathematical optimization spans multiple sub-field, but
since the goal of the function approximates is to minimize the residual between
the predicted and experiences action-state values without any constraints, the
sub-field of unconstrained optimization mainly used.

2.3.2 Unconstrained optimization

Unconstrained optimization spans all optimization problems which are not af-
fected by constraints [28]. Meaning that all values θ of the objective function
f are valid. In order to improve the function approximator, the difference be-
tween the predicted state-action values and the observed state-action values is
minimized. The method, like any other optimization method, tries to find the
extreme point of a function [28]. Whereas optimization, in general, is formulated
with the Karush–Kuhn–Tucker (KKT) conditions, unconstrained optimization
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does not include the Lagrange multiplier λ [28]. Consequentially, the follow-
ing list is the resulting KKT-condition for unconstrained optimization problems
[28].

1. If θ∗ is a local minimizer and f is cont. differentiable in an open area
around θ∗, then ∇f(θ∗) = 0. This is the first condition.

2. If θ∗is a local minimiser of f and ∇2f exists and is cont. in an area
around θ∗, then ∇f(θ∗) = 0 and ∇2f(θ∗) is pos. semidef. This is the
second condition.

3. Suppose that ∇2f is cont. in an area around θ∗ and that ∇f(θ∗) = 0 and
∇2f(θ∗) is pos. def. Then θ∗is a strict local minimiser of f . This is the
third condition.

The conditions presented above simply states that the minimum of a function
is the point were a function can’t be decrease any further by small adjustments,
which is the definition of a local minimum. A global minimum would be the
local minimum which has the lowest objective value compared to all other local
minimums. However, there is no guaranty for a local minimum beeing a global
if the objective function is non-convex [28]. However, a control engineer is often
not interesting in finding the global minimum, only a local minimum which is
sufficient for the application.

In comparison with the rewards function in RL, the goal of the function ap-
proximator is not to maximize the episodic rewards, but rather predicting the
value the agent will earn for each state-action. The error from the loss function
is gradually decreased with the use of an optimizer. The function is decreased
until at least the first and second KKT conditions are satisfied. The third
condition is a sufficient condition and does not always have to be satisfied.

The common choice of optimizer for ML is called Stochastic Gradient Descent
(SDG) [29]. SDG is a commonly used algorithm in ML which evaluates an
approximation of the gradient of the objective function and changes the pa-
rameters to decrease the function value [29]. The nature of the algorithm is
to gradually decrease the cost function calculated by observed and predicted
values. The gradient of the cost function or an approximation of the gradient
is calculated from the objective function, indicating how θ must be changed
to decrease the cost function. A visualization of the gradient descent method
which shows the iterative process used in unconstrained optimization in fig. 9.
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Figure 9: The iterative minimization path for a gradient descent algorithm
on the Rosenbrock function [30]

The gradient evaluated from the objective function indicates only in which direc-
tion the function decreases. Whereas gradient descent methods often compute
the gradient from the objective function, SGD collects randomly selected sam-
ples that are used to compute an approximation of the gradient of the objective
function.

This means that to satisfy the KKT conditions the values of θ must change
in the direction of the calculated gradient. How much the parameters change
in each iteration is called the step length. This step length is referred to as
learning rate in the context of ML. Each iteration in optimization is referred to
as a epochs in the context of ML.

In supervised learning, a phenomenon called overfitting may occur. This refers
to situations when the trained model “memorizes” the labels of the training
data that the model would perform poorly on unseen data [12]. In RL this
is prevented by continually having a dynamic set of training data. The agent
collects more data as it moves through the state-action space, and in addition,
only one epoch is conducted before updating the data collection.

28



As discussed earlier in section 2.3.1 is not always a linear function approximator
sufficient enough for creating a generalization of the environments value func-
tion. In these situations are often a non-linear function approximator used. A
common non-linear function approximator which is heavily used in ML is called
Artificial Neural Network.

2.3.3 Artificial Neural Network

Artificial Neural Network (ANN) or neural network is a biologically inspired
framework that is used in multiple applications of ML. The concept of neural
networks dates back to the mid 20th century when Warren McCulloch and
Walter Pitts created a computational model called threshold logic [31]. ANN
consists of multiple algorithms that all can be represented by multiples nodes
that are connected in a graph, which is called the network [12]. The Network is
a graph of nodes and the connected vertices are the weight parameters. There
are many types of ANN used for different ML problems like Feedforward Neural
Network (FNN), Recurrent Neural Network (RNN) and Convolutional Neural
Network (CNN).

The FNN is the simplest type of a neural network which consists of at least an
input layer and an output layer. In addition, may multiple hidden layers between
the input and output layers be included. A neural network with multiple hidden
layers is called a deep neural network. The field of Deep Learning is evolved
around this concept and a lot of research is done to understand fully how deep
neural networks learn. A side note is that a neural network with only a few
hidden layers is called a shallow network. An illustration of a shallow complete
feed-forward neural network is shown in fig. 10. In the case of a complete FNN,
all the nodes in one layer are connected to all the nodes in the next layer with
one edge between all nodes.
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Figure 10: A feedforward artificial neural network with one hidden layer,
w and b are the weight and bias parameters

A neural network consists of multiple linear combinations of the nodes in the
graph. The value of one node is the sum of all connected nodes, described
mathematically in equation eq. (20).

xi,j+1 =

Ni∑
i=1

wi,jxi,j (20)

Without introducing non-linearity to the network, a neural network will be
considered a linear function approximator. This is not preferable for non-linear
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systems as discussed earlier in section 2.3.1. Introducing an activation function
σ transforms the linear equation in eq. (20) into the non-linear equation in
eq. (21)

xi,j+1 =

Ni∑
i=1

σ(wi,jxi,j) + bi,j (21)

In which xi,j is the i numbered node value in layer j. Ni is the number of nodes
in layer i. w is the weight parameter. With the introduction of an activation
function, different nodes will be deactivated, x ∼ 0, depending on the values of
the weights. This may cause that all values of the nodes in a layer are deactivated
and the output of the network is zero. With introduction of a bias parameter b
can this phenomenon be prevented. The bias parameter is not affected during
the weight adjustment of the vertices which are connected in the same layer and
may “shift” the activation function left or right to prevent deactivation.

There are multiple activation functions that have been tested and tried in recent
years. In particular, the activation function Rectifier Linear Unit (ReLU) on
hidden layers has proven to yield the best results [32]. Another previous popular
activation function is the sigmoid function. The sigmoid and ReLU activation
function are both shown in fig. 11 as well as described by the following equations.

fSigmoid =
1

1− e−x
(22)

fRelu(x) = x+ = max(0, x) (23)
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Figure 11: Visual representation of the ReLu and Sigmoid functions

There are many ways to implement the function approximator in RL and in the
following section, two methods are emphasized as they are the basis for solving
RL in large state-action spaces. The first one being value-based and the second
one policy-based.

2.4 Value-based methods

Value-based methods evolve partially around learning the value function V π(s)
or a generalization of the -value function [15]. By evaluating the value of the
actions at each state, the agent can simply choose the action which yields the
maximal value. The policy is therefore defined through the value-function and
this is indirectly altered with the value function. The optimal policy for each
state is the argument of the maxima of the possible actions as illustrated in
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fig. 12 and described by eq. (24). The equation can be categorized as a MIP as
the optimization problem is a combination of continuous and discrete values.

π∗(s) = argmax
a∈A

∑
s′∈S

P (s′|s, a)V̂ π(s′) (24)

Figure 12: A simplified illustration of the value based method. The value
function V calculates the expected value V (ai) for each action ai in the
current state s. The greedy policy is in this figure a2

However, to evaluate the policy a model of vπ or qπ is required. For smaller
MDPs can this be solved by using TD and update the table-values in each
iteration. However, with large MDPs is this not feasible and this is where the
function approximator comes into play as a method for model-free RL. The
function approximator calculates a Q-value which is an approximation of the
state-action value function qπ(s, a). The Q-value is the output from the function
approximator, called Q-function, that can predict the succeeding states q-value
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and evaluate the goodness of different state-action pairs. The Q-function can
be seen in the following equation.

Qπ(s) = R(s) + γ
∑
s′∈S

P (s′|s, a)Qπ(s′, π(s′)) (25)

The output of the approximator in value based methods corresponds to the
values of the action the agent may choose. The introduction of the Q-function
allows for learning without a model of the MDP, called model free methods.

There are mainly two distinctions in value-based methods; on-policy and off-
policy. On-policy covers the traditional TD and Monte Carlo methods which
was introduced in section 2.2.2 and section 2.2.3. The idea behind on-policy is
to solve the value function of the policy π that the agent is currently following.
A commonly used on-policy algorithm for TD-control is called Sarsa [15].

Off-policy, on the other hand, is trying to evaluate the policy of one policy
while the agent is currently following a different policy. This may seem counter-
intuitive, but this allows for the usage of all the policies from the previous
iterations to predict the current policy. on-policy however, is based only on
the current policy. The advantage of this approach is that off-policy helps to
stabilize the performance during training. The off-policy method named Q-
learning is currently a widely used algorithm for solving large state space MDP.

2.4.1 Q-learning

Q-learning or Deep-Q-Network (DQN), as it is more recently referred to, is an
algorithm that dates back to 1989 [33]. The method builds on the Bellman
equation shown in eq. (13).

Q(st, At)← Q(st, At) + α
[
Rt+1 + γmax

a
A(st+1, a)−Q(st, At)

]
(26)

Q-learning became popular when the company DeepMind company published
a paper describing DQN for creating human behaviors in multiple Atari games
[34]. The team at DeepMind improved the Q-learning with the usage of a deep
neural network as Q-function, hence the name Deep-Q-network. The general
implementation is shown in the algorithm 2.
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Algorithm 2: Psudocode for the Q-learning algorithm

Initialize Q(s,a), for all s ∈ S, a ∈ A(s)
for episode=0,1,2,... do

Initialize S
for t=0,1,2,... do

Choose at ∈ A from st using policy derived from Q(st)
Take action at and observe Rt+1, st+1

Q(st, at)← Q(st, At) + α
[
Rt+1 + γmaxaA(st+1, At+1)−Q(st, At)

]
if St+1 is terminate state then

End current episode
else

Continue
end

end
end

A tendency Q-learning has during training is a wide variance in performances.
This is caused by the argmax function shown in eq. (25). Let’s say action a0
represents an action of going left, actions a1 − a9 represent the range from left
to right and a10 represents going right. If both state-action values of a0 and a10
are close to one another in terms of Q-value, a small update to the Q-function
however may lead to drastic changes in greedy policy. This behavior may also
happen if the agent evaluates a state from which it has no general experience.
The agent has no knowledge about how the actions are related and views all
as independent actions. Another problem is that value-based methods require
a finite number of actions. This means that a continuous action space needs
to be discretized before training. This is often not desirable for controlling real
systems.

2.5 Policy-based methods

While value-based methods evaluate the policy through the value estimation,
policy-methods directly alter the policy without consulting the value function
[15]. The method seeks to maximize the performance gradient J(θ) with respect
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to the policy parameters. ∇̂J(θ) is the gradient of the stochastic performance
measurement which approximates the directing which increases the likelihood
of future rewards, given the policy parameters θ. The update is conducted with
a simple gradient accent as shown in the following equation.

θt+1 = θt + α∇̂J(θt) (27)

Introducing the stochastic estimator J allows for non-deterministic policies.
This is useful for state aliases where multiple states are indistinguishable. The
available actions provide a probability given the current state and based on
future rewards. The probability actions with high rewards increase while the
probability of actions with low rewards decrease. However, this requires a rela-
tion between the performance gradient and the effect from the policy parameters
which is unknown for the performance gradient. Fortunately, this can be solved
theoretically with the policy gradient theorem in eq. (28) [15].

∇J(θ) ∝
∑
s

µ(s)
∑
s

qπ(s, a)∇θπ(a|s, θ) (28)

The policy gradient theroem above simply states the relationship between the
gradients performance with respect to the policy parameter. ∝ means “propor-
tional to” and is the on-policy distribution following the current policy π. For
episodic cases can this theorem be presented as an Monte Carlo expectation
as seen in eq. (29) where the distribution is substituted out with the gradients
expected performance following the current policy.

∇J(θ) = E
[∑

s

qπ(s, a)∇θπ(a|s, θ)
]

(29)

When implementing the episodic case of policy gradient theorem Eq. (29) is
more often expressed as a function of the cumulative rewards Gt as seen in
eq. (30).

∇J(θ) = E
[ T−1∑
t=0

Gt∇θπ(a|s, θ)
]

(30)

The gradient ∇J(θ) can be approximated numerically by substituting the gra-
dient ascent equation in eq. (27) to represent a iterative way to change the
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parameter θ for improved performance as seen in the policy update functions
eq. (31) and eq. (32)

θt+1 =θt + αGt
∇θπ(At|St, θt)
π(At|St, θt)

(31)

θt+1 =θt + αGt∇θ lnπ(At|St, θt) (32)

In which ∇θ lnπ(At|St, θt) is the eligibility vector explained in section 2.2.4.
Eq. (31) and eq. (32) are the same equation with the simple algebraic relation
∇ lnx = ∇x

x . The reason for reformulating eq. (31) is due to the natural fit
into functions approximator as the log probability distribution. By comparing
the gradient and the log probability, an increase in J(θ) is the increase of the
probability of the action which yields higher rewards.

The log probability is a maximum likelihood of a set of actions for the agent.
However, for a continuous action space, the probability is the expected action
with the range between 0 and 1 for higher rewards. By only using the outcome
of the log probability, the agent may get stuck doing the same action for different
states. This can be solved by implementing a method for exploration. One way
is to use an action disturbance which forces the network to explore. One example
of action disturbance is to use a distribution around action value with an action
variance. Another method is to use the (ε− greedy) method which calculates a
probability ε doing a random instead of the perceived optimal action.

This implementation has a lot of similarities with the adaptive controller which
was presented in section 1.2.4. Both try to shift the cost function towards the
optimum. However, where extremum seeking is only bounded by the imme-
diate rewards the policy gradient may look further ahead and do sub-optimal
actions for greater cumulative rewards. A common implementation of the policy
gradient method is the algorithm called REINFORCE.

2.5.1 REINFORCE

The cycle of the REINFORCE algorithm is to collect the rewards from the
rollout and shift the probability of the bad actions based on the return value
Gt. The algorithm builds on the Monte Carlo methods since the training only
occurs between each episode. The general implementation of the REINFORCE
algorithm can be seen in algorithm 3.
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Algorithm 3: Pseudocode for the REINFORCE with baseline algorithm

Input: a differentiable policy parameterization π(a|s, θ)
Initialize policy parameter θ ∈ Rd′ and state-value weights w ∈ Rd
for ei=0,1,2,... do

Rollout the episode and collect St, At, Rt following π
for t = 0,1,2,... ei do

Gt ← return from step t
θt+1 ← θt + αθγtδ∇θ lnπ(At|St, θt)

end
end

γ is the discounting factor, α is the learning rate (step length) and ei is the
episode number. This algorithm can further be improved by using an arbitrary
baseline b(St) for the experienced episodic returns. This is done by substituting
Gt in eq. (32) with Gt−b(St). This will often improve performance and decrease
the training time [15]. The base line is commonly dependent on the state value
S(St, w) and is often updated by a step size parameter αw, where w is denoted
the state-value weights.

Policy gradient methods have mainly two weaknesses when solving RL-problems,
local minimums, and inefficiency [15]. Since the policy is updated iteratively
with eq. (32) the gradient ascent tends to find local minimums for which the
agent’s expected return cannot be improved. This can be solved by implement-
ing a probability of doing sub-optimal actions for exploration and/or changing
the learning rate. However, this requires a large search space which follows
into the second weakness that is inefficiency. Policy gradient gradually shifts
the expected value based on the return. Since the return from a state has a
high variance the process of determining the expected return of a given state
requires large numbers of trials. For large systems, this may be computationally
unfeasible. By introducing an estimate of the return and by bootstrapping the
return value, a new method called Actor Critic is introduced.
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2.6 Actor-Critic

Actor-Critic (AC) combines value-based and policy-based methods to create
a more efficient algorithm for solving large action- and state space MDPs.
Whereas the REINFORCE may utilize a state value function as a baseline,
the AC takes the baseline one step further by bootstrapping the state value
estimate and updating the value estimate from the TD error in eq. (17), an
equation which was introduced in section 2.2.3.

An analogy to AC is a child (actor) playing basketball and a teacher (critic)
evaluating the child’s performance. The child tries different techniques and the
teacher gives feedback to the child how to adjust its technique. The teacher also
adjusts its perception of the environment for improved feedback to the child.
The teacher can learn that climbing upwards would result in falling down and
prevent the child from experiencing the fall if he/she sees the child climbing
upwards. An overview of the general actor-critic methods is seen in fig. 13.
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Figure 13: Caption

In the previous chapter a baseline b(St) was included in policy gradient theo-
rem eq. (30) for improved performance. Actor-Critic builds on the baseline in
policy gradient by switching out the baseline with the Q-function from eq. (25),
which was introduced in section 2.4. The introduction of the Q-value is what
distinguishes policy gradient with a baseline from AC. This introduction results
in a different function for the cost function gradient ∇J(θ).

∇J(θ) = E
[ T−1∑
t=0

Qw(s, a)∇θπ(a|s, θ)
]

(33)

The subscript w for the Q-value is notation for using a parameterization of
the Q-function, like a function value approximator (often ANN). Using the Q-
function instead of the cumulative reward have shown to improve performance
[15]. This is due to bootstrapping which have shown to decreases the variance
when analyzing dependent observations [35].
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AC is considered the general method for all RL algorithms which utilizes both
value function and policy update. The generalization spans multiple algorithms
that have seen successful applications. Eq.(33) is the general implementation
of the AC, and with different parameterizations of the Q-function have many
different AC-algorithms in the recent years been created which are now consid-
ered state of the art. One example of one of these iterations is called Advantage
Actor-Critic (A2C). The method substitutes the Q-function by an advantage
value A as seen in the eq. (34). The advantage value A is the difference between
the predicted Q-value the experienced one.

∇J(θ) = E
[ T−1∑
t=0

A(s, a)∇θπ(a|s, θ)
]

(34)

A2C is considered the basic implementation of the AC in RL. However, many
iterations have built on this for improved learning methods. These include
Asynchronous Advantage Actor-Critic (A3C), Deep Deterministic Policy Gra-
dients(DDPG), Proximal Policy Optimization (PPO) and Trust Region Policy
Optimization (TRPO) [36]. Actor-Critic method is a field that is rapidly evolv-
ing and new implementations are frequently developed.
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3 Case description

In this thesis, three cases were created as MDP problems to be solved with
reinforcement learning. A tank containing liquid was chosen as the system
component for the environment model for all the cases. The container has one
inflow and one outflow, where the outflow can be controlled by a valve. An
illustration of the system is seen in fig. 14.

Figure 14: Illustration of a tank containing liquid with one disturbance
inflow and one outflow with a choke valve

A model describing the dynamics of the tank was derived from a generic mass
balance shown in appendix A. The final model for the tank dynamics with
respect to the liquid height is presented in the following equation.
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d(h)

dt
=

1

πr2

(
qin − f(z)Aout

√
2gh+

∆p

ρ

)
(35)

The parameters h and r are the height and radius of the tank, ρ is the density
of the liquid, q is the mass flow, Aout is the cross area of the outflow pipe, ∆p
is the difference between the tank surface pressure and the pressure at the end
of the outflow pipe, and f(z) is the valve opening.

The goal of the RL-implementation in this thesis is to learn an agent to control
the liquid level in the tank by opening and closing the valve. The environment
is considered the tank level which will be denoted by state value s. The tank
level is disturbed by an inflow qin which is calculated by a bounded Gaussian
distribution of the inflow for the previous time step as shown in eq. (36). This
method for simulating real-world time series is called Gaussian random walk.
The inflow bounds for the Gaussian flow was set to not exceed a max flow qmaxin

or a min flow qminin as in eq. (36).

qin,t+1 ∼ N (qin,t, 0.05 · qin,0) (36)

The tank has a maximum and a minimum liquid level, hmax and hmin, which
are considered hard constraints. A state value outside the constraint boundaries
is considered a system failure or a termination state. The agent’s action is the
percentage valve opening z ranging between 0 ≤ z ≤ 1. The environment
is therefore considered all dynamics except the valve position z. The valve
equation was set to be linear resulting in the action value as the valve position.

The tank system was not implemented with any system delay. This is because
the thesis emphasizes on the RL-methods and not the tank model implementa-
tion. In addition would the implementation of system delay results in loss of the
Markov property since each state-action would be dependent on the previous
state-action. However, this could be solved by using Auto-Regression models
(AR), e.g a Recurrent Neural Network (RNN). However, this would increase the
complexity as a Long Short-Term Memory (LSTM) architecture in the neural
network would be needed.

The first case is to control the liquid level in one tank. The agent should learn
to control the liquid level to a given setpoint value between the hard constraints.
To utilize episodic rewards, an episode of maximum time tmax was introduced.
If the state value reached one of the two hard constraints or reach t = tmax, the
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state would be considered a termination state and the episode would end before
starting a new. The implementation of controllers and training algorithms can
be seen in section 4.

After training the agent should be able to control the liquid level in the tank
around the set point regardless of the incoming disturbance. This acceptable
deviation from setpoint was chosen to be between two soft constraints. The
training would not terminate if the state breached one of the soft constraints
but rather considered to perform poorly. After training, a predetermined distur-
bance with a disturbance step at t = tmax

2 is used to evaluate the performance
of the different controllers. These results are presented in section 5. The prede-
termined disturbance can be seen in fig. 15
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Figure 15: Predetermined inflow disturbance to be used in evaluation of
controllers

The second- and third case consists of, respectfully, two and six tanks in series.
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Therefore the outflow of the first tank is considered the disturbance to the
second tank. Where the state observation in the first case only was the liquid
level, in multiple tank series the state also includes the valve position of the
previous tank in the series. A visualization of two and six tanks can be seen
in fig. 16 and fig. 17. Whereas the disturbance in the first tank will only range
between qmaxin and qminin , the valve position for one tank would determine the
disturbance into the succeeding tank in the series.
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Figure 16: Visualization of the case of two tanks

Figure 17: Visualization of the case of six tanks
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4 Implementations

Python was chosen as the programming language for the implementation of
the simulator and controllers. This is because of the widely documented deep
learning frameworks which are compatible with python. A P-controller was
chosen as the industry controller since level control is an integrating process
and a P-controller is the preferred choice in the industry for these processes.
Even though the RL-problem, in theory, could be solved by trial and error on
a real tank, the process would require decades of training. Consequently, a
simulator was rather chosen for efficient training.

The whole project is presented in the authors Github repository “Reinforcement
learning in process control”[24]. The results from the evaluation of the different
controllers are presented in section 5.

4.1 Implementation of simulator

The goal of the simulator was to create a digital environment that the agent
could train on. The main object of the thesis was the implementation of the
RL-methods and not the tank modeling. Consequently, the model was only
created to sufficiently simulate a real tank system. The overall structure of the
simulator can be seen in fig. 18.
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Figure 18: The overall python project structure of the tank system sim-
ulator

The simulator was created with implementation of the tank equation eq. (35)
as a class in tank.py. The disturbance flow qin was not embedded in the tank
class, but rather as a separated class in disturbance.py. This was done for better
code-structure. The tank class was implemented in the environment.py which
was set up to include an action z from main.py and return a new state s along
with a reward R. This setup creates the RL-description presented in fig. 3 from
section 2.

To better visualize the agent’s actions during an episode, a visualization of the
simulator was created in window.py. The class renders the tank height and the
valve position for each time step during training. The simulator used a linear
valve equation with no time delay. However, an action delay was implemented
for a better graphical illustration of the actions of the agent. The size of the
tanks in the series was set to have the same parameters except for the tank
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heights. The parameters used in the simulation can be seen in appendix B.

The implication of using a simulator is that the environment is only an ap-
proximation of the real environment. This implies that errors in the simulator
may affect the performance of the controller if further implemented in process
industries. However, as this thesis is about exploring the possibilities of using
RL in process control, this concern is not important. If RL is to be applied in
real life applications then this becomes important.

To evaluate the different RL-methods, a standard controller from the industries
would yield a reference of the agent performance when doing control. A P-
controller was chosen as the controller of reference.

4.2 Implementation of P-controller

Level control is an integrating process which means an input-step would lead
to a higher new steady-state value, compared to a self-regulating behavior that
would converge back to the original steady-state value. P-controllers are com-
monly used for controlling integrating processes and is why it was chosen as the
compared industry controller. Additionally, P-controllers are one of the most
commonly used controllers for regulating tank levels. This is because small off-
sets in the tank level have small to no effects on the overall plant’s performance.
Besides, a P-controller is inexpensive and easy to tune for good performance.

The controller was modelled from the tank equation, shown in eq. (35) from
section 3. The full derivation can be seen in appendix C. The gain, time constant
and closed loop gain Kc, were calculated with the Simplified Internal Model
Control (SIMC) tuning rule [6] to be the following:

Kc =
τ

Kτc
(37)

K =
hnom

f(znom)
(38)

τ =
πr

f(znom)Aout2g
(39)

The controller was created with the model p-controller.py, independent of the
environment.py to best replicate an agent doing actions on the environment. All
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hyper-parameters like tank height and nominal disturbance flow were defined in
a single file called params.py. The implementation of the P-controller with the
simulator can be seen in fig. 19.

Figure 19: The overall python project structure of the p-controller imple-
mentation

The closed-loop constant τc is often chosen from a set of different criteria. From
eq. (37) it can be observed that a small τc results in a high Kc which results
in an aggressive controller. Whereas a high τc results in smooth control. The
choice of τc is very dependent on the system requirements and often hard to
evaluate. In this thesis, multiple simulations with different τc were evaluated of
the liquid level’s set-point deviation. The deviation was used to calculate the
cost function Mean Squared Error (MSE) seen in eq. (40) which was previously
introduces as eq. (19) in section 2.3.1.
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Gtot =
1

N

N∑
n

Gn

(40)

The equation above sums opp the cumulative cost G as the Sum of Squared
Errors (SSE) for N number of episodes. The cost is calculated by the deviations
from set-point at each time step t. A script was made for evaluating the response
for different τc. For each τc values, a set of N = 100 simulations with T = 200
time steps were carried out with random disturbances. Sampling time was set
to 5 seconds meaning the inputs were only conducted at each fifth seconds.
The reason for not choosing 1 second was for better visualization of the agent’s
action when compared to the RL-controllers. The τc with the lowest MSE was
used as the tuning parameter. The set-point was chosen to be 50% of the tank
height (5m). The script used for tuning one tank is presented in appendix F.1.
The τc evaluation for the first tank can be seen in fig. 20.
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Figure 20: Error function evaluation of the p-controllers tuning parame-
ters τc for the first tank

For tuning of multiple tanks, a sequential tuning script was made for tuning
of tanki followed by tuning of tanki+1. This could be done starting from the
first until the last tank since all the tanks were only affected by the tuning of
the previous tank. The script automatically tuned the first tank and used the
best evaluated τc for tanki when tuning tanki+1. The plotted evaluation of
the tanks in series can be seen in appendix D. The best performed τc for the
different tanks is presented in table 3.
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Tank τc Tank radius Tank volume
1 31 10 m 3141 m3

2 109 8 m 2010 m3

3 97 8 m 2010 m3

4 156 7 m 1540 m3

5 98 9 m 2545 m3

6 211 8 m 2010 m3

Table 3: Best performed τc parameters evaluated from the tuning script
along with the tank parameters. The heights of the tanks are all set to 10
m

These best performed τc parameters were evaluated with the predetermined
disturbance. However, the evaluation plot showed an aggressive controller. The
initial evaluation of the 1 tank controller can be seen in fig. 33.
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Figure 21: P-controller control for one tank evaluation plot
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From the valve opening plot, the input trajectory can be observed to shift quite
often. This is not desirable as succeeding components would observe constant
disturbance steps which could lead to instability. This can be further seen for
the evaluation plot of the two and six tank case in appendix D. The τc parameter
were increased to have more smooth p-controller and is presented in table 4.

Tank τc Tank radius Tank volume
1 200 10 m 3141 m3

2 250 8 m 2010 m3

3 250 8 m 2010 m3

4 250 7 m 1540 m3

5 250 9 m 2545 m3

6 250 8 m 2010 m3

Table 4: Adjusted τc parameters for the p-controllers along with the tank
parameters. The heights of the tanks are all set to 10 m

The choice of τc of 200 and 250 is the relatively high performance in MSE around
these values as seen in appendix D. The reason for having a more aggressive
tank 1 controller than the subsequent controllers is to counteract the initial
disturbance so it does not propagate backwards to the succeeding tanks. The
evaluated performance of the adjusted p-controllers can be seen in section 5.

4.3 Implementation of RL methods

The value- and policy-based learning algorithms Q-learning and REINFORCE
were implemented for all three cases. A2C was implemented for the single
tank case to explore the possibility of combining value-based and policy-based
learning methods. The A2C was implemented late during the project period
and due to time restrictions was this method not thoroughly explored for all
the tank cases. For all implementation of RL, a python class of the agent
and a network was created, named agent.py and network.py. The network
consists of a function approximator which was chosen to be non-linear as a neural
network. A linear function value approximator would probably be sufficient for
this MDP, but since the goal of the thesis was to explore the possibilities of using
RL in general, a non-linear function approximator was applied. A non-linear
function approximator would signify that the general implementation could even
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be applied to more complex systems than those explored in this thesis. An
illustration of the RL-project overview is shown in fig. 22.

Figure 22: The overall python project structure of the RL implementation

The observation which the environment gave was initially only the liquid height,
which corresponds to only one input node for the network. To simplify the
agent’s task of learning, the meaning of the observation from the environment
was transformed into an input state consisting of three sub-observations. This
feature engineering consisted of dividing as much information from the observa-
tion into multiple independent sub-observations. These sub-observations con-
sisted of the percentage of liquid height, change in liquid level, and a boolean
value which indicates if the liquid level is above the setpoint.

The sub-observation of the percentage of liquid height was chosen as it directly
dictates the return value from the reward function. The change in the liquid
level could be crucial information for the agent in calculating the reward for
the succeeding time-steps. The reason for including the boolean value as a sub-
observation was to differentiate between the upper and lower constraints when
evaluating optimal actions.

One instance of feature engineering was the calculation of the change in liquid
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height. This change was calculated from the difference in the last two observed
liquid heights. This can be viewed as the D-term in a PID-controller. For the
multi-tank system case, the valve position of the previous tank was also added
as a state observation for the succeeding tanks. All state inputs used in this
thesis for the networks can be seen in table 5

Network inputs Description
Node 1 Percentage of the liquids tank height
Node 2 Gradient of the liquid height
Node 3 Boolean value determine if the liquid is above 50%
Node 4 Valve position of the previous tank

Table 5: Input nodes as the state observation used during training

In addition to the state from the environment, a reward function must be defined
before training. The function takes in an observed and/or a non-observable state
and outputs a signal. The signal is a numerical reward and is to be designed
for the implementation of the RL-method.

4.3.1 Design of reward functions

The signal from the reward function indicates the goodness of an agents action.
Where MPC includes constraints which the controller is not allowed to violate,
RL, instead, allows all action-states but rather penalizes them with different
magnitude. In many ways is the reward function in RL similar to Merit func-
tions is optimization. Merit functions use a penalty function that allows for
violating constraints in order to increase the convergence of finding optimum
[28]. However, Merit functions can be implemented in MPC as soft-constraint
with the introduction of a penalizing variable. In RL is this penalty a low reward
signal which consequentially results in the agent not favoring these actions.

The design of the reward function proved to be difficult in terms of the agent’s
performance. Initially, the MSE cost function was chosen. The algorithm im-
plemented for the MSE is shown in the algorithm (4) with visualization of the
reward function in fig. 23.
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Algorithm 4: Algorithm used for MSE reward function

At time step t collect new normalized state s from action a.
if s > smax or s < smin then

Let Reward = -1
else

Let Reward = −(s− sset)2
end
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Figure 23: Visualization of the reward function presented in algorithm
(4)

The reward function was proven to yield low performance for the value-based
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methods. The reason for poor performance for the MSE reward function with
Q-learning is probably because the reward between the hard constraints is a
continuous function. This could be complex to learn directly as optimal and
sub-optimal actions could be almost indistinguishable. Small updates to the
function approximator would often result in a change in optimal policy which
would prevent the agent from converging towards a decent policy. If the agent
did not account for future rewards could potentially this reward function be
utilized, but since the agent sums the discounted predicted future rewards when
evaluating the current state was this reward function not desirable for DQN-
controller.

However, the usage of the MSE reward function did show promising results
when applying the REINFORCE and A2C learning methods. The reason for
the REINFORCE and A2C showing better performance is most likely due to
the usage of directly policy adjustment instead of indirectly policy adjustment
with the value function.

A different reward function was rather proposed with only 3 different numerical
return values. The reward function algorithm is shown in algorithm (5) with
visualization in fig. 24.

Algorithm 5: Algorithm used for reward function

At time step t collect new normalized state s from action a.
if s > smax or s < smin then

Let Reward = -10
else

if s < 40% smin or s > 60% smax then
Let Reward = 0

else
Let Reward = 1

end
end
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Figure 24: Visualization of the reward function presented in algorithm
(5)

The reward function presented above simply states that the agent receives a
positive reward if the liquid level is between 40- and 60 %. These values, there-
fore, creating the desired zone for the liquid level and the goal was therefore to
zone control the liquid between these soft constraints. If the agent breaches one
of the hard constraints, it is punished with a negative reward and the episode
terminates. However, breaching the soft constraints would not result in the ter-
mination of the episode but rather giving the agent zero rewards. This reward
function proved to be easier for the agent to learn in most of the tank cases and
was therefore chosen as the default option throughout the thesis. The setpoint
of 50 % would be the point with the largest margin for error and with long term
evaluation would the agent hopefully drive the liquid level to this setpoint.

To reduce the variance in reward during training, a Moving Average (MA) was
used as the metric for evaluating the training performance of the different im-
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plementations. The MA was set to calculate the mean reward of the 50 latest
episodic rewards.

The implementation of the different RL-methods was split up into the three
different RL methods that were explained earlier in section 1.3. The goal was to
train an agent to keep the liquid level between the soft constraints for 90 % of
the episode. This would mean reaching a 90 % perfect score before saving the
model. Saving the model implies to save the numerical values of the network
parameters. Initially, the value-based Q-learning method was explored as it is
one of the most explored methods in the field of deep reinforcement learning.
Additionally, the learning process is more intuitive to implement and supervise
compared to the policy-based and actor-critic methods, which is explained in
section 2.5 and section 4.3.4 respectfully.

4.3.2 Value base method implementation: DQN

One tank case was first considered for training and the action range was dis-
cretized into a set of 10 positions. The Q-learning method described in eq. (26)
was implemented with a neural network as the function approximator. Two hid-
den layers with 5 nodes and ReLU hidden layer activation function was chosen
for the DQN and the reward function in algorithm (5) was used for training.
This implies that with an episode of, a reward of 200 is the maximum possible
reward to achieve. The exploration vs exploitation problem explained in sec-
tion 2.2.1, was approached with the epsilon-greedy method [15]. This method
sets a hyper-parameter ε called exploration rate, which corresponds to a prob-
ability of doing a random action. The exploration rate is decreased after each
training phase by an exploration discount factor until it reaches a minimum
exploration rate εmin.

The training performance proved to be very sensitive to different hyper-parameters.
The hyper-parameters which had a huge effect on the training performance were
the discount factor γ, minimum explorations rate εmin and learning rate α. This
is to be expected as RL has shown to be very sensitive to these parameters [15].
The training performance for the final DQN one tank implementation is shown
in fig. 25.
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Figure 25: Experienced rewards for one DQN controller during training.
The plots shows the MA episodic reward of the 50 latest episodes

The training performance from fig. 25 showed an initial spike in the learning
process as the agent learned quickly not to breach the hard constraints. After the
initial spike, however, the agent’s performance decreased. This is probably due
to the high variance caused by the argmax function explained in section 2.4.1.
As seen in the figure, the agent did reach a 90% perfect performance and the
model was saved. After the initial training was the saved model improved by
training with different learning rates and discount factors for achieving a perfect
score of 200 for the MA. This proved not to be difficult, and after achieving a
perfect score, the model was saved and used as a pre-trained model for the two
and six tank cases.

For the implementation of DQN in a multi-tank system, two options were con-
sidered. The first one had only one network for all the controllers with the
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output from the network mapped to a unique combination of controller posi-
tions. With 10 different positions, this approach would not be scalable as for n
number of tanks in series as this would require 10n output nodes in the network.
The chosen approach was, therefore, to implement a multiagent system with one
network for each valve.

Initially, all agents would be trained without prior training, but due to low
performance, the trained model from the one tank case was loaded as the first
agent for the second tank case. The training performance for the two tank case
is shown in fig. 26.
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Figure 26: Experienced rewards for two DQN controllers during train-
ing. The rewards are the mean rewards of 50 episode for a total of ∼5000
episodes

From the figure, it can be observed that the first agent is doing significantly
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better than the second one. This is to be expected as the first agent has already
been trained from the one tank case. An important note is that the first agent
could not have a perfect score from the first episode without a decent second
agent. This is because the episode terminates when one of the two tanks fails.
As the second tank fails at an early time step t, the first agent could only collect
t number of rewards. The dips in performance from the first tank at the end
of the training are most likely due to the high variance of value-based methods.
After the initial training was the saved model improved by training with different
learning rates and discount factors for achieving a perfect score of 200 for the
MA. This proved not to be difficult. However, significantly more trials were
needed compared to the optimization done with the first agent model.

For the six tank case, the same approach was used for the two tank case, with
only the first agent pre-trained on the one tank system. The training perfor-
mance for the 6 tank system is shown in fig. 31.
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Figure 27: Experienced rewards for 6 DQN controllers during training.
The rewards are the mean rewards of 50 episode for a total of ∼8000
episodes

It can be observed from the figure that the agents for tank 5 and 6 have a
high variance in performance compared to the earlier agents. This is partially
because of the high variance in Q-learning, but also because agent 5 and 6 must
learn to adapt to new expected disturbances when the previous agent changes its
policy. When tank 4 updates its policy, the expected inflow to tank 5 is changed
and the fifth agent must adapt to these changes. An increase in the number of
tanks in series would, therefore, increase the hyper-parameter sensitivity of the
latter agent. The models were saved and improved gradually for different sets of
hyper-parameters until a MA of 200 was achieved for 50 consecutive episodes.
This turned out to be more difficult than the previous two tank case, as multiple
attempts with different combinations were needed to improve the saved model.
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All models from the DQN training were evaluated with the predetermined dis-
turbance explained in section 3. After evaluating the value based method, the
policy based method REINFORCE was explored as an alternative to Q-learning.

4.3.3 Policy gradient implementation: REINFORCE

As with Q-learning, initially, one tank case was first considered for training. A
neural network was implemented as the function approximator with a sigmoid
activation function as the log probability distribution. Whereas the DQN had
10 different output nodes, the policy gradient network only had one output
node. The output from the network ranging between 0 to 1 was used as the
percentage opening for the valve position z. Two hidden layers with 5 nodes
and ReLU hidden layer activation function, was chosen. The reward function
in algorithm (5) was used for training. This implies that for an episode of 200
steps, a maximum reward of 200 was possible to achieve.

The epsilon-greedy method was tried as an approach for the exploration vs
exploitation problem. However, a solution that proved to yield better perfor-
mance was the use of an action disturbance with a Gaussian distribution over
the action space. The output value from the policy network was used as an
expectation value along with a predetermined action variance zvar to ensure
exploration. This method of exploration is similar to the extremum seeking
method explained in section 1.2.4 as the input value is disturbed around its
predicted optimal input value. A visualization of the action distribution can be
seen in fig. 28.
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Figure 28: Visualization of the action distribution used for exploration
for the REINFORCE policy gradient method

The training performance proved to be very sensitive to different hyper-parameters.
The hyper-parameters which had a huge effect on the training performance were
the discount factor γ, action variance zvar and learning rate α. This is to be
expected as the DQN also was sensitive to γ, α and εmin. The training perfor-
mance for the final REINFORCE 1 tank implementation, is shown in fig. 29.
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Figure 29: Experienced rewards for one DQN controller during train-
ing. The rewards are the mean rewards of 50 episode for a total of ∼3000
episodes

The training performance in fig. 29 shown a steady increase. This is to be
expected from the policy gradient method as small incremental changes to the
network gradually shift the expected action towards a better performance. How-
ever, as seen in the figure the agent did reach a 90% perfect performance and so
the model was saved. After the initial training was the saved model improved by
training with different learning rates and discount factors for achieving a perfect
score of 200 for the MA. This proved not to be difficult, and after achieving a
perfect score the model was saved to be used for further evaluations.

For the implementation of REINFORCE in a multi-tank system, the same ap-
proach with a multiagent system was chosen. Whereas the DQN showed poor
performance without a pre-trained first tank agent, the REINFORCE agents did
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manage to show promising results. This is probably due to the policy method’s
resilience in stochastic environments. Environments which can be described as
partially observable MDPs. The training performance for the two tank case is
shown in fig. 30.
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Figure 30: Experienced rewards for two REINFORCE controllers during
training. The rewards are the mean rewards of 50 episodes for a total of
∼10 000 episodes

From the figure, it can be observed that the second agent is doing significantly
better than the first one. This is most likely due to a local minimum found for
the first agent. Compared to the value based method, REINFORCE shows less
variance in performance than DQN. The REINFORCE models were saved and
loaded with different learning rates and discount factors for achieving a perfect
200 score for 50 consecutive episodes. This was proven not to be difficult.
However, notably, a lot more trials were needed compared to the optimization
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done with the one tank case.

For the six tank case, the same approach was used for the 2 tank system. No
pre-trained models were used. The training performance for the 6 tank system
is shown in fig. 31.
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Figure 31: Experienced rewards for one DQN controller during training.
The rewards are the mean rewards of 50 episode for a total of ∼150 000
episodes

Comparing the training of 6 tanks training in DQN and REINFORCE shows
a smaller variance in training performance. The training is not as smooth as
the one tank REINFORCE, but it still manages to converge within the 90%
of a perfect score. However, this convergence required 150 000 episodes which
are far more than for DQN. The models were saved and improved gradually
with different sets of hyper-parameters until a mean of 200 was achieved for
50 consecutive episodes. This proved to be more difficult than the previous
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two tank case, as multiple attempts with different combinations were needed
to improve the saved model. However, compared to the six tank case in DQN,
REINFORCE was easier to improve.

All models from the REINFORCE training were evaluated with the predeter-
mined disturbance explained in section 3. Since the training process for policy
gradient methods showed slow convergence, an actor-critic method was briefly
explored to evaluate if the training time could be decreased.

4.3.4 Exploration of combining value and policy-based methods

To evaluate how the REINFORCE and DQN training performances could be
improved, the actor-critic method A2C, which was explained in section 4.3.4,
was explored. Due to limit the scope of this thesis, only one tank case imple-
mented. The goal of the implementation of the actor-critic was to evaluate how
the training time potentially could be decreased with AC methods. The training
performance for the A2C one tank implementation is shown in fig. 32.
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Figure 32: Experienced rewards for one A2C controller during training.
The rewards are the MA episodic reward of 50 episode for a total of ∼5500
episodes

The training performance for the A2C method shows a significantly steeper
learning curve. This is to be expected as actor-critic methods have shown to
perform better than policy gradient methods on continuous state space MDPs
[15]. However, the adjustment on the hyper-parameters for a perfect score
was proved to be more difficult than expected. During training, the hyper-
parameters were more sensitive to the changes in discount factors and learning
rates compared to REINFORCE and DQN. This is probably due to the same
TD-error being used for both the policy improvement as well as the critic im-
provement. A2C was also tried implemented on two and six tank systems, but
due to the difficulties of finding usable hyper-parameters, this turned out to be a
harder task than expected. The training would get stuck at a certain valve posi-
tion, which the agent would calculate to be the optimal solution for the episode.
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Exactly why the agent would calculate this optimum is hard to evaluate and a
deep neural network analysis of the weight parameters would be required. This
type of analysis is an active research field in deep learning and would require
more work than the scope of this theses. However, another approach would be
to change the reward function. This could lead to an easier task of training the
agent but due to time restriction was this not tried in this thesis.
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5 Evaluation of controllers

After training and tuning of controllers were all the controllers evaluated with an
evaluation script. The predetermined disturbance presented in fig. 15 was used
as inlet disturbance to the first tank. The script evaluated one episode and the
dynamics of the tank level, controller input, and disturbance flow throughout
the episode was plotted. The general implementation of the evaluation script
is presented in appendix F.2. The hard constraints were set to be between 2.5
and 7.5 meters along with the soft constraints between 4 and 6 meters. This
means that the controllers were to zone control between the soft constraints and
with optimal control being a constant liquid level at 5 meter. Implementation
of actor-critic was tried out for the one tank case as an opportunity analysis for
future improvements

The evaluation section is divided into three cases, one tank, two tanks, and six
tanks. In each case is first the P-controller evaluation presented followed by the
evaluation of the RL-controllers.

5.1 One tank case

The evaluation of the one tank case consists of controlling the liquid level in one
tank with one degree of freedom. The disturbance is predefined and the tank is
cylindrical with 10 meters in height, 10m in radius for a total volume of 3141
m3.

5.1.1 Evaluation of P-controller

Below is the evaluation plot for the P-controller. The general script for evalua-
tion is presented in appendix F.2.
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Figure 33: Evaluation of P-controller controller for the one tank case

From figure fig. 33 the P-controller evaluation controls the liquid level close to 5
meter at throughout the episode. The input trajectory consists of small changes
which is to be expected with a high τc. The disturbance step at time step 100
seems to some effect on the system as the liquid level almost reaches 5.5 m.
However, this is far from breaching any soft or hard constraints.

5.1.2 Evaluation of RL-algorithms

Following is the control usage of three RL algorithms, DQN, REINFORCE and
A2C. Running the evaluation script, the neural network was loaded and the
weights were not altered throughout the episode, and the exploration rate was
set to zero. In the case for REINFORCE and A2C, the zvar was set to 0.01 to
have some uncertainty into the input variable z. This uncertainty is to simulate
potential noises that could occur in a real application.
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Figure 34: Evaluation of DQN-controller for the one tank case
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Figure 35: Evaluation of REINFORCE-controller for the one tank case
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Figure 36: Evaluation of A2C-controller for the one tank case

All RL-controllers manages to keep the liquid level between 4 and 6 meters.
This means that they do not break any soft or hard constraint which is crucial
for controllers. Looking at the three RL-controllers, the input trajectory of
REINFORCE and A2C is more similar to one another compared to the DQN.

The DQN-controller mainly shifting between two/three valve-positions through-
out the episode. During training have the agent found out that using a small
number of positions is sufficient enough to keep the level between 4 and 6 meters.
Consequentially has the agent calculated the Q-value of these output nodes to
be superior to the others.

The REINFORCE- and A2C controllers in fig. 35 and fig. 36 can be seen to
find the optimal steady state valve position to be ∼20 %. This is due to the
algorithms resilience to stochastic processes and evaluates an expectation of
future rewards. The agent has experienced during training that a valve position
of ∼20% would yield the highest expected reward. The sudden decrease in liquid
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level from 0 to time step 100 for the REINFORCE controller seen in fig. 35 is
due to the initial low disturbance inflow. During training would the disturbance
in most cases oscillate around of 1 m3/s which is not the case during evaluation
step 0 to 100. The reason for the REINFORCE controller to have a smaller valve
position change than the A2C-controller is difficult to explain. As explained for
the implementation of RL-methods in section 4.3, would the performance of the
RL-controllers vary with different sets of hyper-parameters.

Both the REINFORCE and the A2C can be observed to react with a high input
change when the level is 5 meters or above. This can be seen for A2C at time
step 0 and 115 as the valve position fully opens to lower the liquid level below
50 %. The same occurs for the REINFORCE controller at time step 0, 125,
175 and 200. This means that input node 3 from table 5 is having an effect on
the agent’s actions. The reason for this behavior is probably the experienced
states the agent has trained on. The nominal valve position is around 30 %
which the initial random weights for the agent’s network would result in actions
that would more often lead to a decrease in the liquid level. Since a level over
5 meters activated input node 3, the agent may interpret this state as unknown
and would rather transition to a state below 5 meters which it has visited more
often.

The behavior of the controllers in the one tank case is similar to the On-Off
controller explained in section 1.2.1. The On-off controller is set to have two
actions depending on the observed state. The same can be observed for the
REINFORCE and A2C algorithm expect that the “off” setting is the steady state
valve position around 20%. The small changes around the 20% opening show a
resemblance to the adaptive controllers presented in section 1.2.4. The adaptive-
controllers and REINFORCE-controllers trie to make small incremental changes
to the valve position in order to lower a cost function (adaptive controllers), or
increase the incoming reward (policy gradient controllers).

The P-controller in fig. 33 can be seen to yield better permanence for controlling
the liquid level around 5 meters compared to the RL-controller. This is due to
the input trajectory for the p-controller is more smooth and with fewer changes
in valve position compared to the RL-controllers. A controller which changes
the opening controllers is not desirable for many reasons. One reason is that is
would lead to unpredictable disturbances which will propagate into succeeding
components in the chemical plant, which may cause instability. Another reason
is that increasing the number of actions for a choke valve would wear down the
equipment faster which leads to a shorter life span for the choke valve.
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5.2 Two tank case

The evaluation of the two tank case consists of controlling the liquid level in
two tanks with two degrees of freedom. The disturbance is predefined for tank
1 with the given disturbance shown in fig. 15 and no external disturbance for
tank 2. The two tanks are cylindrical of 10 and 8 meters in height, 10 meters
in radius for a total volume of 3141 m3 and 2010 m3 respectfully. A detailed
table of the parameters for the different tanks is presented in appendix B.

5.2.1 Evaluation of P-controller

Below is the evaluation plot for the P-controller. The script for evaluation is
presented in appendix F.2.
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Disturbance 

Flow 

[m3/s]

Liquid level 

[m]

Valve opening 

[%]

Figure 37: Evaluation of P-controllers for the two tank case

From figure fig. 37 the P-controllers can be seen to control the liquid level close
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to 5 meters throughout the episode for both tanks. However, comparing the
p-controller for the first and second tank, the valve position trajectory is of
similar trends. By comparison between the two valve position trajectory, the
second tank positions can be observed as a phase shift forward. This is to be
expected as both controllers should behave quite similar and the disturbance to
the second tank occurs after the feedback control response in the first tank.

As discussed in section 4 the p-controller can be evaluated as smooth control
due to comparison between τ and τc. This can be observed in fig. 37 as the
change in input values is small for disturbances.

The disturbance step at time step 100 seems to have little effect on the system
except for an increase in valve position. However, since the tank one p-controller
actions are the resulting disturbance for the second tank, the incoming distur-
bance for the second’s tank can be observed as multiple small disturbance steps.
From the figure, it can be observed that this results in a higher change in valve
positions for the second controller as it tries to keep the liquid level around 5
meters.

5.2.2 Evaluation of RL-algorithms

Following is the control usage of two RL algorithms, DQN and REINFORCE.
Running the evaluation script in appendix F.2, the pre-trained neural network
was used with its weights not altered throughout the episode, and the explo-
ration rate set to zero. In the case for REINFORCE was the zvar set to 0.01 to
have some uncertainty into the input variable z.
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Figure 38: Evaluation of DQN-controllers for the two tank case
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Figure 39: Evaluation of REINFORCE-controllers for the two tank case

All RL-controllers managed to keep the liquid level between 4 and 6 meters.
This means that they do not break any soft or hard constraint which is crucial
for controllers. However, comparing the liquid level of the first and second tank
shows a small oscillatory behavior with a frequency around 25-time steps. This
oscillatory behavior is not observed to be unstable, but not desirable as it may
lead to instability.

The DQN-controller evaluation for the second tank in fig. 38 uses only two valve
positions for control. This is due to the same reasons explained for the DQN for
one tank case in section 5.1. However, where the first DQN-controller uses four
valve positions, the second controller only uses two positions. This is probably
due to the constant disturbance shift which makes it harder for the controller to
control the liquid level. Consequentially learned the DQN-controller the policy
of only using two valve positions to be the most reliant for achieving a perfect
score.

The second REINFORCE-controller in fig. 39 can be sen to find the optimal
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steady state valve positions to shift between 20 % and 30 %. Whereas the
first REINFORCE-controller has found the optimal position to be around 20%
opening. By inspecting the liquid level plot of the second tank the level can be
observed to exceed 5m which is most likely the reason for the more frequent of 30
% valve position opening for the second REINFORCE-controller. This indicates
that both REINFORCE-controllers have found similar optimal policies as the
REINFORCE-controller in the one tank case.

5.3 Six tank case

The evaluation of the six tank case consists of controlling the liquid level in six
tanks with six degrees of freedom. The disturbance is predefined and all the
tanks are cylindrical with a radius ranging between 7 - 10 meters. A detailed
table of the specifics for the different tanks is given in appendix B.

5.3.1 Evaluation of P-controller

Below is the evaluation plot for the P-controller.
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Figure 40: Evaluation of P-controllers of the first three tanks for the six
tank case
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Figure 41: Evaluation of P-controllers of the last three tanks for the six
tank case

From fig. 40 and fig. 41 the p-controller manages to keep the liquid level close
to the set point within the 5 and 6 meter range. From the disturbance plot in
the figures, the propagated disturbance is amplified for each tank in the series
as the liquid levels after the disturbance step increases more for the succeeding
tanks thank. However, the p-controllers manages to counteract the disturbance
without breaking any constraint.

5.3.2 Evaluation of RL-algorithms

Following is the control usage of two RL algorithms, DQN and REINFORCE.
Running the evaluation script in appendix F.2, the pre-trained neural network
was used with its weights not altered throughout the episode, and the explo-
ration rate was set to zero. In the case for REINFORCE was the zvar set to
0.01 to have some uncertainty into the input variable z.
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Figure 42: Evaluation of DQN-controllers of the first three tanks for the
six tank case
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Figure 43: Evaluation of DQN-controllers of the last three tanks for the
six tank case
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Figure 44: Evaluation of REINFORCE-controllers of the first three tanks
for the six tank case
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Figure 45: Evaluation of REINFORCE-controllers of the last three tanks
for the six tank case

Both RL evaluation managed to keep the liquid level between 4 and 6 meters
which correspond to the perfect score it achieved during training. However,
compared to the P-controller the agents can be seen to favoring large instead of
small incremental input changes. This is to be expected as this was the same
behavior for the previous cases and the agents are only trained for maximizing
the reward without any restrictions to the valve position trajectory.

The DQN agents in fig. 42 and fig. 43 follows the same pattern as for the two
tank case where the optimal policy is found to shift between a small set of
actions. The REINFORCE method shows smaller action changes compared to
the DQN. However, this only applies to the earlier agents as observed in fig. 44.
The agents for tank 4-6 in fig. 45 seems to fall into the same patterns with
favoring a steady state action and shifting to a higher opening when the liquid
level exceeds 5 meters.
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6 Discussion

From the evaluations in section 5 the p-controllers showed superior performance
for controlling the tank level for all three cases. This is due to the RL-controllers
input trajectory leading to an oscillating behavior in the tank levels whereas the
P-controller shows a more smooth and stable trajectory. As discussed earlier in
section 5 is oscillatory behavior not preferable as it may lead to instability. The
reason for this behavior is mainly a consequence of the design of the reward
function. Additionally may the choice of RL-methods and choice of hyper-
parameters may have contributed to the problem.

6.1 Design of reward function

The reward function in algorithm (5) states that the position between 4 and 6 is
irrelevant for the agent for receiving rewards. One can argue that by keeping the
level at 5 meters the agent would have the largest margin for errors and therefore
would try to keep the level close to 5 meters. However, from the evaluations
the DQN and REINFORCE does not find this policy but rather to oscillates
around the setpoint. With respect to the Markov Reward Process would these
two approaches have no differences as the same reward is returned regardless.
This means that the agent has no incentive for favoring smaller input changes
as long as the level is between 4 and 6 meters. This method of control shows
a lot of similarities with zone control which in MPC have proved to result in
large input changes. A stable MPC with zone control can be difficult to obtain,
as the control systems keep switching between MVs when transitioning from
controlled to non-controlled states [37]. The same behavior can be seen for the
RL-controllers with the large input changes shown in the evaluation plots in
section 5.

A way of making the agent favor smaller input changes could be to introduce
the action as a variable in the reward function. For example, can the agent
be penalized by making large action changes. This rework of the reward func-
tion would lose the Markov property for the current state observation as the
state is dependent on previous actions. To preserve the Markov property, the
agent’s history of inputs could be included as a state observation. One way
of implementing this is to use the action history as input nodes. However, for
large action histories could a better approach be to introduce a Recurrent Neu-
ral Network in the agent’s network. With the introduction of a RNN could
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additionally a system delay be included in the simulation, a feature that was
not implemented in this thesis. In process systems are delays always present in
some way and with the introduction of RNN in the agent’s network could the
environment for the agent be more relatable to a real process system.

The evaluation of the auto-tuned p-controllers in appendix E and the RL-
controllers shows similar tank level oscillations. The auto-tuned p-controllers
finds the τc with the smallest SSE without any restrictions to the input change.
This behavior is reflected in the evaluation of RL-controllers as DQN, REIN-
FORCE and A2C only try to maximize the reward. Both methods use only
the numerical minimization as a criterion for evaluating the best policy whereas
the higher τc provides a less optimal but rather smoother control policy. The
evaluation from the auto-tuned p-controllers emphasizes that only minimizing
the deviation from the setpoint is not enough for creating a stable tank level
controllers. This follows into the argument of including input constraints into
the reward function for improved RL-control policy.

6.2 Performance between DQN-controller and REINFORCE-
controller

From the evaluations, the REINFORCE-controllers can be observed to change
the valve positions fewer times throughout the episode compared to the DQN-
controller. Comparing the six tank case in fig. 44 and fig. 42 the DQN-controller
deviates more from the setpoint than REINFORCE-controller. However, for
the one tank case in section 5.1.2 are the deviations from setpoint larger for
the REINFORCE-controller than the DQN-controller. The A2C-controller in
the one tank case shows an even more deviation than the other two. The liquid
level for all controllers can be observed to oscillate with approximately the same
intensity. Based on the criteria of controlling the liquid level around 5 meters are
none of the RL-controllers superior to the other ones, and all methods could be
viable options for process RL-control. However, since the input changes in the
REINFORCE- and A2C-controller are smaller compared to DQN -controller.
The DQN-controller would be less favorable for controlling tanks in series. This
is to be expected as Q-learning is more used for discrete deterministic MDPs,
whereas the tank cases in this thesis are continuous and stochastic.

Even though the evaluation showed a more realistic application of using REINFORCE-
controller for the presented cases, the training time which was needed was sig-
nificantly higher for REINFORCE than DQN. During training was 50 episodes
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roughly calculated in 1 second, meaning for the training time had no significant
effect for the cases presented in this thesis. However, for systems that are more
complex would this not scale well for the REINFORCE method. The imple-
mentation of A2C in fig. 32 shows that the usage of the actor-critic method
could be a viable option for more computational demanding cases. Cases where
the sample efficiency of data should be optimized so that the training time is of
feasible length. The REINFORCE training time could potentially be decreased
by using a more systematic exploration, for example by using methods used in
adaptive controllers.

6.3 Performance between the RL-controllers and the con-
ventional controllers

The high τc for the P-controller resulted in smaller changes in valve position.
This was not the case for the RL-controller as the current action is independent
of the previous actions. By comparing the performance of the auto-tuned P-
controller in appendix E with the RL methods both methods shows an aggressive
policy for controlling the liquid level. However, this is not the case for the fine-
tuned p-controller. As discussed earlier could this dependency be implemented
with an action dependent reward function and a Long Short-Term Memory
architecture in a Recurrent Neural Network.

The training of the REINFORCE controller showed many resemblances to an
adaptive controller. During training was the expected valve position shifted
towards a setpoint which yielded a higher cumulative reward. This is also the
case for the adaptive controller where the input is injected by a perturbation
which evaluated how the input should be changed for a lower operation cost.
However, where the adaptive controller would only evaluate the immediate cost,
the REINFORCE methods would account for long term cost and weight these
future rewards by a discounting factor. In the case of this thesis would an
adaptive controller probably has the same policy as the REINFORCE-controller.
This is most likely due to the approximate linear dynamics of the tank system.
The Adaptive controllers would most likely shift the optimal input value around
20-30 % along with the policy of the REINFORCE-controller.
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7 Conclusion

The well-tuned P-controllers in this thesis were proved to be better controllers,
compared to the RL-controllers, for regulating tank levels. The reason for this
was mainly the poor choice of reward function which did not penalize the RL-
controller for making large input changes in the valve position. A different
reward function dependent on valve position would probably lower the action
changes and create a RL-controller which resemblance more of a P-controller.
However, all RL-controllers managed to control the liquid level between the con-
straint which shows the possibility of using RL-controllers in process industries.

The RL-controllers during training did show a high sensitivity to changes in
the hyper-parameters, as the agent would struggle to improve its policy with
some sets of hyper-parameters. These include the learning rate, minimum explo-
ration rate, action disturbance, and discount factor. This means that a strategy
of choosing parameters is crucial for the RL-controllers performance. This is
similar to the choice of choosing the correct tuning parameters for conventional
controllers. However, for conventional controllers is not a training phase re-
quired before evaluation which means that creating a suitable RL-controller
may be more time consuming than structural tuning of regular controllers.

The hyper-parameters which would be more relevant for more complex systems
would be the structure of the neural network. For the cases in this thesis were
only a shallow neural network with 2 hidden layers of 5 nodes used. The RL im-
plementation would probably be sufficient with a linear function approximator
in this thesis. However, the idea of RL-control is to substitute or compliment
systems which the current control theory is not sufficient. This means that for
process control would RL most likely be used as an alternative to or compli-
ment Model Predictive Control and a non-linear function approximator would
be required. Applying RL to complex systems means that the architecture of
the network would need to be larger than in this thesis. This increase in net-
work size would complicate the task of understanding the network’s behaviour.
Without more knowledge in deep learning would this implementation lead to a
black box RL-controller which is not desirable as control engineers. The ability
to understand how the network works is crucial for fine-tuning of parameters
when applied. With more insight into the learning process of the neural net-
works could RL-controllers surge in popularity as they offer a general method
for all types of controllers.

The RL controllers all managed to archive the goal of controlling the level be-
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tween 4 and 6 meters for stochastic disturbance input which shows that using RL
in process control could be an alternative for control. However, this thesis high-
lights the challenges related to the design of reward function, hyper-parameter
sensitivity, and the tendency of black box modeling. With the current method
of control will most likely RL-control not compete with current implementation
but rather compliment areas where non-linear controllers like MPC are diffi-
cult to create. The nature of RL-controllers and general implementation also
means that RL-control can be used as a method for automating the tuning pro-
cess of controllers. The usage of continuous action space controllers like policy
gradient and actor critics allows trials and errors of tuning parameters. Addi-
tionally could value based methods like DQN be used for systems where discrete
decisions are required.

In summary are the potential of using RL-controller huge but difficult to imple-
ment. With increased research in deep learning and creation of RL-frameworks
could RL-control be seen as a valid option in the future for process control.
However, from the current iteration seen in publications and the lack of com-
plete deep learning understanding is this option still a research field but could
potentially compliment current non-linear controllers in the near future.
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8 Further work

8.1 Improvements related to the thesis

From this thesis, the work of designing the reward function proved to be the most
vital of the known challenges surrounding RL. The system could be improved
by adjusting the reward function to also be a function of the valve position
history to smoothen out the input trajectory. As discussed earlier could this
be archived by changing the function approximator to be a time-dependent
network. The reason for changing the network architecture is to maintain the
critical Markov property. With a reward function that is dependent on the valve
position history would the current state alone not be enough information for the
agent to learn the optimal policy. Examples of a time-dependent network would
be implementing an AR model or a recurrent neural network.

The RL-implementation for the DQN-controllers in the two and six tank cases
consisted of a multi-agent system. This resulted in a similar multi-agent sys-
tem for the REINFORCE-controllers. Whereas the scalability of one agent was
poor for the multi-tank DQN implementation is this not necessarily the case
for REINFORCE and AC. In this thesis was the REINFORCE controllers im-
plemented with one agent controlling the outflow of one tank with the network
having one output node correlating to the valve position opening. A different
approach could be to collect all the agents into one network with each output
node representing the valve position opening of one tank in the system. This
could potentially decrease training time as only one network would be required
for controlling all the tanks.

The RL controllers in this thesis all showed promising results for controlling
a process system. These results could be further capitalized and the RL-
controllers could be used for exploring more complex systems. However, the
cases in this thesis showed that regular controllers were superiors compared to
RL-controllers which indicates that RL-controllers for more complex systems
would be more difficult to create. The RL-controllers property of long term re-
ward should be the main attraction for using RL-controller in process systems.
This means that RL-controllers should be used for systems that require immedi-
ate sub-optimal actions in favor of long term rewards. However, RL-controllers
show high variance in performance and is mainly the reason why RL-controllers
are still only a research area in the process industry. In applications would this
high variance propagates into economical and health risks which are high prior-
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ities in process control. A large process facility could not risk the health of its
employees and millions of dollars on a black box controller.

8.2 Different approaches of RL in process control

With further exploration of RL in process control could RL-controllers like DQN
be explored for discrete problems. For example could challenges related to
deciding an optimal structure of a plant be tried out with RL. Often have
these problems been solved with Mixed Integer Programming (MIP), and by
branch and bounding. an RL-implementation could potentially find the optimal
structure given a predefined reward function.

The general implementation of RL shown that any decision variable which
prompts feedback signal from a state could be implemented with RL for find-
ing the optimal policy. In this thesis was this decision variable the MV for
the system but other decision variables could also be tried out. In particular
could other hyper-parameters or variables which are often found by engineering
intuition be tested in RL. For example, could non-static tuning parameters to
different controllers be used as decision parameters. As discussed earlier is the
usage of RL only relevant when dealing with long term evaluation along with
a time-series of multiple decisions. This means that using RL for evaluating a
constant tuning parameter like τc for the P-controllers in this thesis would not
be suitable as only one decision was made for tuning the controllers.

From fig. 32 the actor-critic method A2C showed a significantly faster training
time than the REINFORCE method with a continuous action space, that DQN
could not achieve. This method could be further explored with an implementa-
tion for the two and six tank cases. This thesis proved that the implementation
of A2C requires extensive deep learning knowledge and collaboration between
the chemical- and computer engineers is required for developing realistic applica-
tions of RL in process control. However, with the development of RL-frameworks
could this knowledge requirement be decreased.

A suggestion for RL methods to be further explored is the PPO and DDPG
methods which OpenAI has shown great performance with large MDP [36].
Another extensive method of creating RL-controllers is combining SL with RL
as DeepMind did with the AlphaStar [20]. This approach uses SL to replicate
professional performance but then improved with RL. In process control could
SL be used to replicate controllers behavior and then further be improved with

100



RL for more complicated systems.
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A Tank equation derivation

The tank was modeled from a generic mass balance. The tank was assumed to
no have only one inflow and no outflow.

d(ρVtank)

dt
= ρqinn − ρqout (41)

Assuming the tank volume can be expressed as a perfect cylinder reformulates
the mass balance to an equation of the height level.

d(htank)

dt
=

1

(πr2tank)
(qinn − qout) (42)

The outflow goes through a valve which lets through a set amount defined by
the valve equation f(z). The liquid in the tank is assumed to be in-compressible
with a low Mach number. The density is also assumed to be constant which
means that the Bernoulli equation could be substituted for the outlet speed in
qout = f(z)voutAout.

1

2
v2tank + gz1 +

ptank
ρ

=
1

2
v2out + ghtank +

pout
ρ

(43)

The reference height is set to the outflow level, the liquid in the tank is assumed
to have no kinetic energy before flowing out of the tank. The pressure in each
tank is set to be atmospheric so the flow is only dependent on the height level.
Adding the Bernoulli equation to the mass balance formulates the dynamic
equation of the liquid level in the tank

d(htank)

dt
=

1

πr2tank

[
qinn − f(z)Aout2ghtank

]
(44)
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B Parameters used in simulation

Below is the parameter used for the tank used in simulation.

Parameter name Value
Height 10m
Radius 7-10m

Outflow pipe radius 0.5m
Initial level 5m

Soft constraint high 6m
Soft constraint low 4m
Hard constraint high 7.5m
Hard constraint low 2.5m

Table 6: Parameters used to the tank in the simulator. The width radius
varies from tank 1 to tank 6 in the range between 7m to 10m

Below is the parameter used for the disturbance inflow to the first tank.

Parameter name Value
Distribution model Gaussian

Nominal flow 1m
3

s

Variance flow 0.1m
3

s

Max inflow 2m
3

s

Min inflow 0.7m
3

s

Table 7: Parameters used for the disturbance inflow to tank 1
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C P-controller derivation

Since the tank model from eq. (35) is a differential equation of liquid height
h was the equation linearized by Taylor expansion around the nominal values
of the valve position and liquid height. The linearization can be seen in the
following equation with the nominal values denoted by nom.

d∆h

dt
=
−f(znom)Aout2g

πr
∆h− Aout2gh

nom

πr
∆f(z) + ε (45)

All the factors in front of ∆h and ∆f(z) are now constant and are therefore
substituted by the new constants called A and B. The error ε is removed in
favor of an approximation of the original function.

d∆h(t)

dt
≈ A∆h(t) +B∆f(z(t)) (46)

Working with the approximation, the differential equation is then transformed
by an Lapace transformation around t = 0+.

h(s)s−∆h(t = 0) = Ah(s)−Bf(z(s)) (47)

The initial change in ∆h(t = 0) is assumed to be zero. The notation of the state
value h is substituted by the more commonly used notation x. The input variable
f(z) is also substituted by the notation u for the same reason. Reformulation
eq. (47) results in the transferfunction G(s).

G(s) =
∆x(s)

∆u(s)
=

K

τs+ 1
=

−B
A

−s
A + 1

(48)

The gain K and τ is used with the SIMC tuning rule to evaluate the controller
function. The system has no delay so the closed loop time constant Kc was
evaluated as a function of only τc as seen in
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K =
A

B
(49)

τ =
1

A
(50)

Kc =
τ

Kτc
(51)
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D Tuning of P-controllers

Below is the results from the running the tuning script in appendix D for all 6
tanks in the series as explained in section 4.2. 100 simulation was executed for
each tauc with sequential tuning starting from the first tank and backwards.
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Figure 46: Mean squared errors of 400 τc evaluations for tank 1 to 3
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Figure 47: Mean squared errors of 400 τc evaluations for tank 4 to 6
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E Auto tuned τc parameters for P-controllers

Time [s]

Disturbance 

Flow 

[m3/s]

Liquid level 

[m]

Valve opening 

[%]

Figure 48: P-controller control for one tank evaluation plot with the τc
parameters calculated using the tuning script
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Figure 49: P-controller for two tank evaluation plot with the τc parame-
ters calculated using the tuning script
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Figure 50: P-controller for six tank evaluation plot for the first three
tanks with the τc parameters calculated using the tuning script
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Figure 51: P-controller for six tank evaluation plot for the last three tanks
with the τc parameters calculated using the tuning script
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F Scripts

The scripts used in this thesis are available in the authors Github repository
[24].

F.1 Tuning of p-controllers

The script appended below was used to evaluate different τc for the p-controllers
used in one, two and six tank case. The method loops over a set of different
τc and collects the SSE at all time steps for multiple episodes. The τc is then
plotted with its corresponding mean error. The specific script below was used
to tune the one tank case, and minor adjustments were made for tuning of the
two and six tank case.

1 from main import main
2 import matplotlib.pyplot as plt
3 from params import TANK1_DIST, AGENT_PARAMS_LIST
4 import numpy as np
5 import sys
6
7 TANK1_DIST["pre_def_dist"] = False
8
9 tau_c_start = 10

10 tau_c_inc = 1
11 tau_c_end = 400
12 all_max_rewards = []
13 all_max_reward_values = []
14 number_of_tau_c_evaluations = 100
15 all_tau_c_app = []
16
17
18 def tune_controllers(tank_number=0):
19 rewards = []
20 max_reward = -99
21 max_reward_tau_c = 0
22 tau_c = []
23
24 tau_c = tau_c_start
25 tau_c_app = []
26 while tau_c < tau_c_end:
27 tau_c_app.append(tau_c)
28 reward = [
29 main(tau_c_tuning=tau_c, tuning_number=tank_number, plot=False)
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30 for i in range(number_of_tau_c_evaluations)
31 ]
32 rewards.append(np.mean(reward))
33 if rewards[-1] > max_reward:
34 max_reward = rewards[-1]
35 max_reward_tau_c = tau_c_app[-1]
36 sys.stdout.write(
37 "\r"
38 + "Tank "
39 + str(tank_number + 1)
40 + ": Current tau_c iteration: "
41 + str(round(tau_c, 2))
42 )
43 tau_c += tau_c_inc
44 sys.stdout.flush()
45 print(f"\nSimulation Done for tank {tank_number+1}")
46 print(max_reward, " with " + r"$\tau_c$" + ", max_reward_tau_c")
47 all_max_reward_values.append(rewards)
48 all_max_rewards.append([max_reward_tau_c, max_reward])
49 all_tau_c_app.append(tau_c_app)
50 return max_reward_tau_c
51
52
53 for i in range(1):
54 max_reward_tau_c = tune_controllers(i)
55 AGENT_PARAMS_LIST[i]["TAU_C"] = max_reward_tau_c
56
57 _, (ax1) = plt.subplots(1, sharex=False, sharey=False)
58 ax1.plot(
59 all_tau_c_app[0], all_max_reward_values[0], color="peru", label="Tank 1"
60 )
61 ax1.set_ylabel("MSE")
62 ax1.legend(loc="upper right")
63 ax1.set_xlabel(r"$\tau_c$")
64
65 plt.tight_layout()
66 plt.show()
67 print(f"Best tau_c for Tank 1 was {round(all_max_rewards[0][0], 2)}")
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F.2 Evaluation of controllers

The script appended below was used to evaluate the performance of the differ-
ent controllers. The controller’s exploration rate was set to minimum and the
predetermined disturbance showed is fig. 15 was used for all evaluations. The
specific script shown below was the evaluation of the DQN controller for the
one tank case. Minor adjustments to the script were made for evaluation the
REINFORCE, A2C, and P-controllers.

1 from models.Agent import Agent
2 from models.environment import Environment
3 from evalv_params import MAIN_PARAMS, AGENT_PARAMS, TANK_DIST
4 from params import TANK_PARAMS
5 import os
6 import matplotlib.pyplot as plt
7 import numpy as np
8 from rewards import get_reward_3 as get_reward
9 from rewards import sum_rewards

10
11 plt.style.use("ggplot")
12
13
14 os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
15
16
17 def main():
18 # ============= Initialize variables and objects ===========#
19 environment = Environment(TANK_PARAMS, TANK_DIST, MAIN_PARAMS)
20 agent = Agent(AGENT_PARAMS)
21 z = []
22 h = []
23 d = []
24 # ================= Running episodes =================#
25
26 state, episode_reward = environment.reset()
27 h_ = np.array([state[0][0][0]])
28 h.append(h_)
29 for t in range(MAIN_PARAMS["MAX_TIME"]):
30 action = agent.act(state[-1]) # get action choice from state
31 z_ = agent.action_choices[
32 action
33 ] # convert action choice into valve position
34 z.append(np.array(z_))
35 terminated, next_state = environment.get_next_state(
36 z[-1], state[-1], t
37 ) # Calculate next state with action
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38 reward = sum_rewards(
39 next_state, terminated, get_reward
40 ) # get reward from transition to next state
41 # Store data
42 episode_reward.append(reward)
43
44 state.append(next_state)
45 h_ = []
46 d_ = []
47 for i in range(agent.n_tanks):
48 d_.append(
49 environment.tanks[i].dist.flow[t - 1] + environment.q_inn[i]
50 )
51 h_.append(np.array(next_state[i][0]))
52 d.append(d_)
53 h.append(h_)
54 if environment.show_rendering:
55 environment.render(z[-1])
56 if True in terminated:
57 break
58
59 if not environment.running:
60 break
61 print(np.sum(episode_reward))
62 _, (ax1, ax2, ax3) = plt.subplots(3, sharex=False, sharey=False)
63 d = np.array(d)
64 h = np.array(h[:-1])
65 z = np.array(z)
66 h *= 10
67
68 ax1.plot(h[:-1, 0], color="peru", label="Tank 1")
69 ax1.set_ylabel("Level")
70 ax1.legend(loc="upper right")
71 ax1.set_ylim(2.5, 7.5)
72
73 ax2.plot(z[1:, 0], color="peru", label="Tank 1")
74 ax2.legend(loc="upper right")
75 ax2.set_ylabel("Valve")
76 ax2.set_ylim(-0.01, 1.01)
77
78 ax3.plot(d[:, 0], color="peru", label="Tank 1")
79 ax3.set_ylim(0, 4)
80 ax3.set_ylabel("Disturbance")
81 ax3.legend(loc="upper right")
82
83 # plt.legend([l1, l2, l3], ["Tank height", "Valve position", "Disturbance"])
84 plt.tight_layout()
85 plt.xlabel("Time")
86 plt.show()

118



87
88
89 if __name__ == "__main__":
90 print("#### SIMULATION EVALUATION STARTED ####")
91 print(" Max time in each episode: {}".format(MAIN_PARAMS["MAX_TIME"]))
92 main()
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