Modelling and Optimization of Compact subsea separators

Fahad Matovu

Supervisor: Johannes Jäschke Co-Supervisor: Sigurd Skogestad

NTNU

June 3, 2015

イロト 不得 トイヨト イヨト 二日

1/17

- Introduction
- Motivation
- Modelling of Separation units
- Optimization of system
- Results
- Conclusion
- References

Figure: Compact separation system

[Ellingsen, 2007]

イロン イボン イヨン トヨ

- Compact systems-minimise space and weight while optimizing separation efficiencies.
- "Inline" technology-designed to have almost the same dimensions as the transport pipe.
- Use centrifugal forces thousands of times greater than gravitational forces used in conventional separators [Hamoud et.al, 2009].

Motivation;

- Application in existing installations makes increased production possible [FMCtechnologies, 2011].
- Reduced size and weight limits on space and load requirements thus reducing on associated costs.
- Applicable top-side and sub-sea due to small size.

Aim: Predict phase separation and outlet flow rates and fractions based on known inlet conditions and separator geometry.

- Gravity separator
 - Inlet pipe entrainment
 - Droplet size distribution (Upper-limit log normal distribution)[Simmons M.J., Hanratty T.J., 2001]
 - Determine "critical" droplet size for separation
- Deliquidizer
 - Uniform droplet distribution
 - Radial settling velocity
 - Time of flight model
 - Separation efficiency
- Degasser-concepts similar to deliquidizer.

Aim: Maximize gas and liquid fractions to the compressor and pump respectively.

- 2 Degrees of freedom (split fractions on degasser and deliquidizer)
- Disturbance variables-Inlet flow rate and phase fraction.
- Output variables-Exit stream phase fractions and flow rates.

- Objective function $J = -0.5(f_7 + \beta_9)$
- Linear inequality constraints -split fractions between 0 and 1.
- Non-linear constraints -phase fractions ≤ 1 and flow rates ≥ 0 .
- Optimization cases- Base case and 4 cases for sensitivity analysis.

Optimization done in Matlab using fmincon.

Results-Gravity separator

8/17

Explanation

- Low q, low gas velocity ug, high terminal velocity ut, high liq sep.eff
- \uparrow q, \uparrow ug > ut, liq in gas and \downarrow Gas vol fraction GVF.
- For gas, smaller rise velocity ur(high liq viscosity), high bottom liq velocity ul, gas in liq bottom stream, ↓ LVF bottom stream.
- Sep. eff drop more pronounced in gas. Gas low ur(high liq viscosity), liq high ut(low gas viscosity).
- Same q, ↓ inlet gas fraction f(0.7 to 0.5), ↑ gas entrainment, ↓ gas. sep eff. Bottom more gas thus ↓ in LVF and top less gas ↓ in GVF.

Results-Deliquidizer

10 / 17

Explanation

- Low q, low angular velocity w ,low radial velocity ur, low liq sep.eff.
- ↑ q, ↑ ur, ↑ in separation forces, ↑ in liq sep.eff and ↑ Gas vol fraction GVF. More liq sep, more liq in bottom and ↑ in LVF.
- Levelling off in angular velocity w, influence of mixup of separated phases(turbulence effects), same radial time bse no change in w, ↑ q, ↓ in droplet axial time, ↓ liq sep.eff, ↓ in GVF and LVF.
- Same q, split fraction top stream (0.85 to 0.7). Liq in top fixed(same sep eff), ↓ gas in top, ↓ GVF, more gas bottom stream, ↓ LVF.

Results-Degasser

Explanation

- Low q, low angular velocity w ,low radial velocity ur, low gas sep.eff.
- ↑ q, ↑ ur, ↑ in separation forces, ↑ in gas sep.eff and ↑ Gas vol fraction GVF. More gas sep, less gas in bottom and ↑ in LVF.
- Levelling off in angular velocity w, influence of mixup of separated phases(turbulence effects), same radial time bse no change in w, ↑ q, ↓ in bubble axial time, ↓ gas sep.eff, less gas to top, ↓ in GVF and LVF.
- Same q, split fraction top stream (0.2 to 0.4). gas in top fixed(same sep eff), ↑ liq in top, ↓ GVF, less liq bottom stream, ↓ LVF.

Table: Optimization results for the 5 different cases

Case2(+5% q_1), Case3(-5% q_1), Case4(+10% t_1) and Case5(-10% t_1)										
Variable	Init. guess	Base-case	Case2	Case3	Case4	Case5				
F1	0.2	0.3384	0.3898	0.2658	0.1327	0.3788				
F2	0.6	0.9951	0.9939	0.9962	0.9937	0.9964				
J	-	0.9748	0.9917	0.9483	0.8953	0.9877				

Optimal performance indicates no liquid in top stream from degasser and no gas in bottom stream from deliquidizer.

An average of not more that 5% of undesirable phase in exit streams to the compressor and pump.

Relative sensivity
$$S_P^C = \frac{\partial C^{opt}/C^{opt}}{\partial P/P}$$
 [Edgar et.al, 1989].

Table: Sensitivity analysis

Cases	$S_{q_1}^J$	$S_{q_1}^{F1}$	$S_{q_1}^{F2}$	$S_{\alpha_1}^J$	$S_{\alpha_1}^{F1}$	$S_{\alpha_1}^{F2}$
Case2	0.35	3.04	-0.02	-	-	-
Case3	0.54	4.29	-0.02	-	-	-
Case4	-	-	-	-0.82	-6.08	-0.01
Case5	-	-	-	-0.13	-1.19	-0.01

Largest relative influence on optimal F1 by changes in q_1 and α_1

- Steady state models have been developed for predicting phase separation of gas and liquid phases and trends in results are in agreement with theoretical expectations.
- Optimization has been carried out. Results have shown an average of not more that 5% of dispersed phase in continuous phase in exit streams to the compressor and pump.

Shortcomings

• Lack of experimental data.

References

Christian Ellingsen (2007)

Compact sub sea separation: Implementation and comparison of two different control structures

Master Thesis, NTNU

A Hamoud(2009)

New application of an inline separation technology in a real wet gas field. *Saudi Aramco Journal of Technology*.

FMCtechnologies (2011)

Compact total separation systems.

M.J., Simmons, T.J., Hanratty (2001)

Droplet size measurements in horizontal annular gas-liquid flow.

International Journal of Multiphase flow 27 (5), 861-883.

T.F., Edgar(1989)

Optimization of chemical processes.

McGraw-Hill.